Archivo del Autor: Lizbeth Fernández Villegas

Si $\phi$ es contracción entonces la sucesión $(\phi^n(x_0))_{n \in \mathbb{N}} \,$ es de Cauchy

Por Lizbeth Fernández Villegas

Introducción

En esta entrada continuaremos con la demostración del teorema de punto fijo de Banach, enunciado en la sección anterior. Vimos dos ejemplos de contracciones donde generamos una sucesión a partir de cualquier punto del espacio, evaluando la contracción recursivamente. En nuestros ejemplos observamos que la sucesión creada es convergente. ¿Lo será con cualquier contracción? Por lo pronto mostraremos que una sucesión así definida es de Cauchy.

Los puntos de la sucesión $(\phi^n(x_0))_{n \in \mathbb{N}}$ se acercan cada vez más entre sí.

Comencemos comprobándolo para el siguiente caso. Es más general que la primera función vista en Contracciones.

Ejemplo. $f(x)= \alpha x.$

En el espacio euclidiano $\mathbb{R}$ considera $f:\mathbb{R} \to \mathbb{R}$ definida como $f(x)= \alpha x,$ con $\alpha \in (0,1)$ constante. Entonces:
$$d(f(x),f(y))=d(\alpha \, x, \alpha \, y)=|\alpha \, x- \alpha \, y|= \alpha|x-y|=\alpha \, d(x,y)$$
Lo cual prueba que $f$ es contracción.

Veamos ahora que la sucesión generada al evaluar $f,$ partiendo de $x_0 \in \mathbb{R}$ es de Cauchy. Dado $x_0 \in \mathbb{R}$ tenemos:

$x_1:=f(x_0) = \alpha x_0$
$x_2:=f(x_1) = \alpha x_1 = \alpha^2 x_0$
$x_3:=f(x_2) = \alpha x_2 = \alpha^3 x_0$
.
.
.
$x_k:=f(x_{k-1}) = \alpha x_{k-1}= \alpha^k x_0$

Entonces la sucesión está dada por $(\alpha^n x_0)_{n \in \mathbb{N}}.$

A continuación, $ln(x)$ hace referencia al logaritmo natural de $x.$

Sea $\large{\varepsilon} >0$ y sea $N \in \mathbb{N}$ tal que $N > \dfrac{ln \left(\frac{\large{\varepsilon}}{|x_0|} \right)}{ln(\alpha)}.$

Como $\alpha \in (0,1), \, ln(\alpha)< 0.$ Se sigue que:

\begin{align*}
& &N \, ln(\alpha) &< ln \left(\frac{\varepsilon}{|x_0|} \right) \\
&\Rightarrow \, &exp \left(ln \left(\alpha^N \right) \right) &< exp \left( ln \left( \frac{\varepsilon}{|x_0|} \right) \right) \\
&\Rightarrow \, &\alpha^N&< \frac{\varepsilon}{|x_0|}
\end{align*}

La última desigualdad se usará en las siguientes líneas.

Sean $n,m \geq N.$ Supón sin pérdida de generalidad que $n \leq m$ entonces $\alpha^n \geq \alpha^m \geq 0 .$ Tenemos:

\begin{align*}
d(x_n,x_m) &= |x_n-x_m|\\
&=|\alpha^n x_0 \, – \, \alpha ^m x_0|\\
&= |\alpha ^n – \alpha^m||x_0|\\
&\leq \alpha ^n|x_0| \\
&\leq\alpha ^N |x_0| \\
&\leq \frac{\varepsilon}{|x_0|}|x_0| \\
&= \varepsilon
\end{align*}

Por lo tanto la sucesión $(\alpha^n x_0)_{n \in \mathbb{N}} \,$ es de Cauchy.

Pasemos a demostrar el caso general:

Proposición: Sea $(X,d)$ un espacio métrico, $\phi : X \to X$ una contracción con constante $\alpha \in (0,1)$ y sea $x_0 \in X.$ Entonces la sucesión $(\phi^n(x_0))_{n \in \mathbb{N}} \,$ es de Cauchy en $X.$

Demostración:
Comencemos con un análisis entre distancias de los primeros pares de puntos de la sucesión.

\begin{align*}
&d(x_1,x_2) = d(\phi(x_0),\phi(x_1)) &\leq \alpha d(x_0,x_1) \\
&d(x_2,x_3)=d(\phi(x_1),\phi(x_2)) \leq \alpha d(x_1,x_2) \leq \alpha (\alpha d(x_0,x_1)) &= \alpha^2 d(x_0,x_1)\\
&d(x_3,x_4) =d(\phi(x_2), \phi(x_3)) \leq \alpha d(x_2,x_3) \leq \alpha(\alpha^2d(x_0,x_1)) &= \alpha^3d(x_0,x_1)
\end{align*}

Por inducción sobre $n$ podemos concluir que la distancia entre cualquier punto de la sucesión y el siguiente está limitada por

\begin{equation}
d(x_n,x_{n+1})=d(x_n, \phi(x_n)) \leq \alpha^n d(x_0,x_1)
\end{equation}

Pasemos a probar que $(\phi^n(x_0))_{n \in \mathbb{N}} \,$ es de Cauchy en $X.$

Sea $\varepsilon>0$ y $N \in \mathbb{N}$ tal que $N \geq \, \dfrac{ln \left(\dfrac{\varepsilon(1- \alpha)}{d(x_0,x_1)}\right)}{ln (\alpha)}.$ Entonces si $n > N:$

\begin{align*}
& &n &> \dfrac{ln \left(\dfrac{\varepsilon(1- \alpha)}{d(x_0,x_1)}\right)}{ln (\alpha)} \\
&\Rightarrow & n \, ln (\alpha) &< ln \left(\dfrac{\varepsilon(1- \alpha)}{d(x_0,x_1)}\right) \\
&\Rightarrow & ln (\alpha^n) &< ln \left(\dfrac{\varepsilon(1- \alpha)}{d(x_0,x_1)}\right) \\
&\Rightarrow & exp(ln (\alpha^n)) &< exp \left(ln \left(\dfrac{\varepsilon(1- \alpha)}{d(x_0,x_1)}\right) \right) \\
&\Rightarrow & \alpha^n &< \dfrac{\varepsilon(1- \alpha)}{d(x_0,x_1)}
\end{align*}


\begin{equation}
\Rightarrow \, \dfrac{\alpha^n}{1- \alpha} d(x_0,x_1) < \large{\varepsilon}
\end{equation}

Sean $n,m \in \mathbb{N} \,$ tales que $n,m > N.$ Sin pérdida de generalidad supón que $m \geq n.$ Entonces $m \, = \, n+p$ para algún $p \in \mathbb{N}.$ A partir de la desigualdad del triángulo sabemos que la distancia entre el punto $x_n$ y el punto $x_m=x_{n+p}$ es menor igual que la suma de las distancias de todos los puntos de la sucesión que están entre ellos dos.

La distancia entre $x_n$ y $x_m$ es menor igual que la suma de todas las demás.

Se sigue:

\begin{align*}
d(x_n,x_m) &= d(x_n,x_{n+p})\\
&\leq d(x_n,x_{n+1}) +d(x_{n+1},x_{n+2}) …+ d(x_{n+p-2},x_{n+p-1})+d(x_{n+p-1},x_{n+p})\\
&\leq \alpha^n d(x_0,x_1) +\alpha^{n+1} d(x_0,x_1)+…+ \alpha^{n+p-2} d(x_0,x_1)+\alpha^{n+p-1} d(x_0,x_1) \text{ por ec. $(1)$}\\
&= (\alpha^n +\alpha^{n+1} +…+ \alpha^{n+p-2} +\alpha^{n+p-1} ) \, d(x_0,x_1) \\
&=\alpha^n \, (1+\alpha +…+\alpha^{p-2}+\alpha^{p-1}) \, d(x_0,x_1)
\end{align*}

Nota que $1+\alpha +…+\alpha^{p-2}+\alpha^{p-1}$ es la suma de los primeros términos de la serie $\sum_{k=0}^{\infty}\, \alpha^k.$ Probablemente has visto en otros cursos que ésta es una serie convergente y que $\sum_{k=0}^{\infty}\, \alpha^k \, = \dfrac{1}{1-\alpha}$, pues $|\alpha|<1$. Puedes consultarlo en la sección Cálculo Diferencial e Integral II: Series Geométricas. Entonces:

$$1+\alpha +…+\alpha^{p-2}+\alpha^{p-1} \leq \sum_{k=0}^{\infty}\, \alpha^k \, = \dfrac{1}{1-\alpha}$$

De modo que

\begin{align*}
\alpha^n \, (1+\alpha +…+\alpha^{p-2}+\alpha^{p-1}) \, d(x_0,x_1) &\leq \alpha^n \, \sum_{k=0}^{\infty}\, \alpha^k \, d(x_0,x_1) \\
&\leq \alpha^n \frac{1}{1- \alpha} \, d(x_0,x_1)\\
&< \varepsilon \text{ por ec. (2)}
\end{align*}

Por lo tanto $d(x_n,x_m) < \varepsilon \, $ lo cual demuestra que $(\phi^n(x_0))_{n \in \mathbb{N}} \,$ es una sucesión de Cauchy.

Más adelante

Terminaremos con la prueba del teorema de punto fijo de Banach. Mostraremos condiciones bajo las cuales esta sucesión de Cauchy es convergente y cómo aproximar la sucesión al punto de convergencia.

Tarea moral

  1. Da un ejemplo de un espacio métrico completo y una función $\phi: X \to X$ que satisface que para cada $x,y \in X$ con $x \neq y, \, d(\phi(x), \phi(y)) < d(x,y)$ y que no tiene ningún punto fijo.
  2. Prueba que si $X$ es un espacio métrico compacto y $\phi: X \to X$ satisface que para cada $x,y \in X$ con $x \neq y, \, d(\phi(x), \phi(y)) < d(x,y)$ entonces $\phi$ tiene un único punto fijo.

Enlaces

Convergencia e integración

Por Lizbeth Fernández Villegas

Introducción

Así como ya hicimos comparaciones de continuidad o diferenciabilidad del límite de una sucesión de funciones a partir de sus términos, en esta ocasión lo haremos con funciones integrables.

Partimos de una sucesión de funciones donde para cada $n \in \mathbb{N}, \, f_n:[a,b] \to \mathbb{R}, \, a,b \in \mathbb{R}.$ Supón además que $(f_n)_{n \in \mathbb{N}}$ converge puntualmente a una función $f$ en $[a,b].$

Si cada una de las funciones $f_n$ son integrables, ¿será $f$ también integrable?

¿La sucesión de integrales converge? ¿Su límite coincide con la integral del límite? Veamos el siguiente:

Ejemplo.

Considera el conjunto $\mathbb{Q} \cap [0,1].$ Como es numerable, podemos identificarlo como $\mathbb{Q} \cap [0,1] = \{ x_n: n \in \mathbb{N} \}.$ Para cada $n \in \mathbb{N}$ definimos $\mathcal{X}_{\{x_n\}}$ como la función característica dada por:

\begin{equation*}
\mathcal{X}_{\{x_n\}} = \begin{cases}
1 & \text{si $x = x_n$} \\
0 & \text{si $x \neq x_n$}
\end{cases}
\end{equation*}

Función $\mathcal{X}_{\{x_n\}}.$

Ahora, para cada $n \in \mathbb{N}$ definimos $f_n = \mathcal{X}_{\{x_1\}}+…+\mathcal{X}_{\{x_n\}}.$

Función $f_n.$

Entonces la función $f_n$ es integrable en $[a,b]$ y la sucesión $(f_n)_{n \in \mathbb{N}}$ converge puntualmente a la función:

\begin{equation*}
\mathcal{X}_{ \, \mathbb{Q} \cap [0,1]} = \begin{cases}
1 & \text{si $x \in \mathbb{Q} \cap [0,1]$} \\
0 & \text{si $x \notin\mathbb{Q} \cap [0,1]$}
\end{cases}
\end{equation*}

Pero $\mathcal{X}_{ \, \mathbb{Q} \cap [0,1]}$ no es integrable en $[0,1].$ Por lo tanto la convergencia puntual podría no bastar para que el límite sea integrable. ¿Y si la convergencia es uniforme?

Proposición: Sea $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones integrables en $[a,b]$ que converge uniformemente a una función $f$ en $[a,b].$ Entonces $f$ es integrable y
$$\int_{a}^{b} f = \underset{n \to \infty}{lim} \, \int_{a}^{b} f_n.$$

Demostración:
Para cada $n \in \mathbb{N}$ sea $\large{\varepsilon_n} := \underset{a \leq x \leq b}{sup}|f_n(x) – f(x)|.$
Entonces $f_n \, – \, \large{\varepsilon_n} \leq f \leq f_n + \varepsilon_n,$ de modo que las integrales superior e inferior de $f$ satisfacen:
$\int_{a}^{b} (f_n \, – \, \large{\varepsilon_n}) \, dx \leq \underline{\int} f \, dx\leq \overline{\int} f \, dx \leq \int_{a}^{b}(f_n + \large{\varepsilon_n}) \, dx$

Entonces $0 \leq \overline{\int} f \, dx – \underline{\int} f \, dx \leq \int_{a}^{b}(f_n + \large{\varepsilon_n}) \, dx – \int_{a}^{b} (f_n – \large{\varepsilon_n}) \, dx = 2\large{\varepsilon_n}[b-a].$
Dado que $\large{\varepsilon_n} \to 0$ porque $(f_n)_{n \in \mathbb{N}} \to f$ de manera uniforme, se sigue que $\overline{\int} f=\underline{\int} f.$ Por lo tanto $f$ es integrable.

Podemos ver también que
$\left| \int_{a}^{b} f \, dx \, – \, \int_{a}^{b} f_n \, dx \right| \leq \large{\varepsilon_n}[b-a] \to 0$ lo que demuestra que
$$\int_{a}^{b} f = \underset{n \to \infty}{lim} \, \int_{a}^{b} f_n.$$

Es importante mencionar que la convergencia uniforme no es una condición necesaria para que se de esta igualdad. Veamos el siguiente:

Ejemplo.

Para cada $n \in \mathbb{N}$ sea $f_n(x) = x^n$ con $x \in [0,1].$ En la entrada Convergencia uniforme y continuidad mostramos que la sucesión $(x^n)_{n \in \mathbb{N}} \, $ converge puntualmente a la función:

\begin{equation*}
f(x)= \begin{cases}
0 & \text{ si $0\leq x<1$}\\
1 & \text{ si $x=1$}
\end{cases}
\end{equation*}

Si calculamos las integrales tenemos que para cada $n \in \mathbb{N}:$

$\large{\int_{0}^{1}x^n} \, dx = \dfrac{1}{n+1} \to 0 = \large{\int_{0}^{1} f(x)} \, dx.$

Por lo tanto
$$ \int_{0}^{1}f(x) \, dx =\underset{n \to \infty}{lim} \, \int_{0}^{1}f_n(x) \, dx.$$

Las condiciones de este ejemplo pueden generalizarse. Antes conozcamos algunas definiciones:

Definición. Sucesión uniformemente acotada: Sea $(f_n)_{n \in \mathbb{N}} \,$ una sucesión de funciones con $f_n: A \subset \mathbb{R} \to \mathbb{R}, \, n \in \mathbb{N}$. Diremos que es uniformemente acotada en $A$ si existe $M >0 \in \mathbb{R}$ tal que $|f_n(x)| \leq M$ para cualquier $x \in A$ y cualquier $n \in \mathbb{N}.$

Definición. Sucesión acotadamente convergente: Una sucesión de funciones $(f_n)_{n \in \mathbb{N}} \,$ con $f_n: A \subset \mathbb{R} \to \mathbb{R}, \, n \in \mathbb{N}$ es acotadamente convergente en $A$ si converge puntualmente y es uniformemente acotada en $A.$

Proposición: Sea $(f_n)_{n \in \mathbb{N}} \,$ una sucesión acotadamente convergente en $[a,b]$ donde cada función es integrable en $[a,b],$ y que la función límite $f$ es integrable en $[a,b].$ Supongamos también que existe una partición $P$ de $[a,b],$ a saber, $P=\{x_0,x_1,…,x_m\},$ tal que la sucesión $(f_n)_{n \in \mathbb{N}} \,$ es uniformemente convergente hacia $f$ en cada subintervalo $[c,d] \subset [a,b]$ que no contenga ninguno de los puntos $x_k \in P.$ Entonces:

$$ \underset{n \to \infty}{lim} \, \int_{a}^{b} f_n(x) \, dx = \int_{a}^{b} f(x) \, dx.$$

Demostración:
Dado que $f$ es acotada y $(f_n)_{n \in \mathbb{N}} \,$ es uniformemente acotada, existe $M >0$ tal que $|f(x)| \leq M$ para cada $x \in [a,b]$ y para cualquier $n \in \mathbb{N}.$
Sea $\varepsilon > 0$ tal que $2 \varepsilon < \norm{P},$
sea $h = \frac{\varepsilon}{2m},$ donde $m$ es el múmero de subintervalos de $P,$
considera una nueva partición $P’$ de $[a,b]$ dada por:
$P’=\{x_0, \, x_0+h,\, x_1-h,\, x_1+h, \, … \, ,x_{m-1}-h, \, x_{m-1}+h, \, x_m-h, \, x_m\}$

Nota que la función $|f-f_n|$ es integrable en $[a,b]$ y es acotada por $2M.$ Consideremos la integral de esta función en cada uno de los intervalos de la nueva partición $P’.$

Por un lado, consideremos la suma de las integrales de $|f-f_n|$ tomadas sobre los intervalos que sí tienen algún punto de $P,$ es decir los intervalos
$[x_0,x_0+h], \, [x_1-h,x_1+h],…,[x_{m-1}-h,x_{m-1}+h], \, [x_m-h,x_m].$

La suma está dada por:

\begin{align*}
&\int_{x_0}^{x_0+h} |f-f_n|(x)\, dx + \int_{x_1-h}^{x_1+h} |f-f_n|(x)\, dx +…+ \int_{x_{m-1}-h}^{x_{m-1}+h} |f-f_n|(x)\, dx + \int_{x_m-h}^{x_m} |f-f_n|(x)\, dx \\
\leq & 2M(x_0+h-x_0) + 2M(x_1+h-(x_1-h))+…+2M(x_{m-1}+h-(x_{m-1}-h))+2M(x_m-(x_m-h)) \\
=&2Mh+2M(2h)+…+2M(2h)+2Mh \\
=&2M(2hm) \\
=&2M \varepsilon
\end{align*}

El subconjunto restante de $[a,b]$ lo llamaremos $S.$ Está formado por un número finito de intervalos cerrados en los que $(f_n)_{n \in \mathbb{N}} \,$ converge uniformemente hacia $f$ (pues no tiene ningún punto de $P$). Por consiguiente, existe $N \in \mathbb{N}$ tal que para cada $x \in S,$ si $n \geq N \,$ se cumple que
$$|f(x)-f_n(x)| < \varepsilon$$

De modo que la suma de las integrales de $|f-f_n|$ sobre los intervalos de $S$ es a lo sumo $\large{\varepsilon} (b-a),$ luego para cada $n \geq N:$

$\int_{a}^{b}|f(x)-f_n(x)|dx \leq (2M + b-a) \large{\varepsilon} \, \to \, 0.$

Esto demuestra que $\int_{a}^{b}f_n(x)dx \to \int_{a}^{b}f(x)dx$ cuando $n \to \infty .$

En la última sección de Análisis Matemático I hablaremos de la integral de Riemann-Stieltjes, que es un concepto que generaliza la integral de Riemann. La proposición vista aquí se puede expresar como sigue:

Proposición. Sucesión de funciones Riemann-Stieltjes: Sea $\alpha$ monótona en $[a,b].$ Supón que para cada $n \in \mathbb{N}, \, f_n \in \mathcal{R}(\alpha)$ en $[a,b].$ Si $(f_n)_{n \in \mathbb{N}}$ converge uniformemente a $f$ en $[a,b]$ entonces $f \in \mathcal{R}(\alpha)$ en $[a,b]$ y:

$$\int_{a}^{b} f \, d \alpha = \underset{n \to \infty}{lim} \, \int_{a}^{b} f_n \, d \alpha .$$

Más adelante…

Hablaremos de series de funciones y del límite de ellas. Así conoceremos el concepto de convergencia uniforme pero ahora en sumas infinitas.

Tarea moral

  1. Sea $f_n$ como en el primer ejemplo. Prueba que en efecto la sucesión $(f_n)_{n \in \mathbb{N}} \,$ no converge uniformemente a la función:
    \begin{equation*}
    \mathcal{X}_{ \, \mathbb{Q} \cap [0,1]} = \begin{cases}
    1 & \text{si $x \in \mathbb{Q} \cap [0,1]$} \\
    0 & \text{si $x \notin\mathbb{Q} \cap [0,1]$}
    \end{cases}
    \end{equation*}
  2. Sea $(f_n)_{n \in \mathbb{N}} \,$ una sucesión de funciones acotadas con $f_n: A \subset \mathbb{R} \to \mathbb{R}, \, n \in \mathbb{N}, \,$ tal que converge uniformemente a una función $f:A \to \mathbb{R}.$ Demuestra que $(f_n)_{n \in \mathbb{N}} \,$ es uniformemente acotada en $A.$
  3. Regresa luego de ver la integral de Riemann-Stieljes y demuestra la última proposición de esta sección.

Enlaces:

Contracciones

Por Lizbeth Fernández Villegas

Introducción

Cuando los puntos de un espacio métrico son enviados al mismo espacio a través de una función, conviene saber si habrá algún punto que se envíe a sí mismo, es decir, que se conserve fijo. Las próximas entradas nos mostrarán cuándo esa situación ocurre y resultados interesantes derivados de ello. Comencemos con la primera:

Definición. Función contracción: Sea $(X,d)$ un espacio métrico y $ \phi: X \to X$ una función. Diremos que $\phi$ es una contracción si existe $\alpha \in (0,1)$ tal que para cualesquiera $x,y \in X$ se cumple que:
$$d(\phi(x),\phi(y)) \leq \alpha \, d(x,y)$$

Podemos pensar entonces, que una función contracción, justamente hace que los puntos sean más cercanos entre sí de lo que eran originalmente.

Representación de una función contracción.

Nota que una contracción es también una función Lipschitz continua con constante de Lipschitz $c<1.$ Este concepto se vio en la entrada Más conceptos de continuidad. Demos paso a otra:

Definición. Punto fijo: Sea $X$ un espacio métrico y $x^* \in X.$ Decimos que $x^*$ es punto fijo de la función $\phi:X \to X$ si $\phi(x^*)=x^*.$

Representación de un punto fijo.

Para ejemplificar estas ideas, veamos dos funciones que son contracciones y cómo existe un punto fijo en los casos a mencionar:

Ejemplos. $f(x)=\dfrac{x}{2},$ con $\alpha = \dfrac{1}{2}.$

Considera $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x)=\dfrac{x}{2}$ en el espacio euclidiano. Sean $x,y \in \mathbb{R}.$ Sucede que:

\begin{align*}
d(f(x),f(y))&=|f(x)-f(y)| \\
&=\left|\frac{x}{2}-\frac{y}{2} \right| \\
&=\left|\frac{1}{2}(x-y) \right| \\
&=\frac{1}{2}|x-y| \\
&=\frac{1}{2}d(x,y)
\end{align*}

Por lo tanto $d(f(x),f(y)) \leq \frac{1}{2}d(x,y)$ lo que demuestra que $f$ es una contracción con $\alpha = \frac{1}{2}$.

La siguiente imagen representa la diferencia de las distancias antes y después de aplicar la función en dos puntos $x$ y $y.$ Basta con observar las proyecciones de la gráfica de $f$ en los ejes coordenados.

$f(x)=\frac{x}{2}$

Ahora busquemos un punto fijo:

\begin{align*}
f(x)&=x \\
\iff \frac{x}{2}&=x \\
\iff x&=2x \\
\iff 0&=2x-x \\
\iff 0&=x
\end{align*}

Es decir, $0$ es el único punto fijo de $f.$

A continuación, vamos a construir una sucesión de la siguiente manera:

Toma cualquier $x_0 \in X$

$x_1:=f(x_0)=\dfrac{x_0}{2}$

$x_2 :=f(x_1)=\dfrac{\dfrac{x_0}{2}}{2}=\dfrac{x_0}{2^2}$

$x_3:=f(x_2)=\dfrac{\dfrac{x_0}{2^2}}{2}=\dfrac{x_0}{2^3}$
.
.
.
$x_k:=f(x_{k-1})=\dfrac{x_0}{2^k}$

Entonces la sucesión se define como $(x_n)_{n \in \mathbb{N}} \, $ donde $x_n = \dfrac{x_0}{2^n}.$
Nota que tiende a $0$ en $\mathbb{R}.$

En las siguientes gráficas podemos observar el comportamiento de la sucesión:

Sea $x_0 \in X.$ Mostramos la gráfica de la función $f(x)=\dfrac{x}{2}$ y la función identidad $ \, \mathcal{I}(x)=x.$
Señalamos los términos $x_0$ y $x_1 =f(x_0)=\dfrac{x_0}{2}$ y la distancia entre $f(x_0) \,$ y $\, f(x_1)$ vistos como proyecciones de las gráficas de los puntos sobre los ejes del plano cartesiano:

Términos $x_0 \,$ y $\, x_1$

Si continuamos, generamos el punto $x_2=f(x_1).$ Gráficamente también es visible que las distancias entre dos puntos disminuyen en el eje vertical al continuar con las iteraciones.


Términos $x_0, \, x_1 \,$ y $\, x_2$

Podemos observar que los puntos convergen a $0$ que recordemos, es también el punto fijo de $f$.

Veamos otro caso:

Ejemplo. $f(x)=\dfrac{x}{2}+6,$ con $\alpha = \dfrac{1}{2}.$

Considera $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x)=\dfrac{x}{2}+6$ en el espacio euclidiano. Sean $x,y \in \mathbb{R}.$ Sucede que:

\begin{align*}
|f(x)-f(y)|&=\left|\frac{x}{2}+6- \left(\frac{y}{2}+6 \right) \right| \\
&= \left|\frac{1}{2}(x-y) \right| \\
&= \frac{1}{2}|x-y|
\end{align*}

De modo que $d(f(x),f(y))\leq \frac{1}{2}d(x,y)$ lo cual prueba que $f$ es una contracción con $\alpha = \frac{1}{2}.$

Busquemos puntos fijos:

\begin{align*}
&f(x)&=x \\
\iff &\frac{x}{2}+6 &=x \\
\iff &6 &\, = \frac{x}{2} \\
\iff &12 & = x
\end{align*}

Entonces $12$ es el único punto fijo de $f.$

El siguiente gráfico nos confirma estos resultados para la sucesión generada a partir de un punto $x_0 \in X$ donde para cada $n \in \mathbb{N}, \, x_n=f(x_{n-1}).$

Queda como ejercicio al lector demostrar que $(x_n)_{n \in \mathbb{N}} \to 12$ en $\mathbb{R}.$

Esto da pie para enunciar el:

Teorema de punto fijo de Banach. Sea $(X,d)$ un espacio métrico completo y sea $\phi:X \to X$ una contracción, entonces:

  1. Para cada $x_0 \in X$ la sucesión $(\phi^n(x_0))_{n \in \mathbb{N}} \,$ es de Cauchy y, en consecuencia $(\phi^n(x_0))_{n \in \mathbb{N}}$ converge a un punto $x^* \in X.$ $\, \phi^n$ representa la composición $\, \underset{n \, veces}{\underbrace{ \phi \circ … \circ \phi }}$
  2. El punto $x^*$ descrito es punto fijo de $\phi.$
  3. El punto fijo es único.
  4. Podemos estimar la distancia de $\phi ^n(x_0)$ a $x^*$ usando la desigualdad:
    $$d( \phi ^n(x_0),x^*) \leq \frac{\alpha^n}{1-\alpha} \, d( x_0, \phi (x_0)).$$

Por lo pronto demostremos que si una contracción tiene un punto fijo entonces este es único.

Sean $x, y \in X$ tales que $\phi(x)=x \,$ y $\, \phi(y)=y.$ Como $\phi$ es una contracción se tiene que:

$$d(x,y) = d(\phi(x),\phi(y)) \leq \alpha d(x,y) $$

Como $\alpha <1$ se sigue que:
$$\alpha d(x,y) \leq d(x,y)$$
Por lo tanto $d(x,y)=d(x,y),$ y en consecuencia $x=y.$

Más adelante…

Continuaremos con la demostración del teorema de punto fijo de Banach. En la siguiente entrada comprobaremos que la sucesión $(\phi^n(x_0))_{n \in \mathbb{N}} \,$ es de Cauchy.

Tarea moral

  1. Sea $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = \dfrac{x}{2} +6$ en el espacio euclidiano. Sea $x_0 \in \mathbb{R}, \,$ prueba que la sucesión $(f^n(x_0))_{n \in \mathbb{N}} \, $ converge a $12.$
  2. Sea $f:[a,b] \to [a,b], \, a,b \in \mathbb{R} \,$ una función continua. Demuestra que tiene al menos un punto fijo.
  3. Da un ejemplo de una función continua $f:[a,b] \to [a,b], \, a,b \in \mathbb{R} \,$ con una infinidad de puntos fijos.
  4. Prueba que si $f: \mathbb{R} \to \mathbb{R}$ y para cada $x \in \mathbb{R}, \, |f'(x)| \leq M<1$ entonces $f$ es una contracción.
  5. Da un ejemplo de un espacio métrico completo y una función $\phi: X \to X \,$ que satisface que para todo $x \neq y \in X, \, d(\phi(x), \phi(y)) < d(x,y)$ pero que no tenga ningún punto fijo.

Enlaces

Convergencia y diferenciación

Por Lizbeth Fernández Villegas

Introducción

En la entrada anterior vimos que cuando una sucesión de funciones continuas converge uniformemente, podemos concluir que el límite es también una función continua. ¿Qué ocurrirá con funciones diferenciables?

Considera el espacio de funciones con dominio en $[a,b]$ con $a,b$ e imagen en $\mathbb{R}.$ Tal vez intuimos que si tenemos una sucesión de funciones diferenciables $(f_n)_{n \in \mathbb{N}}$ que convergen uniformemente a una función $f$ en $[a,b]$ entonces $f$ también es diferenciable y la sucesión de derivadas $(f’_n)_{n \in \mathbb{N}}$ converge uniformemente en $f’.$ Esto es falso, como muestra el siguiente:

Ejemplo. La sucesión $\left( \dfrac{sen (nx)}{\sqrt{n}} \right) _{n \in \mathbb{N}}$

Para cada $n \in \mathbb{N}$ sea $f_n:[0,1] \to \mathbb{R} \,$ tal que $f_n(x)=\dfrac{sen (nx)}{\sqrt{n}}.$ Ocurre que $\left( \dfrac{sen (nx)}{\sqrt{n}} \right) _{n \in \mathbb{N}}$ converge uniformemente a la función $f(x)=0.$

Sucesión $\left( \dfrac{sen (nx)}{\sqrt{n}} \right) _{n \in \mathbb{N}}.$

Esto es porque, para cualquier $x \in [0,1], \, |sen(nx)|<1.$ Por otro lado, $\sqrt{n} \to \infty.$ Por lo tanto $\left|\dfrac{sen (nx)}{\sqrt{n}} \right| = \dfrac{|sen(nx)|}{\sqrt{n}} \leq \dfrac{1}{\sqrt{n}} \to 0.$

Por otro lado, para cada $n \in \mathbb{N}$ se tiene que $f'(x)= \sqrt{n} \, cos(nx).$ Pero $(f’_n)_{n \in \mathbb{N}} \,$ no converge a $f’$ ni de forma puntual. Por ejemplo $f’_n(0)=\sqrt{n}$ tiende a $\infty$ mientras que $f'(0)=0.$

Ejemplo. La sucesión $\left( \dfrac{x}{1 + n x^2} \right) _{n \in \mathbb{N}}$

Para cada $n \in \mathbb{N}$ sea $f_n:\mathbb{R} \to \mathbb{R}$ tal que $f_n(x)=\dfrac{x}{1 + n x^2}.$

Sucesión $\left( \dfrac{x}{1 + n x^2} \right) _{n \in \mathbb{N}}.$

Comencemos identificando la función límite $f$ de la sucesión $(f_n)_{n \in \mathbb{N}}$ y la función límite $g$ de la sucesión de derivadas $(f’_n)_{n \in \mathbb{N}}.$

Ya la imagen anterior nos induce a proponer $f=0.$ También podemos observar que cada función tiene máximo y mínimo global cuya distancia a $0$ coincide. Además, estos se van acercando más al eje horizontal a medida que avanzamos en las funciones de la sucesión.

En efecto, cuando la derivada es $0,$ la función $f_n$ alcanza su máximo o mínimo global:
$$\dfrac{1-nx^2}{(nx^2+1)^2}=0 \, \iff \, 1-nx^2 = 0 \, \iff \, x = \pm \sqrt{\frac{1}{n}}$$

Esto significa que cada $f_n$ está acotada como sigue:
$|f_n(x)|= \left| \dfrac{x}{1 + n x^2} \right| \leq \left|\dfrac{\sqrt{\frac{1}{n}}}{1 + n \sqrt{\frac{1}{n}}^2}\right| = \dfrac{1}{2\sqrt{n}} \, \to \, 0.$

Lo cual prueba que $(f_n)_{n \in \mathbb{N}}$ converge uniformemente a $0.$

Para el límite de la sucesión de derivadas veamos la siguiente imagen.

Esto incentiva proponer $g$ como:

\begin{equation*}
g(x) = \begin{cases}
0 & \text{si x $\neq$ 0} \\
1 & \text{si $x = 0$}
\end{cases}
\end{equation*}

Entonces $f’$ no coincide con $g,$ pues asignan valores diferentes al ser evaluadas en $0.$ Dejaremos como ejercicio lo siguiente:

  1. Probar que $(f’_n)_{n \in \mathbb{N}} \to g.$ ¿La convergencia es puntual o uniforme?
  2. Identifica para qué valores de $x \in \mathbb{R}$ sí se cumple que $f'(x)=g(x).$
  3. ¿En qué intervalos de $\mathbb{R}$ se da la convergencia uniforme de $(f_n)_{n \in \mathbb{N}}$ en $f.$
  4. ¿En qué intervalos de $\mathbb{R}$ se da la convergencia uniforme de $(f’_n)_{n \in \mathbb{N}}$ en $g.$

Ejemplo. La sucesión $\left( \dfrac{1}{n} \, e^{-n^2x^2} \right) _{n \in \mathbb{N}}$

Para cada $n \in \mathbb{N}$ sea $f_n:\mathbb{R} \to \mathbb{R}$ tal que $f_n(x)=\dfrac{1}{n} \, e^{-n^2x^2}.$

Sucesión $\left( \dfrac{1}{n} \, e^{-n^2x^2} \right) _{n \in \mathbb{N}}.$

Veamos que $(f_n)_{n \in \mathbb{N}}$ converge uniformemente en $\mathbb{R}$ a la función $f=0.$

Para cada $n \in \mathbb{N}$ y para cada $x \in \mathbb{R}, \, f'(x)= -2nxe^{-n^2x^2}.$ Se puede demostrar que esta función alcanza su máximo global cuando $f'(x)=0, \,$ lo cual ocurre cuando $x=0.$ Entonces el máximo de $f_n$ está dado por $f(0)= \frac{1}{n} \, \to \, 0.$ Por lo tanto $(f_n)_{n \in \mathbb{N}}$ converge uniformemente en $\mathbb{R}$ a la función $f=0.$

Ahora observemos la sucesión de derivadas $(f’_n)_{n \in \mathbb{N}}.$

Dejamos como ejercicio al lector probar que $(f’_n)_{n \in \mathbb{N}}$ converge puntualmente a la función $g=0.$ No obstante, esta convergencia no es uniforme en ningún intervalo que contenga al origen.

Habiendo visto estas situaciones, conozcamos algunas condiciones de convergencia para $(f_n)_{n \in \mathbb{N}} \,$ y para $(f’_n)_{n \in \mathbb{N}} \,$ que implican que $f’ =g.$

Proposición: Para cada $n \in \mathbb{N}$ sea $f_n:[a,b] \to \mathbb{R}$ continua y diferenciable en $[a,b],$ tal que la sucesión $(f_n)_{n \in \mathbb{N}}$ converge puntualmente a $f:[a,b] \to \mathbb{R}$ y la sucesión de derivadas $(f’_n)_{n \in \mathbb{N}}$ converge uniformemente a $g:[a,b] \to \mathbb{R}.$ Entonces $f$ es continua y diferenciable en $[a,b]$ y $f’=g.$

Demostración:
Sean $j,k \in \mathbb{N}$ y $x_0 \in (a,b).$ La función $f_j-f_k$ es continua y diferenciable en $[a,b],$ particularmente, para cada $x \in (a,b),$ también lo será en el intervalo $(x_0,x)$ (o $(x,x_0)$ dependiendo del orden de los puntos). Según el teorema del valor medio, que se puede consultar en Cálculo Diferencial e Integral I: Teorema de Rolle y teorema del valor medio, existe $\xi_x \in (x_0,x)$ tal que:

$$\frac{(f_j-f_k)(x)-(f_j-f_k)(x_0)}{x-x_0}=(f’_j-f’_k)(\xi_x)$$

Entonces
$$(f_j-f_k)(x)-(f_j-f_k)(x_0)=((f’_j-f’_k)(\xi_x))(x-x_0)$$
Y si desarrollamos vemos que
$$f_j(x)-f_j(x_0)-f_k(x)+f_k(x_0)=(f’_j(\xi_x)-f’_k(\xi_x))(x-x_0)$$
Así
\begin{align*}
|f_j(x)-f_j(x_0)-f_k(x)+f_k(x_0)|&=|(f’_j(\xi_x)-f’_k(\xi_x))(x-x_0)| \\
& \leq \norm{f’_j-f’_k}_\infty |x-x_0|
\end{align*}

Dado que $(f’_n)_{n \in \mathbb{N}}$ converge uniformemente en $\mathcal{C}^0[a,b],$ para cada $\varepsilon >0$ existe $N_1 \in \mathbb{N}$ tal que para cada $x \in (a,b)$ y para cada $j,k \geq N_1:$

\begin{align*}
|f_j(x)-f_j(x_0)-f_k(x)+f_k(x_0)|& \leq \norm{f’_j-f’_k}_\infty |x-x_0| \\
& \leq \frac{\varepsilon}{3}|x-x_0|.
\end{align*}
Haciendo $j \to \infty$ se sigue que
$$|f(x)-f(x_0)-f_k(x)+f_k(x_0)|\leq \frac{\varepsilon}{3}|x-x_0|.$$

Por otro lado, como $(f’_n(x_0))_{n \in \mathbb{N}} \to g(x_0)$ existe $N_2 \in \mathbb{N}$ tal que para cada $k \geq N_1, \, |f’_k(x_0) – g(x_0)|< \frac{\varepsilon}{3}$

Sea $N= máx \{ N_1,N_2 \}.$ Existe $\delta >0$ tal que si $|x – x_0| < \delta$ entonces
$$\left| \frac{f_N(x)-f_N(x_0)}{x-x_0}-f’_N(x_0) \right| <\frac{\varepsilon}{3}.$$

Finalmente aplicamos la desigualdad de triángulo para concluir que
\begin{align*}
\left| \frac{f(x)-f(x_0)}{x-x_0}-g(x_0) \right| &\leq \left| \frac{f(x)-f(x_0)}{x-x_0} – \frac{f_N(x)-f_N(x_0)}{x-x_0} \right| + \left| \frac{f_N(x)-f_N(x_0)}{x-x_0}-f’_N(x_0) \right|+ |f’_N(x_0) – g(x_0)|\\
&\leq \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}\\
&= \varepsilon
\end{align*}

Por lo tanto $f$ es diferenciable en $x_0$ y $f'(x_0)=g(x_0).$ Ya que las derivadas $f’_n$ son continuas y convergen uniformemente se sigue por lo visto en la entrada anterior que $f$ es continuamente diferenciable.

Hay un resultado más fuerte sobre convergencia uniforme y diferenciación. La prueba de este se omite pero puede consultarse en Apostol, T., Análisis Matemático (2a ed.). México: Editorial Reverté, 1996. Pag 278. Se enuncia como sigue:

Proposición: Para cada $n \in \mathbb{N}$ sea $f_n:(a,b) \to \mathbb{R}.$ Supongamos que para un punto $x_0 \in (a,b)$ la sucesión $(f_n(x_0))_{n \in \mathbb{N}}$ converge. Supongamos además que la sucesión de derivadas $(f’_n)_{n \in \mathbb{N}}$ converge uniformemente en $(a,b)$ a una función $g.$ Entonces la sucesión $(f_n)_{n \in \mathbb{N}}$ converge uniformemente en $(a,b)$ a una función $f$ derivable en $(a,b)$ y $f’=g.$

Más adelante…

Conoceremos la relación entre una sucesión de funciones integrables con su función límite. ¿Bajo qué condiciones será también integrable?

Tarea moral

  1. Resuelve las actividades que quedaron pendientes en los ejemplos de esta entrada.

Enlaces:

Convergencia uniforme y continuidad

Por Lizbeth Fernández Villegas

Introducción

El propósito de esta entrada será conocer criterios para determinar cuándo el límite de una sucesión de funciones es una función continua. (El concepto de función continua se vio en la entrada Funciones continuas en espacios métricos).

Nuestra intuición podría proponer que esto ocurre cuando todas las funciones de la sucesión son también continuas. No obstante, esto no basta cuando el límite de convergencia es puntual. Como ejemplo tomemos la sucesión de funciones continuas dada por:

$(x^n)_{n \in \mathbb{N}}$ donde para cada $n \in \mathbb{N}, \, x^n:[0,1] \to \mathbb{R}$

Queda como ejercicio al lector demostrar que $(x^n)_{n \in \mathbb{N}}$ converge puntualmente a la función:

\begin{equation*}
f(x) = \begin{cases}
0 & \text{si $0 \leq x < 1$} \\
1 & \text{si $x = 1$}
\end{cases}
\end{equation*}

Pero $f$ no es una función continua en $[0,1].$

¿Qué ocurre en los casos donde el límite es uniforme? A continuación mostraremos que bajo esa situación, la función a la que la sucesión converge sí es continua. Pero antes hagamos una aclaración sobre la notación a usar:

En la entrada anterior (Convergencia puntual y convergencia uniforme) las funciones suelen definirse como funciones de $A$ en $X$ $(f:A \to X),$ donde $A$ se considera como un conjunto cualquiera (que no necesariamente es un espacio métrico y por tanto la distancia de los puntos en el dominio no es relevante), y $X$ es un espacio métrico con distancia indicada como $d$.

Ahora pasamos a tratar con funciones continuas, donde sí comparamos distancias entre puntos del dominio (la famosa distancia menor que $\delta$) y distancias en puntos del contradominio (la famosa distancia menor que $\varepsilon$). Así, las funciones de esta entrada están definidas entre dos espacios métricos $(X,d_X)$ y $(Y,d_Y).$ Nota la importancia de señalar si la distancia a considerar es en $X$ o en $Y.$

Proposición: Sean $(X,d_X)$ y $(Y,d_Y)$ espacios métricos. Si $(f_n)_{n \in \mathbb{N}}$ con $f_n: X \to Y, \, n \in \mathbb{N} \, $ es una sucesión de funciones continuas que converge uniformemente a $f:X \to Y$ en $X$ entonces $f$ es continua.

Demostración:
Sea $\varepsilon > 0$ y $x_0 \in X.$ Buscamos probar que $f$ es continua en $x_0.$ Como $(f_n)_{n \in \mathbb{N}}$ converge uniformemente en $f$ entonces existe $N \in \mathbb{N}$ tal que para todo $k \geq N$ y para todo $x \in X, \, d_Y(f_k(x),f(x)) < \frac{\varepsilon}{3}.$

Por otro lado, como $f_N$ es continua, existe $\delta > 0$ tal que si $d_X(x,x_0)< \delta$ entonces $d_Y(f_N(x),f_N(x_0)) < \frac{\varepsilon}{3}.$

En consecuencia, si $d_X(x,x_0)< \delta$ se sigue que

\begin{align*}
d_Y(f(x),f(x_0)) & \leq d_Y(f(x),f_N(x)) + d_Y(f_N(x),f_N(x_0)) + d_Y(f_N(x_0),f(x_0)) \\
& < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} \\
& = \varepsilon
\end{align*}

Lo cual demuestra que el límite uniforme de una sucesión de funciones continuas, es una función continua.

Es importante notar que esto no significa que toda sucesión de funciones continuas que converge en una función continua, lo hace de manera uniforme. Puede hacerlo solo de forma puntual. Veamos un ejemplo.

La sucesión de funciones continuas $(f_n)_{n \in \mathbb{N}}$ donde para cada $n \in \mathbb{N}, \, f_n:[0,1] \to \mathbb{R}$ se define como $f_n(x)= n^2x(1-x)^n,$ converge de forma puntual a la función $f(x)=0.$ Queda como ejercicio probar que la convergencia solo es puntual y no uniforme.

Ahora pensemos en funciones continuas y acotadas a través de la siguiente definición. (El concepto de función acotada se vio en Espacios de funciones).

Definición. El espacio métrico $\mathcal{C}_b^0(X,Y)$: Sean $(X,d_X)$ y $(Y,d_Y)$ espacios métricos. El espacio de funciones continuas y acotadas de $X$ a $Y$ se define como:
$\mathcal{C}_b^0(X,Y):= \{f:X \to Y: f \text{ es continua y acotada } \}$
Y la métrica está dada por:
$$d_\infty(f,g)= \underset {x \in X}{sup} \, \, d_Y(f(x),g(x))$$

Donde $f,g \in \mathcal{C}_b^0(X,Y).$

Este espacio es cerrado en el espacio de funciones acotadas, de acuerdo con la siguiente:

Proposición: Sean $(X,d_X)$ y $(Y,d_Y)$ espacios métricos. Entonces $\mathcal{C}_b ^0(X,Y)$ es un subespacio cerrado de $\mathcal{B}(X,Y).$ (El espacio de funciones acotadas).

Demostración:
Buscamos probar que $\mathcal{C}_b ^0(X,Y)$ es igual a su cerradura. Sea $f \in \overline{\mathcal{C}_b ^0(X,Y)}.$ En la última proposición de la entrada Convergencia vimos que esto significa que existe una sucesión de funciones $(f_n)_{n \in \mathbb{N}}$ en $\mathcal{C}_b ^0(X,Y)$ que convergen a $f$ en $\mathcal{B}(X,Y).$ En la entrada anterior vimos que esto implica que $f$ es límite uniforme de $(f_n)_{n \in \mathbb{N}}. \, $ La proposición anterior nos permite concluir que $f$ es continua, es decir $f \in \mathcal{C}_b ^0(X,Y),$ probando así que $\mathcal{C}_b ^0(X,Y)$ es cerrado en $\mathcal{B}(X,Y).$

Ahora veamos la siguiente:

Proposición: Sea $Y$ un espacio métrico completo. Se cumple que:

  1. Si $A$ es un conjunto entonces $\mathcal{B}(A,Y)$ es completo.
  2. Si $X$ un espacio métrico entonces $\mathcal{C}^0_b(X,Y)$ es completo.
El conjunto $\mathcal{B}(A,Y)$ es completo
El conjunto $\mathcal{C}^0_b(X,Y)$ es completo.

Demostración:
Para probar que $\mathcal{B}(A,Y)$ es completo toma $(f_n)_{n \in \mathbb{N}}$ una sucesión de Cauchy en $\mathcal{B}(A,Y).$ Veamos que es convergente.
Sea $\varepsilon >0.$ Por definición, existe $N \in \mathbb{N}$ tal que $\forall \, l,m \geq N, \, d_\infty(f_l,f_m) < \varepsilon.$ Así, para cada $a \in A$ se cumple que $d_Y(f_l(a),f_m(a)) \leq d_\infty(f_l,f_m) < \varepsilon$ de modo que $(f_n)_{n \in \mathbb{N}}$ es uniformemente de Cauchy. De acuerdo con el Criterio de convergencia uniforme de Cauchy visto en la entrada anterior esto significa que $(f_n)_{n \in \mathbb{N}}$ converge uniformemente en $A$ y por tanto converge en el espacio métrico de funciones $\mathcal{B}(A,Y).$

Para probar que $\mathcal{C}^0_b(X,Y)$ es completo partimos de la proposición anterior donde concluimos que es subespacio cerrado de $\mathcal{B}(A,Y)$ que ya sabemos es completo. A partir de una proposición vista en Espacios métricos completos se sigue que $\mathcal{C}^0_b(X,Y)$ es completo.

Si $Y$ es un espacio de Banach entonces está provisto de una norma $\norm{\cdot}$ que induce una métrica bajo la cual $Y$ es completo.

Al final se te pedirá probar que el conjunto $\mathcal{B}(A,Y)$ es un espacio vectorial normado con
$\norm{f}_\infty = \underset {a \in A}{sup} \, \norm{f(a)}$

En esta situación, las proposiciones se plantean de la siguiente manera:

  1. Si $A$ es un conjunto entonces $\mathcal{B}(A,Y)$ es de Banach.
  2. Si $X$ un espacio métrico entonces $\mathcal{C}^0_b(X,Y)$ es de Banach.

Unos resultados que requieren el concepto de compacidad

En entradas posteriores hablaremos del concepto de espacios métricos compactos. En la sección Funciones en espacios topológicos compactos verás que toda función continua en un compacto es acotada. Ese resultado en suma con la proposición anterior, permite concluir que si $A$ es compacto y $X$ es completo entonces $\mathcal{C}^0(A,X)=\{\phi:A \to X :\phi \text{ es continua } \}$ es un espacio completo.

Ahora presentamos condiciones que aseguran la convergencia uniforme de una sucesión de funciones continuas en un espacio compacto a partir de la monotonía. Es decir:

Proposición: Sea $A$ un espacio métrico compacto, $(f_n)_{n \in \mathbb{N}}$ una sucesión de funciones continuas con $f_n:A \to \mathbb{R}, n \in \mathbb{N}$ tal que $(f_n)$ converge puntualmente a una función continua $f$. Si para cada $x \in A$ y $n \in \mathbb{N} \, f_n(x) \geq f_{n+1}(x),$ entonces $(f_n)$ converge a $f$ uniformemente en $A.$

Demostración:
Podrá consultarse en la entrada Compacidad en espacios métricos.

Más adelante…

Continuaremos analizando resultados de convergencia uniforme, ahora en funciones diferenciables. ¿Será diferenciable también la función límite? ¿Será convergente también la sucesión de derivadas? ¿Coincide el límite de derivadas con la derivada de la función límite?

Tarea moral

  1. Demuestra que $(x^n)_{n \in \mathbb{N}}$ con $x^n:[0,1] \to \mathbb{R}$ converge puntualmente a la función:
    \begin{equation*}
    f(x) = \begin{cases}
    0 & \text{si $0 \leq x < 1$} \\
    1 & \text{si $x = 1$}
    \end{cases}
    \end{equation*}
    Pero $f$ no es una función continua en $[0,1].$
  2. Demuestra que la sucesión de funciones continuas $(f_n)_{n \in \mathbb{N}}$ donde para cada $n \in \mathbb{N}, \, f_n:[0,1] \to \mathbb{R}$ se define como $f_n(x)= n^2x(1-x)^n,$ converge de forma puntual a la función $f(x)=0$ pero el límite no es uniforme.
  3. Sea $A$ un conjunto, y $(Y, \norm{\cdot})$ un espacio normado. Prueba que $\mathcal{B}(A,Y)$ es un espacio vectorial con las operaciones
    $(f+g)(x):= f(x) + g(x)$
    $(\lambda f)(x):= \lambda f(x)$
    Y que $\norm{f}_\infty = \underset {a \in A}{sup} \, \norm{f(a)}$
    es una norma en $\mathcal{B}(A,Y).$

Enlaces: