Álgebra Superior I: Propiedades del producto cartesiano

Por Guillermo Oswaldo Cota Martínez

Introducción

La vez pasada dimos la definición de parejas ordenadas y el producto cartesiano. Estas ideas tenían que ver con «relacionar» dos conjuntos mediante las parejas ordenadas, ahora exploraremos más sobre el producto cartesiano. En esta entrada revisaremos algunas propiedades interesantes e importantes sobre el producto cartesiano entre dos conjuntos, viendo cómo se comporta con el conjunto vacío y algunos operadores de conjuntos.

Propiedades del producto cartesiano

Algunas de las preguntas que nos pueden surgir al momento de trabajar con los productos cartesianos es cómo estos se comportan con algunos operadores. Por ejemplo la unión y la intersección o la relación de contención. En esta entrada revisaremos algunos resultados útiles a la hora de trabajar con el producto cartesiano.

Trabajando con el vacío

Considera a un conjunto $X$. ¿Cómo será su producto cartesiano con el conjunto vacío?. Pues recuerda que:

$$ X \times \emptyset = \{(x,y): x\in X \land y \in \emptyset\}$$

Pareciera ser que este conjunto no tendría ningún elemento, ¿no? Pues al observar alguna pareja ordenada $(x,y)$ de este conjunto, resultaría que $y \in \emptyset$. Lo cuál es una contradicción, pues recordemos que el conjunto vacío no tiene elementos.

Proposición. Sea $X$ un conjunto, entonces $X \times \emptyset = \emptyset$.

Demostración. Para demostrar la igualdad de conjuntos, deberíamos demostrar que el conjunto de la izquierda está contenido en la derecha, pero notemos que el conjunto de la derecha es el conjunto vacío, y como recordarás, el conjunto vacío, siempre será subconjunto de cualquier conjunto. Esto nos ahorra una contención, y solo habrá que demostrar la contención que falta.

$\subset$. Para demostrar que cada elemento $(x,y) \in X \times \emptyset$ está contenido en el conjunto vacío, será suficiente demostrar que no podemos tomar ningún elemento de dicho conjunto, pues no tiene elementos, ya que ningún elemento cumplirá la definición del conjunto: $x\in X \land y \in \emptyset$. Cuando queremos demostrar que un conjunto es vacío, lo que haremos es hacerlo por reducción al absurdo, suponiendo que sí tiene elementos para llegar a una contradicción.

Para ello, supón $(x,y) \in X \times \emptyset$ (existe algún elemento en el conjunto). Entonces $x \in X$ y $y \in \emptyset$, pero esto es una contradicción, pues el conjunto vacío no tiene elementos por definición. Así, concluímos que $X \times \emptyset \subset \emptyset$.

Más aún, hemos demostrado la igualdad entre conjuntos, pues como dijimos al principio, todo conjunto tiene como subconjunto al vacío. De esta manera $X \times \emptyset = \emptyset$.

$\square$

El mismo argumento puede ser usado para demostrar que $\emptyset \times X = \emptyset$, pues no existen elementos que cumplan la definición de pertenencia del lado derecho.

Contención entre productos cartesianos

Para la siguiente propiedad, veremos cómo es que se comporta el producto cartesiano con la contención de conjuntos. Consideraremos ahora dos conjuntos $X,Y$. Notemos que un elemento del producto cartesiano de $X \times Y$ es de la forma $(x,y)$ donde $x \in X \land y \in Y$. Ahora nota que si $X \subset W \land Y \subset Z$, entonces $(x,y)$ también serán parte del producto cartesiano entre $W$ y $Z$, pues $x \in W \land y \in Z$. Esto es lo que nos dice la siguiente proposición:

Proposición. Sean $W,Z$ dos conjuntos y $X \subset W$, $Y \subset Z$. Entonces: $$X \times Y \subset W \times Z$$

Demostración. Para la demostración, consideremos $(x,y) \in X \times Y$. Lo que habrá que demostrar es que $(x,y) \in W \times Z$. Para ello, nota que si $(x,y) \in X \times Y$ entonces $x \in X$ y al tener la hipótesis $X \subset W$, concluímos que $x \in W$. De manera análoga, $y \in Z$. de esta manera $(x,y) \in W \times Z$

$\square$

Corolario. Sean $X,Y$ dos conjuntos, entonces $X \times X = Y \times Y$ si y solo si $X=Y$.

Esta última demostración no se va a resolver aquí, pero es sencillo notar que la igualdad entre productos cartesianos implica que $X \times X$ es subconjunto de $Y \times Y$ y viceversa, lo cual se puede utilizar para demostrar la contención entre conjuntos.

Propiedades con la unión e intersección

Las siguientes propiedades que vamos a probar serán las referentes a la unión y a la intersección. Para la primera idea de la unión, consideremos al conjunto $$X = \{1,2\}$$ y a los conjuntos $$Y_1 = \{a\}, Y_2 = \{b\}. $$

Entonces el conjunto $$X \times Y_1 = \{(1,a),(2,a)\}.$$ Y el conjunto $$X \times Y_2 = \{(1,b),(2,b)\}. $$De tal manera que si juntamos estos productos cartesianos, nos queda el siguiente conjunto:

$$X \times Y_1 \cup X \times Y_2 = \{(1,a),(2,a),(1,b),(2,b)\}.$$

Nota ahora que si hacemos el producto cartesiano de $X$ con $Y_1 \cup Y_2$, resulta que:

$$X \times (Y_1 \cup Y_2) = \{1,2\} \times \{a,b\}= \{(1,a),(2,a),(1,b),(2,b)\}.$$

De esta manera, $$X \times (Y_1 \cup Y_2)= X \times Y_1 \cup X \times Y_2 .$$

Esto es lo que nos dice la siguiente proposición:

Proposción. Sean $X,Y,Z$ tres conjuntos, entonces $$X \times (Y \cup Z) = X \times Y \cup X \times Z.$$

Demostración.

$\subset.$ Considera $(x,y) \in X \times (Y \cup Z)$. Entonces $x \in X$ y $y \in Y \cup Z$. Nota entonces que tenemos dos casos para $y$.

Caso 1. $y \in Y$

En este caso, $(x,y) \in X \times Y \subset X \times Y \cup X \times Z$, al tener esta última contención, concluimos que se cumple que $X \times (Y \cup Z) \subset X \times Y \cup X \times Z.$

Caso 2. $y \in Z$

Esta demostración es análoga al caso anterior, esto quiere decir que seguimos un razonamiento muy similar que no requiere de pasos muy distintos a los que hicimos. Podemos dejarlo así, pero pondremos el razonamiento análogo para que veas por qué decimos que es análogo.
En este caso, $(x,y) \in X \times Z \subset X \times Y \cup X \times Z$, al tener esta última contención, concluimos que se cumple que $X \times (Y \cup Z) \subset X \times Y \cup X \times Z.$

En cualquiera de los casos, es cierto que $X \times (Y \cup Z) \subset X \times Y \cup X \times Z.$

$\supset.$ Para demostrar la otra contención, simplemente notemos que tanto $X \times Y$ como $X \times Z$ están contenidos en $X \times (Y \cup Z)$. (Recuerda que si dos conjuntos están contenidos en otro conjunto, entonces su unión queda contenida en el conjunto). Para ello, nota que:

$$\begin{align*}
X \times Y &= \{(x,y):x \in X \land y \in Y\}\\
&\subset\{(x,y):x \in X \land y \in (Y \cup Z)\}\\
&= X \times (Y \cup Z)
\end{align*} $$

De igual manera:

$$\begin{align*}
X \times Z &= \{(x,y):x \in X \land y \in Z\}\\
&\subset\{(x,y):x \in X \land y \in (Z \cup Y)\}\\
&=\{(x,y):x \in X \land y \in (Y \cup Z)\}\\
&= X \times (Y \cup Z)
\end{align*} $$

De esta manera $X \times Y \subset X \times (Y \cup Z)$ y $X \times Z \subset X \times (Y \cup Z)$ de manera que $X \times Y \cup X \times Z\subset X \times (Y \cup Z)$

Por lo tanto $X \times Y \cup X \times Z = X \times (Y \cup Z)$

$\square$

Otra propiedad interesante es con la intersección, pues de manera similar si $$X = \{1,2\}$$ y los conjuntos $$Y_1 = \{a,b,c,d,e,1,f\}, Y_2 = \{1,2,3,4,5,a,6\} $$ entonces se cumple que $$X \times Y_1 \cap X \times Y_2 = \{(1,a),(2,a),(1,1),(2,1)\}.$$
Y $$X \times (Y_1 \cap Y_2) = \{(1,a),(2,a),(1,1),(2,1)\}.$$ De esta manera, $X \times Y_1 \cap X \times Y_2 = X \times (Y_1 \cap Y_2)$. Esto es otra proposición:

Proposición. Sean $X,Y,Z$ tres conjuntos, entonces $$X \times Y \cap X \times Z = X \times (Y \cap Z)$$

Demostración. Podemos hacer la demostración como en la proposición anterior, pero vamos a demostrarlo ahora por la definición de los conjuntos. Para esto, nota que:

$$\begin{align*}
X \times (Y \cap Z) &= \{(x,y):x \in X \land y \in (Y \cap Z)\} \\
&= \{(x,y):(x \in X \land y \in Y) \land (x \in X \land y \in Z)\}\\
&= \{(x,y):x \in X \land y \in Y\} \cap \{(x,y):x \in X \land y \in Z\}\\
&= X \times Y \cap X \times Z
\end{align*}$$

$\square$

Es con esto que tenemos algunas de las propiedades del producto cartesiano. Más aún, también hemos continuado con algunas distintas formas de demostrar conjuntos. Ambas formas de demostración de las proposiciones son válidas y son diferentes formas de demostrar.

Como pudiste observar, en general el producto cartesiano se comporta bien con los operadores entre conjuntos, siendo el producto cartesiano de la intersección, la intersección de los productos cartesianos y lo mismo sucede con la unión.

Más adelante…

Ahora que hemos visto algunas propiedades del producto cartesiano, procederemos a definir el siguiente concepto: las relaciones binarias entre conjuntos. Como pudiste observar con el producto cartesiano, este nos permite «unir» elementos de un conjunto con otro. Pues las relaciones serán un subconjunto del producto cartesiano y estudiaremos las distintas formas de relaciones.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que si $X$ es un conjunto, entonces $\emptyset \times X = \emptyset$.
  2. Demuestra que si $X,Y$ son dos conjuntos, entonces $X \times X = Y \times Y$ si y solo si $X=Y.$
  3. Sean $X,Y,Z$ tres conjuntos. Demuestra que:
    • $(X \cup Y) \times Z = X \times Z \cup Y \times Z$
    • $(X \cap Y) \times Z = X \times Z \cap Y \times Z$
  4. Demuestra que si $X,Y,Z$ son tres conjuntos, entonces:
    • $X \times (Y \triangle Z) = X \times Y \triangle X \times Z$
    • $(X \triangle Y) \times Z = X \times Z \triangle Y \times Z$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.