Álgebra Superior I: Propiedades de la negación, conjunción y disyunción

Por Guillermo Oswaldo Cota Martínez

Introducción

En la entrada pasada vimos que con conectores podemos construir nuevas proposiciones a partir de otras. Y nombramos a tres de ellas: la negación, la conjunción y la disyunción.

Ahora, discutiremos sobre algunas consecuencias que tiene juntar unas con otras y diremos en términos formales qué significa que una fórmula lógica sea «igual» a otra.

Recordatorio de proposiciones vs. variables proposicionales vs. fórmulas lógicas

Como breve recordatorio, tenemos las siguientes distinciones conceptuales importantes.

  • «Proposición» es una afirmación que puede ser verdadera o falsa, y lo estamos usando para una proposición específica. Como ejemplo, tenemos «El cielo es azul» o «El número $5$ es primo».
  • «Variable proposicional» es una letra que usamos para representar una proposición arbitraria, aún no definida. Por ejemplo, $P,Q,R$. Sin saber qué proposición representa, no podemos determinar su valor de verdad.
  • «Fórmula proposicional» es una expresión que armamos a través de variables proposicionales y conectores lógicos. Por ejemplo, $(P\land Q) \lor (R \land \neg P)$. Sin saber quiénes son exactamente $P,Q,R$, no podemos determinar el valor de verdad. Pero sí podemos considerar todas las posibilidades mediante una tabla de verdad.

Equivalencia de fórmulas proposicionales

Volvamos a retomar un ejemplo que ya habíamos revisado anteriormente.

$P$$\neg P$$\neg(\neg P)$
$0$$1$ $0$
$1$$0$$1$ 

Habíamos dicho que al coincidir las columnas de $\neg ( \neg P)$ con $P$ entonces $\neg(\neg P) \equiv P$. Esto leeremos como «$\neg(\neg P)$ es equivalente a $P$». La equivalencia de fórmulas proposicionales nos dice que sus valores de verdad siempre coinciden, sin importar el valor de verdad de las variables proposicionales que las conforman. En este ejemplo, en cualquier caso en que $\neg(\neg P)$ sea verdad, sucede que $P$ es verdad. De igual forma, cada vez que suceda que $\neg(\neg P)$ sea falso, $P$ también lo será.

Podemos dar un ejemplo más concreto. Pensemos en que nuestra proposición $P$ es: «El 2 es un número impar». En este caso $\neg(\neg P)$ corresponde a: «No es cierto que 2 no es un número impar». Observa que la proposición $P$ es falsa, y que también la proposición $\neg(\neg P)$ es falsa.

Ahora, nota que acabamos de hacer una definición, pues nombramos a dos fórmulas proposicionales que tienen la misma tabla de verdad como equivalentes. Como lo mencionamos en la entrada de los tipos de enunciados, les estamos poniendo un nombre a un objeto matemático que cumple ciertas propiedades.

Definición. Dos fórmulas proposicionales son equivalentes si sus tablas de verdad coinciden.

Esta «igualdad» en las fórmulas proposicionales nos será muy útil, pues en la matemática nos ayudará a ver algunos resultados de otra manera. Por ejemplo, retomemos $\neg(\neg P) = P$. Como sabemos que es falso que 2 es impar, en consecuencia también sabemos que es falso que «No sea cierto que 2 no es impar» y esto lo sabemos sin tener que verificar algo más, pues el hecho de que tengamos la equivalencia a nivel de fórmulas proposicionales, en particular la tenemos para cualquier proposición específica que reemplaze las variables proposicionales. Esta equivalencia también nos ayudará a demostrar otros resultados en el futuro.

Nota además lo siguiente. Piensa que $F_1$, $F_2$ y $F_3$ son fórmulas proposicionales (cada una conformada por varias variables proposicionales y conectivos). Si $F_1$ y $F_2$ son equivalentes, y $F_2$ y $F_3$ son equivalentes (es decir $F_1\equiv F_2$ y $F_2\equiv F_3$) entonces $F_1$ y $F_3$ también son equivalentes. Puedes convencerte de esto como sigue. Del hecho de que $F_1$ y $F_2$ lo sean, sale que $F_1$ y $F_2$ tienen la misma tabla de verdad. Del hecho de que $F_2$ y $F_3$ lo sean, sale que $F_2$ y $F_3$ tienen la misma tabla de verdad. Pero entonces $F_1$ y $F_3$ tienen la misma tabla de verdad (la de $F_2$). A esto se le conoce como la propiedad transitiva. No es importante que recuerdes este nombre, sin embargo después volveremos a estudiar esta propiedad con más calma. Y para recordar mejor esto, piensa en que funciona similar a la igualdad entre números, por ejemplo $2+2=4$ y $4=2^2$, entonces $2+2=2^2$.

Algunas propiedades de la conjunción y la disyunción

Hemos hablado un poco sobre la negación, pero ahora cambiemos el foco a la conjunción y la disyunción. Para empezar, recordemos que la conjunción $P\land Q$ sólo es verdadera cuando tanto $P$ como $Q$ son verdaderas, y en la entrada anterior verificamos que $Q \land P$ es equivalente a $P \land Q$.

También nos va a interesar el caso en donde combinamos más de dos proposiciones. Sin embargo, hay que tener cuidado. Por definición, la conjunción es un conector que combina únicamente dos proposiciones. Así, para unir a más de dos proposiciones mediante la conjunción, tendremos que agruparlas.

Piensa el agrupamiento como piensas la suma: si quieres sumar $2+3+4$, lo más habitual es sumar primero $2+3$ que resulta en cinco, y después sumárselo a $4$, de manera que podemos escribir la suma como $2+3+4=(2+3)+4$. Algo similar va a pasar con las proposiciones, pues podemos pensar a $P \land Q \land R$ como $(P \land Q) \land R$. Ahora piensa de nuevo en la suma $2+3+4$. El resultado de esta suma es $9$ y nosotros decidimos agrupar $2+3$ y después sumar el resultado con $4$. Pero esto es lo mismo que haber agrupado primero $3+4$ y después sumarlo a $2$. Esto no es coincidencia, pues la suma tiene una propiedad que se llama asociatividad que nos dice que $(2+3)+4=2+(3+4)$. ¿Pasará lo mismo con la conjunción? Veamos que sí.

Lo que queremos ver es si $P \land (Q \land R)\equiv (P \land Q) \land R$ es decir, queremos ver si $P \land (Q \land R)$ es equivalente a $(P \land Q) \land R$. La equivalencia está dada en términos de tablas de verdad, así que tenemos que hacer la tablas para ambas fórmulas lógicas. La presentamos a continuación.

$P$$Q$$R$$Q \land R$$P \land ( Q\land R)$$P \land Q$$(P \land Q) \land R$
$0$$0$$0$$0$$0$$0$$0$
$0$$0$$1$$0$$0$$0$$0$
$0$$1$$0$$0$$0$$0$$0$
$0$$1$$1$$1$$0$$0$$0$
$1$$0$$0$$0$$0$$0$$0$
$1$$0$$1$$0$$0$$0$$0$
$1$$1$$0$$0$$0$$1$$0$
$1$$1$$1$$1$$1$$1$$1$

Como puedes notar, las columnas $P \land (Q \land R)$ y $(P \land Q) \land R$ coinciden, es decir, coinciden en sus tablas de verdad, por lo tanto son equivalentes.

Con este ejemplo, vimos cómo la conjunción tiene la propiedad asociativa, es decir, cuando combinamos tres o más proposiciones mediante la conjunción, no importa «dónde pongamos los paréntesis». Lo mismo pasará con la disyunción que de igual manera es asociativa.

Combinando la conjunción con la disyunción

También podemos juntar los conectores de conjunción y disyunción. Por ejemplo, piensa que tenemos tres proposiciones $P, Q, R$ donde,

$P = \text{Toda persona es mortal}$

$Q = \text{2 es un número impar}$

$R = \text{2 es un número par}$

¿Qué significaría la proposición $P \lor (Q \land R)$? Si lo escribieramos en palabras, sería «Toda persona es mortal o (2 es un número impar y 2 es un número par)». Sabemos que toda persona es mortal, y también sabemos que 2 no puede ser impar y par a la vez (por ahora parece que sabemos que 2 es un número par, en otros cursos profundizarás más en lo que significa ser par). Entonces nuestra proposición está formada por dos componentes, la proposición $P$ y la proposición $Q \land R$. Como un número no puede ser par e impar a la vez, entonces la segunda proposición es falsa. Pero la primera proposición $P$ es verdadera, entonces la proposición $P \lor (Q \land R)$ es verdadera, porque para la disyunción basta que alguna de las dos sea verdadera.

Vayamos un poco más lejos. ¿Será que esta es la única forma de escribir la proposición? Resulta que no. Resulta que la disyunción y la conjunción cumplen una propiedad que se llama la propiedad distributiva. Para no quedarnos sólo con el ejemplo específico del párrafo anterior, la describimos en términos de fórmulas proposicionales: $$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R).$$

Si te resulta un poco confuso esto, puedes pensarlo por ahora como la distribución de una multiplicación con la suma, es decir la operación $2 \times (1+3) = (2 \times 1) + (2 \times 3)$, en donde nuestra disyunción $\lor$ queda distribuida a causa de la conjunción $\land$ los distribuye.

Para convencernos de que se satisface la propiedad distributiva, veamos las tablas de verdad de cada una de las expresiones que están involucradas.

$P$$Q$$R$$Q \land R$$P \lor ( Q\land R)$$P \lor Q$$P \lor R$$(P \lor Q) \land (P \lor R)$
$0$$0$$0$$0$$0$$0$$0$$0$
$0$$0$$1$$0$$0$$0$$1$$0$
$0$$1$$0$$0$$0$$1$$0$$0$
$0$$1$$1$$1$$1$$1$$1$$1$
$1$$0$$0$$0$$1$$1$$1$$1$
$1$$0$$1$$0$$1$$1$$1$$1$
$1$$1$$0$$0$$1$$1$$1$$1$
$1$$1$$1$$1$$1$$1$$1$$1$

Nota que las columnas coloreadas corresponden a las fórmulas lógicas que nos interesan y son iguales, entonces $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$. Lo mismo sucede si cambiamos el orden de los conectores, es decir $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$, así podemos distribuir los conectores conjuntivos y disyuntivos como más nos convenga.

Agregando la negación a la mezcla

Por último, vamos a incluir a la negación en nuestra mezcla de conjunciones y disyunciones. ¿Qué pasará cuando tenemos proposiciones del estilo $\neg (P \land Q)$ y $\neg (P \lor Q)$? Sería lógico pensar en un inicio que igual la negación se va a distribuir, pero eso no es cierto. Para esto, piensa en el siguiente ejemplo:

$$P = \text{32 es un número perfecto} $$

$$ Q = 2^7-1 \text{ es un número primo} $$

Aquí hablamos de dos cosas que quizá aún no sepas: números perfectos y números primos, no te preocupes por lo que signifiquen, en otros cursos los verás con más detalle, aunque te puedo decir que sólo una de estas dos afirmaciones es correcta (¿Puedes adivinar cuál es?), entonces la conjunción es falsa, por lo que la negación de la conjunción es verdadera.

Lo que acabamos de decir es que $P \land Q$ es falsa y por consecuente $\neg (P \land Q)$ es verdadera. Si sucediera que la negación se distribuyera sobre la conjunción, entonces $\neg (P \land Q)$ sería equivalente a $\neg P \land \neg Q$. Pero esto no es cierto, porque $\neg P$ es verdadero, y $\neg Q$ es falso, y entonces $\neg P \land \neg Q$ es falso. Acabamos de llegar a una contradicción en nuestro pensar matemático es decir, primero dijimos que $\neg (P \land Q)$ es verdadera y después observamos que si la negación se distribuyera sobre la conjunción, sería falso, pero recuerda que una proposición es verdadera o falsa, no puede ser verdadera y falsa al mismo tiempo, entonces alguna de las dos suposiciones que hicimos es incorrecta. Si quieres pensarlo de otra forma, $\neg P \land \neg Q$ y $\neg (P \land Q)$ no son equivalentes pues sus tablas de verdad difieren en el renglón en el que $P$ es verdadero y $Q$ es falso.

Nuestro error fue haber distribuido la negación sin cuidado. Resulta que la negación no cumple esa propiedad, pero «casi» es distributiva. Veamos sus reglas.

$$ \neg (P \land Q) \equiv \neg P \lor \neg Q $$

$$ \neg (P \lor Q) \equiv \neg P \land \neg Q $$

En el ejemplo concreto de arriba, esto quiere decir que es lo mismo decir «No es cierto que (32 sea un número perfecto y $2^7-1$ sea un número primo)» a decir «No es cierto que 32 es un número perfecto, o no es cierto que $2^7-1$ es un número primo». Para que lo entiendas más claro, revisa la tabla de verdad:

$P$$Q$$P \land Q$$\neg (P \land Q)$$\neg P$$\neg Q$$\neg P \lor \neg Q$
$0$$0$$0$$1$$1$$1$$1$
$0$$1$$0$$1$$1$$0$$1$
$1$$0$$0$$1$$0$$1$$1$
$1$$1$$1$$0$$0$$0$$0$

Observa que las columnas correspondientes a las fórmulas proposicionales que queremos coinciden, lo que quiere decir que son equivalentes. Lo mismo puedes verificar para comprobar que $ \neg (P \lor Q) \equiv \neg P \land \neg Q $. A estas propiedades se les conoce como las leyes de De Morgan (más adelante volverás a oír ese nombre).

Más adelante…

Recapitulando, en esta entrada hablamos sobre las propiedades que tienen tres conectores. Vimos lo siguiente:

  • Hablamos de la equivalencia de fórmulas proposicionales que ocurre cuando dichas fórmulas coinciden en todos los renglones de sus tablas de verdad, sin importar la asignación de veracidad de las variables proposicionales que las conforman.
  • Observamos tres propiedades de los conectores: la asociatividad, la distributividad y las leyes de DeMorgan.

Todo esto nos da herramientas suficientes para ya empezar a hablar de lógica proposicional, pero esto apenas empieza. Recuerda que tenemos más conectores. Aún nos faltan revisar dos muy importantes: la implicación y la doble implicación. Estos dos las vamos a ver con más calma en la siguiente entrada.

Tarea Moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que $\neg ( \neg (\neg P))$ es equivalente a $\neg P$.
  2. En la entrada vimos que podemos asociar la conjunción como queramos. Ahora verifica que lo mismo pasa con la disyunción, es decir $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$.
  3. Verifica con la tabla de verdad que $P \land (Q \lor R) \equiv(P \land Q) \lor (P \land R)$.
  4. Verifica con la tabla de verdad que $ \neg (P \lor Q) \equiv\neg P \land \neg Q $.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.