Archivo del Autor: Julio César Soria Ramírez

Nota 30. Dependencia e independencia lineal

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En esta nota veremos qué significa que un conjunto de vectores en $\mathbb R^n$ sea linealmente dependiente o linealmente independiente y veremos que esta idea está íntimamente relacionada a distinguir cuándo un conjunto de vectores tiene entre sus elementos algún vector que sea combinación lineal de los otros.

Definición

Sean $m\in\mathbb N$, $m>0$, $S=\set{v_1,\dotsc,v_m}\subseteq \mathbb R^n$ con $m$ vectores.

El conjunto $S$ es linealmente dependiente si existen $\lambda_1,\dotsc,\lambda_m\in \mathbb R$ no todos nulos tales que:

$\lambda_1 v_1+\dotsc +\lambda_m v_m=\bar{0}.$

Decimos que $S$ es linealmente independiente en caso contrario, es decir, si se tiene que

$\lambda_1 v_1+\dotsc +\lambda_m v_m=\bar{0}$ con $\lambda_1,\dotsc,\lambda_m\in \mathbb R$, implica que $\lambda_1=\cdots=\lambda_m=0$.

En otras palabras, $S$ es linealmente independiente si la única manera de obtener una combinación lineal de esos vectores igual al vector cero, es si en ella todos los vectores están multiplicados por cero.

Abreviaremos $l.d$ o $l.i$ respectivamente.

Ejemplos

$1.$ Sean $v_1=(2,4),v_2=(-1,5),v_3=(-2,-4)$ vectores de $\mathbb R^2$.

Como $(0,0)=v_1+v_3=1 v_1+0 v_2+1 v_3+0 v_4$, el conjunto $\set{v_1,v_2,v_3,v_4}$ es $l.d.$

$2.$ Sean $v_1=(-1,2,4),v_2=(1,8,8),v_3=(1,3,2)$ vectores de $\mathbb R^3$.

Como $(0,0)=v_1-v_2+2 v_3 =1 v_1+(-1) v_2+2 v_3$, el conjunto $\set{v_1,v_2,v_3}$ es $l.d.$

$3.$ Sean $v_1=(-2,1,0,1),v_2=(1,0,-1,0),v_3=(0,1,3,2)$ vectores de $\mathbb R^4$. ¿Es $\set{v_1,v_2,v_3}$ linealmente independiente?

Sean $\lambda,\mu, \nu \in \mathbb R$ tales que:

$\lambda (-2,1,0,1)+\mu (1,0,-1,0)+\nu (0,1,3,2)=(0,0,0,0).$

Desarrollando la expresión anterior obtenemos que:

$(-2\lambda+\mu,\lambda+\nu,-\mu+3\nu,\lambda+2 \nu)=(0,0,0,0)$

Comparando coordenada a coordenada obtenemos:

$\begin{align} -2\lambda+\mu &=0\\ \lambda+\nu &=0\\-\mu+3\nu &=0\\ \lambda+2 \nu &=0 \end{align}$

Restando la ecuación $2$ a la $4$ tenemos que $\nu=0$, y entonces por la ecuación $3$ tenemos que $\mu=3\nu=3\cdot 0=0$. Además, de la ecuación $2$ sabemos que $\lambda=-\nu=-0=0$, de forma que $\lambda=\mu=\nu=0$ y por lo tanto el conjunto $\set{v_1,v_2,v_3}$ es linealmente independiente.

Observa que lo que hemos tratado de exhibir en estos ejemplos para probar si un conjunto de vectores $v_1,\dotsc,v_m \in \mathbb R^n$ distintos, es $l.d$ o $l.i$, consiste en ver si existen $\lambda_1,\dotsc,\lambda_m \in \mathbb R$ no todos nulos tales que $\lambda_1 v_1+\dotsc+\lambda_m v_m=\bar{0}$, o si la única forma de que $\lambda_1 v_1+\dotsc +\lambda_m v_m=\bar{0}$, es que $\lambda_1=\dotsc=\lambda_m =0$. En el primer caso el conjunto es $l.d$ y en el segundo $l.i.$

Observación 1

Sean $S$ y $S’$ subconjuntos finitos de $\mathbb R^n $ con $S’\subseteq S$.

$a)$ Si $S’$ es $l.d$, entonces $S$ es $l.d$.

$b)$ Si $S$ es $l.i$, entonces $S’$ es $l.i$.

Demostración de $a)$.

Sean $S’\subseteq S\subseteq \mathbb R^n$ con $S$ y $S’$ finitos. Entonces los conjuntos son de la forma

$S=\set{v_1,\dotsc,v_t}$

$S’=\set{v_1,\dotsc,v_t,v_{t+1},\dotsc,v_m},$

para algunos $t,m$ naturales positivos con $t\leq m$. Supongamos que $S’$ es $l.d$. Así, existen $\lambda_1,\dotsc,\lambda_t\in\mathbb R$ no todos nulos tales que $\lambda_1 v_1+\dotsc+\lambda_t v_t=\bar{0}$.

Tenemos entonces que $\lambda_1 v_1+\dotsc+\lambda_t v_t+0 v_{t+1}+\dotsc+0 v_m =\bar{0}$ con $\lambda_1,\dotsc,\lambda_t,0\in \mathbb R$ no todos nulos, por lo tanto $S$ es $l.d.$

Demostración de $b)$.

Es la contrapuesta de $a)$.

$\square$

Observación 2

Dos vectores en $\mathbb R^n $ forman un conjunto $l.d$ si y sólo si uno es múltiplo del otro.

Demostración

$\Longrightarrow$ Demostración de la implicación de ida

Supongamos que $\set{u,v}$ es $l.d$. Entonces existen $\lambda, \gamma \in \mathbb R$ no ambos nulos tales que $\lambda u+\gamma v=\bar{0}$. Si $\lambda \neq 0$ tenemos que $u=-\frac{\gamma}{\lambda} v$, y si $\gamma \neq 0$ tenemos que $v=-\frac{\lambda}{\gamma} u$.

$\Longleftarrow$ Demostración de la implicación de regreso

Sin pérdida de generalidad supongamos que $u=\mu v$ con $\mu\in \mathbb R$, entonces $1u+(-\mu)v=\bar{0}$ con $1\neq 0$. Así, $\set{u,v}$ es $l.d$.

$\square$

Tarea Moral

$1.$ Considera al espacio vectorial $\mathbb R^3$ sobre el campo de los reales. Determina si los siguientes conjuntos son $l.i$.

$i.$ $\set{(1,2,4),(0,0,3),(0,1,7)}$

$ii.$ $\set{(2,1,1),(-1,1,1),(1,0,0)}$

$2.$ Considera al espacio vectorial $\mathbb R^2$ sobre el campo de los reales. ¿Para qué valores de $k$ el conjunto $\set{(3k,2),(-k,k+1)}$ es $l.i$?.

$3.$ Considera al espacio vectorial $\mathbb R^3$ sobre el campo de los reales. Sea $S=\set{v_1,v_2,v_3}$ un subjconjunto de $\mathbb R^3$ tal que ningun vector en él es múltiplo de otro. ¿Es $S$ linealmente independiente?

$4.$ Considera al espacio vectorial $\mathbb R^n$ sobre el campo de los reales. Sea $S=\set{v_1,\dotsc,v_m}$ un subjconjunto de $\mathbb R^n$ tal que todo subconjunto de $S$ con $m-1$ vectores es linealmente independiente. ¿Es $S$ linealmente independiente?

Más adelante.

En la siguiente nota estudiaremos el concepto de base del espacio vectorial $\mathbb R^n$ y de base de un subespacio de $\mathbb R^n$.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 29. Subespacio generado

Enlace a la nota siguiente. Nota 31. Bases de $\mathbb R^n$

Nota 29. Subespacio generado

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En la nota anterior vimos que si consideramos las combinaciones lineales de un conjunto $S\subseteq \mathbb R^n$, este conjunto al que denotamos $\mathscr C(S)$ tiene estructura de subespacio vectorial. En la presente nota continuaremos con el estudio de subespacios vectoriales y definiremos lo que es un subespacio generado por un conjunto de vectores.

Definición

Sea $S$ un subconjunto de $\mathbb R^n$. El subespacio de $\mathbb R^n$ generado por $S$ es el conjunto de combinaciones lineales de $S$, si $S\neq \emptyset$, o bien $\set{\bar{0}}$, si $S=\emptyset$.

Se denota por $\langle S \rangle$ (en algunos textos lo denotan por $Span(S)$.

Decimos que $S$ genera a $\langle S\rangle $ o que $S$ es un conjunto generador de $\langle S \rangle $.

Notación

Sean $m$ un natural positivo y $v_1,\dotsc,v_m\in \mathbb R^n.$

$\langle \set{v_1,\dotsc,v_m}\rangle$ se denota por $\langle v_1,\dotsc,v_m\rangle .$

Ejemplos

$1.$ Consideremos $\mathbb R^3$

$S=\set{(1,0,0),(0,1,0),(0,0,1)}=\set{e_1,e_2,e_3}.$

Claramente $\langle S\rangle \subseteq \mathbb R^3$. Además, si $(a,b,c)\in \mathbb R^3$

$(a,b,c)=a(1,0,0)+b(0,1,0)+c(0,01)\in \langle S\rangle .$

Concluimos que $\langle S\rangle =\mathbb R^3$ y decimos entonces que $S$ genera a $\mathbb R^3$.

$2.$ ¿El vector $(7,5,9)$ se encuentra en el generado por el conjunto $S=\set{(2,1,3),(1,1,1)}$?, es decir

¿$(7,5,9)\in \langle (2,1,3),(1,1,1)\rangle $?

Veamos si existen $\lambda, \mu\in \mathbb R$ tales que:

$(7,5,9)=\lambda (2,1,3)+\mu (1,1,1).$

En otras palabras buscamos $\lambda, \mu\in \mathbb R$ tales que:

$(7,5,9)= (2 \lambda+\mu,\lambda+\mu,3\lambda+\mu).$

Comparando coordenada a coordenada obtenemos que:

$2 \lambda+\mu=7$

$ \lambda+\mu=5$

$3\lambda+\mu=9.$

Esto lo resolvemos restando a la ecuación $1$ la $2$, y obtenemos que:

$\lambda=2,$

y como $ \lambda+\mu=5$, entonces $\mu=5-\lambda=5-2=3$.

Además con estos valores de $\lambda$ y de $\mu$ se satisface la ecuación $3$, pues $3\lambda+\mu=3\cdot 2+3=9.$

Tenemos entonces que:

$(7,5,9)=2 (2,1,3)+3 (1,1,1)$ y por lo tanto $(7,5,9)\in \langle (2,1,3),(1,1,1)\rangle $.

$3.$ ¿$(1,1,2,3)\in \langle (1,1,1,4),(1,-1,1,5)\rangle $?

Buscamos $\lambda, \mu\in \mathbb R$ tales que:

$(1,1,2,3)=\lambda (1,1,1,4)+\mu (1,-1,1,5)$

Desarrollando obtenemos:

$(1,1,2,3)=(\lambda+\mu,\lambda-\mu,\lambda+\mu,4\lambda+5 \mu).$

Comparando coordenada a coordenada obtenemos que:

$\lambda+\mu=1$

$\lambda-\mu=1$

$\lambda+\mu=2$

$4 \lambda+5 \mu=3.$

Observamos que si esto ocurriera tendríamos que $\lambda+\mu=1$ y al mismo tiempo $\lambda+\mu=2$, y por lo tanto $1=2$ lo cual es una contradicción. De modo que no existen $\lambda, \mu\in \mathbb R$ que satisfagan esas condiciones y así $(1,1,2,3)\notin \langle (1,1,1,4),(1,-1,1,5)\rangle .$

$4.$ Consideremos $\mathbb R^3$ y $S=\set{(1,1,1),(1,-1,0),(1,0,0)}.$

¿Será acaso que $\langle S\rangle =\mathbb R^3$?

Sabemos que $\langle S\rangle \subseteq \mathbb R^3$. Ahora si $(a,b,c)\in \mathbb R^3$, ¿$(a,b,c)\in \langle S\rangle $?, ¿existirán $\lambda, \mu,\nu \in \mathbb R$ tales que:

$(a,b,c)=\lambda (1,1,1)+\mu (1,-1,0)+\nu (1,0,0) $?

Siupongamos que sí existen $\lambda, \mu,\nu \in \mathbb R$ tales que:

$(a,b,c)=\lambda (1,1,1)+\mu (1,-1,0)+\nu (1,0,0)$.

Desarrollando, esto implicaría que:

$(a,b,c)= (\lambda+\mu+\nu ,\lambda-\mu,\lambda).$

Comparando coordenada a coordenada obtendríamos que:

$\lambda+\mu+\nu =a$

$\lambda-\mu=b$

$\lambda=c$

Así, $\lambda=c$. despejando $\mu$ de la segunda ecuación tenemos que $\mu=\lambda-b$, entonces $\mu=c-b.$ Finalmente, despejando $\nu$ de la primera ecuación y sustituyendo los valores de $\lambda=c$ y $\mu=c-b$ obtenemos que:

$\nu=a-\mu-\lambda=a-(c-b)-c=a-c+b-c=a+b-2c.$

Así:

$(a,b,c)=c (1,1,1)+(c-b) (1,-1,0)+(a+b-2c)(1,0,0)$.

Concluimos que $\mathbb R^3\subseteq \langle S\rangle $ y por lo tanto $\langle S\rangle =\mathbb R^3$. Decimos entonces que $S$ es un generador de $ \mathbb R^3$.

Importante

Si $W\subseteq \langle S\rangle $ pero $W\neq \langle S\rangle $, entonces el generado de $S$ no es $W$.

Por ejemplo:

Si $W=\set{(a,a)\mid a\in \mathbb R}$ y $S=\set{(1,0),(0,1)}$, el generado de $S$, es $\mathbb R^2=\langle S\rangle $, observa que $W\subseteq \langle S\rangle $, pero $S$ no genera a $W$, si no a algo más amplio que es $\mathbb R^2$.

Tarea Moral

$1.$ Considera al espacio vectorial $\mathbb R^3$ sobre el campo de los reales. Determina si el vector $v$ pertenece al subespacio $W$ dado.

$i)$ $v=(2,-3,7)$ y $W=\langle (1,0,0),(1,-1,0),(1,-1,-1)\rangle .$

$ii)$ $v=(1,-4,3,-1)$ y $W=\langle (1,1,1,0),(1,0,1,1)\rangle .$

$2.$ Considera al espacio vectorial $\mathbb R^3$ sobre el campo de los reales. Describe al subespacio $W=\langle (3,1,2),(-4,-5,1)\rangle .$

Más adelante

En la siguiente nota veremos los conceptos de dependencia e independencia lineal.

Enlaces relacionados

Página principal del curso.

Nota anterior. Nota 28 Combinaciones lineales.

Nota siguiente. Nota 30. Dependencia e independencia lineal.

Nota 28. Combinaciones lineales

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En la presente nota definiremos lo que son las combinaciones lineales de los elementos de un subconjunto de $\mathbb R^n$, veremos que si iniciamos con cualquier subconjunto no vacío de $\mathbb R^n$ y consideramos todas sus combinaciones lineales, este conjunto será siempre un subespacio vectorial de $\mathbb R^n$.

Iniciemos con la definición de combinaciones lineales.

Definición

Sean $m\in \mathbb N$ con $n>0$ y $v_1,\dotsc,v_m\in \mathbb R^n$. Una combinación lineal de $v_1,\dotsc,v_m$ es una expresión de la forma:

$\lambda_1 v_1+\dotsc+ \lambda_m v_m$

con $\lambda_1,\dotsc,\lambda_m\in \mathbb R$.

De modo más general, si $S$ es un subconjunto de $\mathbb R^n$, una combinación lineal de vectores de $S$ es un vector de la forma:

$\lambda_1 v_1+\dotsc+ \lambda_m v_m$,

con $m\in \mathbb N$, $n>0$, $v_1,\dotsc,v_m\in S$ y $\lambda_1,\dotsc,\lambda_m\in \mathbb R$.

Ejemplos

$1.$ Considera al conjunto $S=\set{(1,0,0),(1,-1,0),(1,1,-1)}.$

$2(1,0,0)-(1,-1,0)+5(1,1,-1)=(6,6,-5)$

$-3(1,0,0)+0(1,-1,0)+(1,1,-1)=(-2,1,-1)$

$0(1,0,0)+(1,-1,0)+5(1,1,-1)=(6,4,-1)$

son combinaciones lineales de vectores de $S.$

$2.$ Considera al conjunto $S=\set{ (1,2,0,5),(-1,3,2,-\frac{1}{2}) }.$

$4(1,2,0,5)+9(-1,3,2,-\frac{1}{2})=(-5,35,18,\frac{31}{2})$

es una combinación lineal de vectores de $S$.

$3.$ Considera al conjunto $S=\set{(\frac{1}{n},\frac{1}{n})\mid n\in \mathbb N, n>0}$. Observa que

$S=\set{(1,1),(\frac{1}{2},\frac{1}{2}),(\frac{1}{3},\frac{1}{3})\dotsc}.$

Entonces

$2(\frac{1}{2} , \frac{1}{2})+3(\frac{1}{6} ,\frac{1}{6} )-4(\frac{1}{12}, \frac{1}{12})=(\frac{7}{6} , \frac{7}{6})$

es una combinación lineal de vectores de $S$.

Importante

Aunque el conjunto $S$ sea infinito, en una combinación lineal sólo se usa una cantidad finita de vectores de $S$.

Proposición

Sea $S$ un subconjunto no vacío de $\mathbb R^n$. El conjunto de todas las combinaciones lineales de $S$, que denotamos por $\mathscr C(S)$, cumple lo siguiente:

$i)$ Es un subespacio de $\mathbb R^n$, es decir $\mathscr C(S)\leq \mathbb R^n$.

$ii)$ Contiene al conjunto $S$, es decir $S\subseteq \mathscr C(S)$.

$iii)$ El conjunto $\mathscr C(S)$ está contenido en cualquier subespacio $W$ de $\mathbb R^n$ que contenga a $S$.

Demostración

Demostración de $i)$.

Por demostrar que $\mathscr C(S)\leq \mathbb R^n$.

Como $S\neq \emptyset$, sea $v\in S$. Tenemos que $\bar{0}=0v\in \mathscr C(S).$

Sean $v,w\in \mathscr C(S)$, por demostrar que $v+w\in \mathscr C(S).$

Como $v,w\in \mathscr C(S)$ tenemos que

$v= \lambda_1 v_1+\dotsc+ \lambda_n v_t$, con $t\in \mathbb N$, $n>0$, $v_1,\dotsc,v_t\in S$ y $\lambda_1,\dotsc,\lambda_t\in \mathbb R$, y

$w= \mu_1 w_1+\dotsc+ \mu_m w_m$, con $m\in \mathbb N$, $n>0$, $w_1,\dotsc,w_m\in S$ y $\mu_1,\dotsc,\mu_m\in \mathbb R$.

Entonces

$v+w=(\lambda_1 v_1+\dotsc+ \lambda_t v_t) + (\mu_1 w_1+\dotsc+ \mu_m w_m)$

por lo cual la suma $v+w$ es otra combinación lineal de elementos de $S,$ y por lo tanto $v+w\in \mathscr C(S)$.

Sean $v\in \mathscr C(S)$ y $\gamma\in \mathbb R.$

Por demostrar que $\gamma v\in \mathscr C(S).$

Como $v\in \mathscr C(S)$ tenemos que

$v= \lambda_1 v_1+\dotsc+ \lambda_n v_m$, con $m\in \mathbb N$, $n>0$, $v_1,\dotsc,v_m\in S$ y $\lambda_1,\dotsc,\lambda_m\in \mathbb R$.

Observa entonces que:

$\gamma v=\gamma (\lambda_1 v_1+\dotsc+ \lambda_m v_m)=(\gamma \lambda_1) v_1+\dotsc+ (\gamma \lambda_m )v_m$

que también es una combinación lineal de los elementos de $S$ y por lo tanto $\gamma v\in \mathscr C(S)$.

Como $\bar{0}\in \mathscr C(S)$, $v+w\in \mathscr C(S)$ para todos $v,w\in \mathscr C(S)$, y $\gamma v\in \mathscr C(S)$ para todo $\gamma \in \mathbb R$ y todo $ v\in \mathscr C(S)$, concluimos que $\mathscr C(S)$ es un subespacio de $\mathbb R^n$.

Demostración de $ii)$

Por demostrar que $S\subseteq \mathscr C(S)$.

Sea $v\in S$, por demostrar que $v\in \mathscr C(S)$.

Como $v=1v$, entonces $v$ es una combinación lineal de vectores de $S$ y por tanto $v\in \mathscr C(S)$.

Así, $S\subseteq \mathscr C(S)$.

Demostración de $iii)$

Sea $W$ un subespacio de $\mathbb R^n$ que contiene a $S$, es decir tal que $S\subseteq W$.

Por demostrar que $\mathscr C(S)\subseteq W.$

Sea $v\in \mathscr C(S).$ Sabemos que

$v= \lambda_1 v_1+\dotsc+ \lambda_m v_m$, con $m\in \mathbb N$, $n>0$, $v_1,\dotsc,v_m\in S$ y $\lambda_1,\dotsc,\lambda_m\in \mathbb R$.

Para cada $i$, $v_i\in S$, y $S\subseteq W$, entonces $v_i\in W$ para todo $i$.

Como $W$ es un subespacio vectorial el producto por escalares es cerrado y entonces $\lambda_i v_i\in W$ para todo $i$, además la suma es cerrada en $W$ por lo que:

$v= \lambda_1 v_1+\dotsc+ \lambda_n v_n\in W$.

Por lo tanto $\mathscr C(S)\subseteq W$.

Tarea Moral

$1.$ Sea $S=\set{(1,1,1),(-4,-4,-4)}$. En caso de ser posible, halla $3$ subespacios de $\mathbb R^3$ que contengan a $S$, si no es posible explica por qué.

$2$. Sea $S=\set{(2,-5,3),(4,-1,0)}$. En caso de ser posible, encuentra $3$ subespacios de $\mathbb R^3$ que contengan a $S$, si no es posible explica por qué.

Más adelante

En la siguiente entrada veremos cómo construir un subespacio a partir de un subconjunto de vectores dado, usando como herramienta el concepto de combinación lineal que acabamos de estudiar.

Página principal del curso.

Nota anterior. Nota 27. Subespacios vectoriales.

Nota siguiente. Nota 29. Subespacio generado.

Nota 27. Subespacios vectoriales.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En esta entrada estudiaremos el concepto de subespacio de $\mathbb{R}^n$. Veremos que un subespacio de $\mathbb{R}^n$ es un conjunto de vectores que satisface ciertas propiedades y forma una estructura algebraica dentro del espacio vectorial $\mathbb{R}^n$. De manera más precisa definiremos subespacio de $\mathbb{R}^n$ como un conjunto de vectores contenido en $\mathbb{R}^n$ que tiene al neutro aditivo, es cerrado bajo la adición de vectores y bajo la multiplicación por escalares.

Definición

Sea $W$ un subconjunto de $\mathbb R^n$. Decimos que $W$ es un subespacio de $\mathbb R^n$ si:

i) $\bar{0}\in W$.

ii) $u+v\in W\,\,\,\,\forall u,v\in W$.

iii) $\lambda w\in W\,\,\,\,\forall \lambda \in \mathbb R\,\,\,\,\forall w \in W$.

Notación

$W\leq \mathbb R^n$ denotará que $W$ es un subespacio de $\mathbb R^n$.

Ejemplos

1. $\set{\bar{0}}\leq \mathbb R^n$.

2. $\mathbb R^n\leq \mathbb R^n$.

Se deja al lector verificar que los conjuntos de $1$ y $2$ son subespacios de $\mathbb R^n$

3. Sea $w\in \mathbb R$. $\set{\lambda w\mid \lambda\in \mathbb R}\leq \mathbb R^n$.

Demostración

4. Sean $w\in \mathbb R$, $W=\set{\lambda v\mid \lambda\in \mathbb R}$. Notamos que, por las propiedades de la entrada previa, $\bar{0}=0v\in W$. Además, si $u,v\in W$ sabemos que $v=\lambda w$ y $u=\mu w$ con $\lambda, \mu\in\mathbb R$. Así, $u+v=\lambda w+\mu w=(\lambda +\mu )w$ con $\lambda +\mu\in\mathbb R$, por lo tanto $u+v\in W$. Finalmente, si $\mu\in \mathbb R$ y $v\in W$ sabemos que $v=\lambda w$ para algún $\lambda\in\mathbb R$ por lo cual $\mu v=\mu (\lambda v)=(\mu\lambda )v$ con $\mu\lambda\in\mathbb R$ y así, $\mu v\in W$.

Concluimos entonces que $W$ es un subespacio vectorial de $\mathbb R^n$.

$\square$

Geométricamente, $W$ es una una línea recta que pasa por el origen, formada por todos los vectores que se obtienen multiplicando $w$ por escalares reales.

5. $\set{(x,y,0)\mid x,y\in \mathbb R}\leq \mathbb R^3$.

Se deja la demostración al lector.

Notemos que el conjunto del ejemplo 5 es geométricamente un plano que pasa por el origen, el plano $xy$. De forma más general, los planos por el origen en $\mathbb R^3$ son subespacios de $\mathbb R$.

Usa el siguiente recurso que elaboré en Geogebra para obtener planos por el origen a partir de dos vectores. Prueba moviendo los puntos $A$ y $B$ de los vectores en rojo y verde, el vector en color negro representa un vector cualquiera en el plano obtenido a partir de $A$ y $B$.

5. $W=\set{(x,y,z,w)\in \mathbb R^4\mid 2x-y+3z-w=0}\leq \mathbb R^4$.

Demostración de 5

Tenemos que probar que el conjunto $W$ satisface las tres condiciones de la definición de subespacio.

$W$ satisface la propiedad $i$ pues $\bar{0}\in W$, ya que: $2\cdot 0-0+3\cdot 0-0=0$.

Veamos que satisface también la propiedad $ii$, es decir que $u+v\in W\,\,\,\,\forall u,v\in W$.

Sean $u,v\in W$, con $u=(x,y,z,w)$ y $v=(a,b,c,d)$ Por ser $u$ y $v$ elementos de $W$ cumplen que:

$2x-y+3z-w=0$

$2a-b+3c-d=0$

Sumando estas expresiones obtenemos $2(x+a)-(y+b)+3(z+c)-(w+d)=0$, haciendo evidente que el vector $(x+a,y+b,x+c,w+d)\in W$, pero $(x+a,y+b,x+c,w+d)=(x,y,z,w)+(a,b,c,d)=u+v$. Por lo tanto $u+v\in W$.

Veamos que $W$ satisface la propiedad $iii$, es decir que $W$ es un conjunto cerrado bajo producto por escalares.

Sean $u=(x,y,z,w)\in W,$ $\lambda\in \mathbb R$.

Por demostrar que $\lambda w\in W$.

Como $u\in W$ entonces:

$2x-y+3x-w=0.$

Multiplicando por $\lambda$ obtenemos:

$\lambda (2x-y+3x-w)=0$

y entonces:

$2(\lambda x)-(\lambda y)+3(\lambda z)-(\lambda w)=0$.

Esto nos muestra que el vector $(\lambda x,\lambda y,\lambda z,\lambda w)\in W$, y como $(\lambda x,\lambda y,\lambda z,\lambda w)=\lambda (x,y,z,w)=\lambda u,$ concluimos que $\lambda u\in W$.

$\square$

Nota que las condiciones para ver que un conjunto es un subespacio vectorial se pueden reescribir:

Observación

Sea $W\subseteq \mathbb R^n$. $W\leq \mathbb R^n$ si y sólo si se cumplen:

I) $\bar{0}\in W$

II) $\lambda u+v\in W\,\,\,\,\forall u,v\in W\,\,\,\,\forall \lambda\in \mathbb R^n$.

La demostración queda como tarea moral.

Proposición

La intersección de dos subespacios de $\mathbb R^n$ es un subespacio de $\mathbb R^n$.

Demostración

Sean $U,W$ subespacios de $\mathbb R^n$.

Por demostrar que $U\cap W$ es un subespacio de $\mathbb R^n$. Usaremos para ello la observación anterior.

Como $U$ y $W$ son subespacios, $\bar{0}\in U$ y $\bar{0}\in W$, por lo tanto $\bar{0}\in U\cap W$.

Sean $\lambda \in \mathbb R$, $v_1,v_2\in \mathbb R^n$, por demostrar que $\lambda v_1+v_2\in U\cap W$.

Como $v_1,v_2\in U$ y $v_1,v_2\in W$, por ser $U$ y $W$ subespacios tenemos que:

$\lambda v_1+v_2\in U$ y $\lambda v_1+v_2\in W.$

Así, $\lambda v_1+v_2\in U\cap W$.

Como se cumplieron las propiedades I y II tenemos, por la observación anterior, que $U\cap W\leq \mathbb R^n$.

$\square$

Tarea Moral

$1.$ Demostrar la observación de la nota.

$2.$ Sea $W$ un subconjunto de $\mathbb R^n$. Para que $W$ sea un subespacio de $\mathbb R^n$ ¿basta verificar las condiciones ii y iii de la definición de subespacio, es decir es necesario pedir que $\bar{0}\in W$ o se puede deducir de que $W$ es cerrado bajo producto escalar?

$3.$ Sea $W$ un subconjunto de $\mathbb R^2$. Prueba o da un contraejemplo para las siguientes afirmaciones:

a) Si $W$ es cerrado bajo la suma y $\bar{0}\in W$, entonces $W$ es un subespacio de $\mathbb R^2$.

b) Si $W$ es cerrado bajo producto por escalares y $\bar{0}\in W$, entonces $W$ es un subespacio de $\mathbb R^2$.

c) Si $W$ es cerrado bajo la suma, bajo inversos aditivos y ademas $\bar{0}\in W$, entonces $W$ es un subespacio de $\mathbb R^2$.

$4.$ Determina cuáles de los siguientes subconjuntos son subespacios de los correspondientes $\mathbb R^n$.

i) $\set{(x,y,z)\in \mathbb R^3\mid x\, y\, z=0}$.

ii) $\set{(x,y,z)\in \mathbb R^3\mid x+ y+ z=-x}$.

iii) $\set{(x,y,z)\in \mathbb R^3\mid y\geq 0}$.

iv) $\set{(x,y,z,w)\in \mathbb R^4\mid x+y+3z-1=-7}$.

v) $\set{(x,y,z)\in \mathbb R^3\mid \, z\,\,\,es\,\,\,racional}$.

Más adelante

En la siguiente nota veremos el concepto de combinaciones lineales.

Enlaces relacionados

Página principal del curso.

Nota anterior.Nota 26. Propiedades de $\mathbb R^n$.

Nota siguiente. Nota 28. Combinaciones lineales.

Nota 26. Propiedades de $\mathbb R^n$

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En la siguiente nota veremos algunas propiedades del $\mathbb R$-espacio vectorial $\mathbb R^n$. Probaremos la unicidad del neutro aditivo, así como la unicidad de los inversos aditivos, veremos que las propiedades de cancelación de la suma también se cumplen, se demostrará que la multiplicación del neutro aditivo de $\mathbb R$ por cualquier vector de $\mathbb R^n$ nos da el neutro aditivo, y que la multiplicación de cualquier escalar por el neutro aditivo, es el neutro aditivo. Finalizaremos viendo que el inverso aditivo de un vector $v$, que hemos denotado por $\tilde{v}$, es de hecho $(-1)v$.

Aunque denotamos las operaciones de suma y producto por escalar en $\mathbb R^n$ como $\oplus$ y $\odot$ para distinguirlas de la suma y el producto en $\mathbb R$, en general es claro por el contexto si se trata de unas u otras, así que a partir de aquí simplificaremos la notación y denotaremos a la suma de $u,v\in\mathbb R^n$ como $u+v$, y al producto de $\lambda\in\mathbb R $ por $v\in\mathbb R^n$ como $\lambda v$.

Proposición 1

En $\mathbb R^n$ el neutro aditivo es único.

Demostración

Supongamos que $\bar{0}$ y $\bar{0}’$ son dos neutros aditivos en $\mathbb R^n$.

Por demostrar que $\bar{0}=\bar{0}’$

Explicación
$\bar{0}=$Consideramos uno de los neutros.
$=\bar{0}+\bar{0}’$Gracias a que $\bar{0}’$ es un neutro.
$=\bar{0}’$Pues $\bar{0}$ es un neutro.

$\square$

Proposición 2

En $\mathbb R^n$ los inversos aditivos son únicos.

Demostración

Sea $v\in \mathbb R^n$, supongamos que $\tilde{v}$ y $\hat{v}$, son inversos aditivos de $v$.

Por demostrar que $\tilde{v}=\hat{v}$.

Explicación
$\tilde{v}=\tilde{v}+\bar{0}=$Gracias a que $\bar{0}$ es el neutro.
$=\tilde{v}+(v+\hat{v})=$Como $\hat{v}$ es un inverso de $v$
$v+\hat{v}=\bar{0}$.
$=(\tilde{v}+v)+\hat{v}=$Gracias a la asociatividad.
=$\bar{0}+\hat{v}$$\tilde{v}$ también es un inverso de $v$ y entonces
$\tilde{v}+v=\bar{0}$.
$=\hat{v}$Pues $\bar{0}$ es el neutro.

$\square$

Propiedades de cancelación

Sean $u,v,w\in \mathbb R^n.$

i) Si $u+v=w+v$, entonces $u=w.$

ii) Si $v+u=v+w$, entonces $u=w.$

Demostración

Sean $u,v,w\in \mathbb R^n$.

Demostración de i)

Supongamos que $u+v=w+v$, si le sumamos el inverso de $v$, $\tilde{v}$, de ambos lados de la igualdad tenemos que:

$(u+v)+\tilde{v}=(w+v)+\tilde{v}.$

En virtud de la asociatividad tenemos que:

$u+(v+\tilde{v})=w+(v+\tilde{v})$

y como $\tilde{v}$ es el inverso de $v$ obtenemos

$u+\bar{0}=w+\bar{0}.$

Así, $u=w.$

Demostración de ii)

Observa que se obtiene de la demostración del inciso anterior y de la conmutatividad de la suma, ya que si $v+u=v+w$, por la conmutatividad de la suma tenemos que $u+v=w+v$ y debido al inciso anterior concluimos que $u=w.$

$\square$

Proposición 3

En $\mathbb R^n$ se cumple que:

1. $0v=\bar{0}\,\,\,\,\forall v\in \mathbb R^n.$

2. $\lambda \bar{0}\,\,\,\,\forall \lambda\in \mathbb R.$

Demostración

Demostración de 1

Explicación
$\bar{0}+0v=0v=$Gracias a que $\bar{0}$ es el neutro en $\mathbb R^n$.
$=(0+0)v$$0=0+0$, gracias a que $0$ es neutro en $\mathbb R.$
$=0v+0v$Gracias a la distributividad en $\mathbb R$.

Obtenemos de las igualdades en la tabla que $\bar{0}+0v=0v+0v$, por la propiedad de la cancelación mostrada anteriormente tenemos que $\bar{0}=0v$.

Demostración de 2

Explicación
$\bar{0}+\lambda\bar{0}=\lambda\bar{0}=$Gracias a que $\bar{0}$ es neutro en $\mathbb R^n$.
$\lambda(\bar{0}+\bar{0})$$\bar{0}=\bar{0}+\bar{0}$, gracias a que $\bar{0}$ es neutro en $\mathbb R^n$.
$\lambda\bar{0}+\lambda\bar{0}$Gracias a la distributividad en $\mathbb R^n$.

Obtenemos de las igualdades en la tabla que $\bar{0}+\lambda\bar{0}=\lambda\bar{0}+\lambda\bar{0}$, por la propiedad de la cancelación mostrada anteriormente tenemos que $\bar{0}=\lambda\bar{0}$.

$\square$

Proposición 4

Para todo $v\in \mathbb R^n,\,\,\,\,(-1)v$ es el inverso aditivo de $v$.

Demostración

Sea $v\in \mathbb R^n$. Veamos que $(-1)v$ es su inverso aditivo.

Explicación
$v+(-1)v=1v+(-1)v=$Pues $v=1v$.
$=(1+(-1))v$Por distributividad.
$=0v$Pues en $\mathbb R$ se tiene que $1+(-1)=0$.
$=\bar{0}$Por la proposición 3.

Hemos probado que $v+(-1)v=\bar{0}$ y por la conmutatividad de la suma también $(-1)v+v=\bar{0}$. En virtud de la unicidad de los inversos concluimos que $(-1)v$ es el inverso aditivo de $v$.

$\square$

Notación

Dado $v\in \mathbb R^n$ denotaremos por $-v$ a su inverso aditivo.

Corolario

En $\mathbb R^n$e cumple que:

$(-\lambda) v=-(\lambda v)=\lambda (-v),\,\,\,\,\forall \lambda\in \mathbb R\,\,\,\,\forall v\in \mathbb R^n$.

Explicación
$\lambda (-v)=\lambda((-1)v)$$-v=(-1)v$ por la proposición 4.
$=(\lambda(-1))v$Propiedades del producto escalar en $\mathbb R^n$.
$=(-\lambda)v$Gracias a que en $\mathbb R$ $\lambda(-1)=-\lambda$.
$=((-1)\lambda)v$Gracias a que en $\mathbb R$ $\lambda(-1)=-\lambda$.
$=(-1)(\lambda v)$Propiedades del producto escalar en $\mathbb R^n$.
$=-(\lambda v)$Por la proposición 4.

$\square$

Tarea Moral

Determina si dados $v\in \mathbb R^n$, $\lambda\in \mathbb R$, el hecho de que $\lambda v=\bar{0}$ implica necesariamente que $v=\bar{0}$ o que $\lambda =0$.

Más adelante

En la siguiente nota veremos el importante concepto de subespacio vectorial.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 25. Espacios vectoriales.

Enlace a la nota siguiente. Nota 27. Subespacios vectoriales.