Nota 27. Subespacios vectoriales.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Un subespacio vectorial es un subconjunto de un espacio vectorial, que mantiene la estructura de espacio vectorial, procederemos a identificarlos para el espacio vectorial $\mathbb R^n$.

Un subespacio vectorial de $\mathbb{R}^n$ es un conjunto de vectores que satisface ciertas propiedades y forma una estructura algebraica dentro del espacio vectorial $\mathbb{R}^n$. En pocas palabras, es un conjunto de vectores contenidos en $\mathbb{R}^n$ que es cerrado bajo la adición de vectores y la multiplicación por escalares.

Formalmente, un subespacio vectorial de $\mathbb{R}^n$ es un conjunto $W$ de vectores en $\mathbb{R}^n$ que cumple con tres propiedades:

  1. Contiene el vector cero: El vector cero, denotado por $\bar{0}$, siempre pertenece al subespacio vectorial $W$. Es decir, $\bar{0} \in W$.
  2. Cerrado bajo la adición: Si $u$ y $v$ son vectores en $W$, entonces la suma $u + v$ también pertenece a $W$. Es decir, $u + v \in W$ para cualquier $u,v \in W$.
  3. Cerrado bajo la multiplicación por escalares: Si $w$ es un vector en $W$ y $\lambda$ es un escalar, entonces el producto escalar $\lambda\,w$ también pertenece a $W$. Es decir, $\lambda w \in W$ para cualquier $w \in W$ y cualquier escalar $\lambda$.

Estas tres propiedades aseguran que el subespacio vectorial $W$ es un conjunto que contiene el vector cero, es cerrado bajo la adición de vectores y la multiplicación por escalares.

Los subespacios vectoriales de $\mathbb{R}^n$ pueden tener dimensiones diferentes. Un subespacio vectorial unidimensional, por ejemplo, sería una línea recta que pasa por el origen en $\mathbb{R}^2$ o $\mathbb{R}^3$. Un subespacio vectorial bidimensional sería un plano que pasa por el origen, y así sucesivamente. Estos subespacios pueden ser utilizados para describir y analizar diversas propiedades y estructuras geométricas en el espacio vectorial $\mathbb{R}^n$.

Prueba moviendo los puntos $A$ y $B$ de los vectores en rojo y verde, observa que cualquier combinación de esos vectores se queda contenida en el plano y que se ilustra con el vector en color negro. Todas las combinaciones lineales de los vectores en rojo y el verde dan origen a un plano que pasa por el origen, este lugar geométrico tiene la característica de ser un sub espacio vectorial de $\mathbb R^3$.

Definición

Sea $W$ un subconjunto de $\mathbb R^n$. Decimos que $W$ es un subespacio de $\mathbb R^n$ si:

i) $\bar{0}\in W$.

ii) $u+v\in W\,\,\,\,\forall u,v\in W$.

iii) $\lambda w\in W\,\,\,\,\forall \lambda \in \mathbb R\,\,\,\,\forall w \in W$.

Notación

$W\leq \mathbb R^n$ denotará que $W$ es un subespacio de $\mathbb R^n$.

Ejemplos

1. $\set{(x,y,0)\mid x,y\in \mathbb R}\leq \mathbb R^n$.

2. $\set{\bar{0}}\leq \mathbb R^n$.

3. $\mathbb R^n\leq \mathbb R^n$.

4. $W=\set{(x,y,z,w)\in \mathbb R^4\mid 2x-y+3z-w=0}$.

Demostración de 4

Tenemos que probar que el conjunto $W$ satisface las $3$ condiciones de la definición.

Satisface la propiedad $i$ pues $\bar{0}\in W$, ya que: $2\cdot 0-0+3\cdot 0-0=0$.

Veamos que satisface también la propiedad $ii$, es decir que $u+v\in W\,\,\,\,\forall u,v\in W$.

Sean $u,v\in W$, si $u=(x,y,z,w)$ y $v=(a,b,c,d)$, entonces por ser elementos de $W$ cumplen que:

$2x-y+3z-w=0$

$2a-b+3c-d=0$

Sumando estas expresiones obtenemos $2(x+a)-(y+b)+3(z+c)-(w+d)=0$, haciendo evidente que el vector $(x+a,y+b,x+c,w+d)\in W$, pero $(x+a,y+b,x+c,w+d)=(x,y,z,w)+(a,b,c,d)=u+v$, y por lo tanto $u+v\in W$.

Veamos que satisface la propiedad $iii$, es decir que $W$ es un conjunto cerrado bajo producto por escalares.

Sean $u=(x,y,z,w)\in W,$ $\lambda\in \mathbb R$.

Por demostrar que $\lambda w\in W$.

Como $u\in W$ entonces:

$2x-y+3x-w=0.$

Multiplicando por $\lambda$ obtenemos:

$\lambda (2x-y+3x-w)=0$

y entonces:

$2(\lambda x)-(\lambda y)+3(\lambda z)-(\lambda w)=0$.

Esto nos muestra que el vector $(\lambda x,\lambda y,\lambda z,\lambda w)\in W$, y como $(\lambda x,\lambda y,\lambda z,\lambda w)=\lambda (x,y,z,w)=\lambda u,$ concluimos que $\lambda u\in W$.

Observación

Nota que la definición de subespacio vectorial se puede acortar.

Si $W\subseteq \mathbb R^n$, tenemos que $W\leq \mathbb R^n$ si y sólo si se cumplen:

I) $\bar{0}\in W$

II) $\lambda u+v\in W\,\,\,\,\forall u,v\in W\,\,\,\,\forall \lambda\in \mathbb R^n$.

La demostración queda como tarea moral.

Proposición

La intersección de dos subespacios de $\mathbb R^n$ es un subespacio de $\mathbb R^n$.

Demostración

Sean $U,W$ subespacios de $\mathbb R^n$.

Por demostrar que $U\cap W$ es un subespacio de $\mathbb R^n$. Usaremos para ello la observación anterior.

Como $U$ y $W$ son subespacios, $\bar{0}\in U$ y $\bar{0}\in W$, por lo tanto $\bar{0}\in U\cap W$.

Sean $\lambda \in \mathbb R$, $v_1,v_2\in \mathbb R^n$, por demostrar que $\lambda v_1+v_2\in U\cap W$

Como $v_1,v_2\in U$ y $v_1,v_2\in W$, por ser $U$ y $W$ subespacios tenemos que:

$\lambda v_1+v_2\in U$ y $\lambda v_1+v_2\in W.$

Y por lo tanto $\lambda v_1+v_2\in U\cap W$.

Como se cumplieron las propiedades I y II tenemos que $U\cap W\leq \mathbb R^n$.

$\square$

Tarea Moral

$1.$ Demostrar la observación de la nota.

$2.$ Sea $W$ un subconjunto de $\mathbb R^n$. Para que $W$ sea un subespacio de $\mathbb R^n$ ¿es necesario pedir que $\bar{0}\in W$ o se puede deducir de que $W$ es cerrado bajo producto escalar?

$3.$ Sea $W$ un subconjunto de $\mathbb R^2$. Prueba o da un contraejemplo para las siguientes afirmaciones:

a) Si $W$ es cerrado bajo la suma y $\bar{0}\in W$, entonces $W$ es un subespacio de $\mathbb R^2$.

b) Si $W$ es cerrado bajo producto por escalares y $\bar{0}\in W$, entonces $W$ es un subespacio de $\mathbb R^2$.

c) Si $W$ es cerrado bajo la suma, bajo inversos aditivos y ademas $\bar{0}\in W$, entonces $W$ es un subespacio de $\mathbb R^2$.

$4.$ Determina cuáles de los siguientes subconjuntos son subespacios de los correspondientes $\mathbb R^n$.

i) $\set{(x,y,z)\in \mathbb R^3\mid x\, y\, z=0}$.

ii) $\set{(x,y,z)\in \mathbb R^3\mid x+ y+ z=-x}$.

iii) $\set{(x,y,z)\in \mathbb R^3\mid y\geq 0}$.

iv) $\set{(x,y,z,w)\in \mathbb R^4\mid x+y+3z-1=-7}$.

v) $\set{(x,y,z)\in \mathbb R^3\mid \, z\,\,\,es\,\,\,racional}$.

Más adelante

En la siguiente nota veremos el concepto de combinaciones lineales.

Enlaces relacionados

Página principal del curso.

Nota anterior.Nota 26. Propiedades de $\mathbb R^n$.

Nota siguiente. Nota 28. Combinaciones lineales.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.