Introducción
En entradas anteriores estudiamos las formas bilineales y las cuadráticas. También vimos las matrices que las representan. Introdujimos una noción de congruencia de matrices relacionada con todo esto. Y vimos que la congruencia de matrices preserva una noción de positividad para matrices. Ahora daremos un paso más y veremos que de hecho la congruencia de matrices preserva más que sólo eso.
Para ello, introduciremos la noción de la signatura de una matriz. A grandes rasgos, esta noción nos dice «qué tan positiva» es una matriz simétrica. Para definir esta noción, lo haremos primero para las matrices diagonales. Luego lo definiremos para todas las matrices simétricas a través del teorema que demostramos la entrada anterior. Toda la discusión la haremos en el caso real. El caso complejo tiene sus versiones análogas, que quedarán descritas en los ejercicios.
Signatura de una matriz diagonal
Comenzamos con la siguiente definición.
Definición. Sea
En cierto sentido, la signatura generaliza tanto la noción de rango, como la noción de positividad y de positividad definida. Esto queda plasmado en las siguientes observaciones.
Observación. Una matriz diagonal ya está en forma escalonada reducida. Y el rango de una matriz en forma escalonada reducida coincide con la cantidad de renglones no cero. Así, si la signatura de una matriz diagonal es
Observación. Por lo que vimos en la entrada anterior, una matriz diagonal en
Observación. Por un resultado análogo al de la entrada anterior, una matriz diagonal es
La signatura es invariante bajo congruencias
El resultado clave de esta entrada es el siguiente lema.
Lema. Sean
Demostración. Llamemos
Como
Como la signatura de
en donde
Demostraremos que
Por un lado,
El primer sumando es positivo pues
Similarmente,
Hemos encontrado una contradicción que surgió de suponer
Signatura para matrices simétricas
En la entrada anterior vimos que cualquier matriz simétrica en
Definición. Sea
El lema de la sección anterior nos permite asegurarnos de que la siguiente definición está bien hecha. Si
Pensemos que dos matrices
Una última observación es la siguiente. Si
Resumimos todo esto en el siguiente resultado.
Proposición. Sean
- Si la signatura de
es , entonces su rango es . - Si
y son congruentes, entonces tienen la misma signatura. En particular:- Tienen el mismo rango.
- Si una es positiva, la otra también lo es.
- Si una es positiva definida, la otra también lo es.
El teorema de Sylvester
Enunciemos las versiones análogas a lo anterior en términos de formas cuadráticas. Comencemos con el teorema de Gauss. Tomemos una forma cuadrática
Podemos quitar todos los términos con
en donde los
¿Por qué esto está bien definido? Porque ya vimos que cada forma de Gauss de
El gran resumen de todo esto es el siguiente teorema.
Teorema (ley de inercia de Sylvester). Sea
Cualesquiera dos expresiones de este estilo tienen la misma cantidad de coeficientes positivos, y la misma cantidad de coeficientes negativos.
Dato curioso: ¿Por qué ley de inercia?
En esta entrada nos hemos referido al teorema de Sylvester de dos maneras intercambiables: teorema de Sylvester y ley de inercia de Sylvester. La intuición diría que quizás existe alguna relación con la física. Quizás es porque algún uso especial de este teorema lo hace importante para el cálculo de la inercia. Esto no es así.
El nombre, curiosamente, viene de esta frase de Sylvester:
Este número constante de signos positivos que se asocian a una función cuadrática bajo cualquier transformación […] puede ser llamado, convenientemente, su inercia, hasta que una mejor palabra sea encontrada.
J. J. Sylvester, On the Theory of the Syzygetic Relations… (1853)
Aparentemente no se encontró una mejor palabra y ahora es el térimo que se usa. Interpretando un poco lo que dice Sylvester, la inercia se refiere a la resistencia de un cuerpo de cambiar de estado. Así, tal vez Sylvester pensó en la «resistencia a cambiar» de la signatura de una forma cuadrática bajo cambios de base.
Más adelante…
Hay mucha más teoría que se puede enunciar y demostrar para formas cuadráticas en general. Por ahora detendremos nuestra exploración hasta aquí, y ya sólo nos enfocaremos en las formas bilineales simétricas y positivas, es decir, en los productos interiores. Queremos enunciar y demostrar varios resultados para espacios con producto interior y para espacios euclideanos.
Dos conceptos que estudiaremos a continuidad son el de dualidad y el de ortogonalidad. Esto nos abrirá las puertas a entender correctamente algunos tipos de transformaciones lineales muy importantes, como las transformaciones simétricas, las normales y las ortogonales.
Tarea moral
Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, ayudan para repasar los conceptos vistos en esta entrada.
En los siguientes ejercicios, usa el algoritmo de Gauss para escribir cada forma como combinación cuadrática de formas lineales linealmente independientes. Además encuentra su rango y signatura.
- Encuentra el rango y la signatura de la forma cuadrática
dada por - Completa algunos detalles faltantes en las demostraciones anteriores. Por ejemplo:
- ¿Por qué las formas
de la discusión del teorema de Sylvester son linealmente independientes? - ¿Por qué son análogas las demostraciones faltantes en el lema que demostramos?
- ¿Por qué las formas
- Demuestra que cualquier matriz simétrica es congruente a una matriz diagonal cuya diagonal es de la forma
. - Enuncia y demuestra un resultado análogo al lema principal de esta entrada, pero para matrices con entradas complejas. Recuerda que en este caso debes usar matrices hermitianas y las congruencias son a través de usar una matriz invertible y su traspuesta conjutada.
- Enuncia y demuestra una ley de inercia de Sylvester para formas cuadráticas hermitianas.
Entradas relacionadas
- Ir a Álgebra Lineal II
- Entrada anterior del curso: Matrices positivas y congruencia de matrices
- Siguiente entrada del curso: Dualidad y representación de Riesz en espacios euclideanos
Agradecimientos
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»
Hola, entonces si consigo expresar a una forma cuadratica (no importa el camino que siga) en Rn como combinacion de formas lineales elevadas al cuadrado y linealmente independientes, entonces la signatura y el rango siempre van a ser el mismo?? por ejemplo, si en el primer ejemplo haciamos x_1 = y, x_2=z, x_3=x obtenemos los mismos números?
Así es. Ese es justo el resultado. Es muy interesante que aunque haya muchas formas de escribir a una forma cuadrática así, siempre se usa la misma cantidad de coeficientes no cero, de coeficientes positivos, y de coeficientes negativos.
Y en el caso que propones no es necesario el teorema, ya que como sólo estamos reproduciendo la demostración, y esa se hace en general, no importa los nombres que decidas asignar, justo por eso en la entrada anterior podíamos no perder generalidad aunque hiciéramos el caso únicamente para x_n, si no se pudiera bastaría cambiar nombres como sea conveniente
Con estos nombres, q se puede reescribir como
En la expresión de abajo creo que falta un signo dentro de la raiz
Hola Sebastián. Gracias por el comentario. Ya cambiamos la entrada bastante. Me parece que el comentario que pones ya está remediado en la nueva versión.