Álgebra Superior II: Congruencias y el anillo de enteros módulo n

Esta es una serie de entradas de blog para dar seguimiento a los estudiantes de mi curso de Álgebra Superior II durante la época de cuarentena debida al coronavirus.

Introducción

En clases pasadas hemos platicado del algoritmo de la división, del máximo común divisor, el mínimo común múltiplo, de primos, el teorema fundamental de la aritmética, la infinidad del conjunto de primos y del algoritmo de Euclides para encontrar el máximo común divisor.

En esta entrada platicaremos acerca del anillo de los enteros módulo n. La idea de esta entrada es:

  • Dar la intuición a través de un ejemplo concreto
  • Dar la definición formal de a\equiv b \pmod n
  • Definir a \mathbb{Z}_n, el anillo de enteros módulo n, dando sus elementos y sus operaciones de suma y resta.
  • Dar ejemplos adicionales de operaciones concretas.
  • Hablar de cuáles son los elementos de \mathbb{Z}_n que tienen inversos multiplicativos y cuándo \mathbb{Z}_n es un campo.

A grandes rasgos, el anillo de los enteros módulo n consiste en ver a los enteros «como si sólo nos importara el residuo que dejan al dividirse entre n«.

Ejemplo introductorio

Hablemos de las horas que tiene un día. Un día tiene 24 horas y las podemos llamar del 0 al 24 para no tener que hacer distinción entre AM y PM. Por ejemplo, las 4PM serían las 16. Las 10AM simplemente las 10. La hora 24 vamos a pensarla más bien como la hora 0 del siguiente día.

Si son las 8 (de la mañana, pero ya no hace falta aclarar), entonces tres horas después serán las 11. Si son las 10, entonces cuatro horas después serán las 14. Pero si son las 22 y pasan 7 horas, entonces van a ser las 29, pero conviene pensar a esa hora como las 5 (del día siguiente), pues así es más claro qué hora entre 0 y 23 es. Finalmente si son las 17 y pasan 24 horas, entonces la hora que obtenemos es la 17+24=41, pero justo como pasan 24 horas, siguen siendo las 17: aunque el día cambió, la hora no.

De esta discusión recuperamos lo siguiente:

  • En «el mundo de las horas», la hora 29 es la misma que la hora 5. En símbolos, esto lo ponemos como 29\equiv 5 \pmod {24}.
  • Podemos «sumar en el mundo de las horas». Ahí, 10+4 es 14, pero 22+7 es 5. Vamos a escribir 10+4\equiv 14 \pmod {24} y 22+7\equiv 5 \pmod {24}.
  • En «el mundo de las horas», si sumamos 24 horas no pasa nada.

Definición del anillo \mathbb{Z}_n

En el ejemplo de motivación trabajamos con horas, que «se ciclan cada 24». Pero aquí el 24 no tiene nada de especial y de hecho lo podemos hacer con cualquier número n. Comencemos definiendo qué quiere decir que dos enteros sean iguales «en el mundo de n«.

Definición. Sea n un entero positivo. Sean a y b enteros. Vamos a decir que a es congruente con b módulo n si n divide a a-b. En símbolos:

    \[a\equiv b \pmod n \quad \iff \quad n\mid b-a.\]

Proposición. Para todo entero positivo n la relación en \mathbb{Z} de «ser congruente módulo n » es una relación de equivalencia.

Demostración. Tenemos que probar que dicha relación es reflexiva, simétrica y transitiva.

Para ver que la relación es reflexiva, tomemos a en \mathbb{Z}. Tenemos que n divide a 0=a-a, pues n\cdot 0 =0 (dicho de otra forma, 0 está en n\mathbb{Z}). Así, a\equiv a \pmod n.

Veamos ahora que la relación es simétrica. Si a\equiv b \pmod n, entonces n divide a a-b, pero entonces también divide a su inverso aditivo b-a (aquí estamos usando que n\mathbb{Z} es ideal, y que los ideales son cerrados bajo inversos aditivos), de modo que b\equiv a \pmod n.

Finalmente, veamos que la relación es transitiva. Para ello, a partir de enteros a, b y c tales que a\equiv b \pmod n y b\equiv c \pmod n tenemos que mostrar que a\equiv c \pmod n. Por definición, las primeras dos congruencias quieren decir que n divide a a-b y a b-c. Pero sabemos que si un entero divide a dos enteros, entonces divide a su suma. Así, n\mid (a-b)+(b-c)=a-c, que por definición quiere decir que a\equiv c \pmod n.

\square

Ya que «ser congruente módulo n» es una relación de equivalencia, entonces podemos dividir a todo \mathbb{Z} en las clases de equivalencia de esta relación, y escribir como [a]_n a la clase de equivalencia que tiene al entero a. La siguiente proposición muestra que para cada clase de equivalencia siempre podemos encontrar un representante chiquito.

Proposición. Sea n un entero positivo. Se tiene que a\equiv b \pmod n si y sólo si a y b dejan el mismo residuo al dividirse entre n en el algorimo de la división. En particular, para cada a siempre existe un entero r en \{0,1,\ldots,n-1\} tal que a\equiv r \pmod n.

Demostración. Usemos el algoritmo de la división para escribir a=qn+r y b=pn+s con r y s los residuos de la división, que el algoritmo de la división garantiza que están en \{0,1,\ldots,n-1\}.

Si r=s, entonces a-b=(q-p)n, así que n\mid a-b y así a\equiv b \pmod n. Si a\equiv b \pmod n, entonces

    \[n\mid a-b= (q-p)n+(r-s).\]

Como n\mid (q-p)n, entonces n\mid r-s. Sin embargo, usando que r y s están en \{0,1,\ldots,n-1\}, tenemos que r-s es un número entre -(n-1) y n-1, de modo que la única posibilidad es r-s=0, es decir, r=s. Esto prueba la primer parte de la proposición.

Como a y r dejan el mismo residuo r al dividirse entre n, entonces a\equiv r \pmod n.

\square

Ejemplo. Fijemos n=7. Tenemos que las siguientes clases de equivalencia son la misma: [13]_7, [20]_7, [-1]_7. Esto es ya que, por ejemplo, 7 divide a 20-13=14 y 7 divide a 20-(-1)=21. De hecho, todas estas clases son iguales a la clase [6]_7, pues tanto -1, 6, 13 como 20 son números que al dividirse entre 7 dejan residuo 6.

Estamos listos para presentar a los elementos del anillo de enteros módulo n.

Definición. Para n un entero positivo, definimos a Z_n como el conjunto de clases de equivalencia de la relación «ser congruente módulo n«. Por la proposición anterior, tenemos entonces que

    \[Z_n=\{[0]_n, [1]_n, \ldots, [n-1]_n\}\]

Nota que Z_n tiene exactamente n elementos, uno por cada uno de los posibles residuos de dividir un número entre n. Nota también que \mathbb{Z}_n no es lo mismo que el ideal n\mathbb{Z}, y que hay que ser cuidadosos con la notación. De hecho, el ideal n\mathbb{Z} es uno de los elementos de \mathbb{Z}_n.

Ejemplo. Z_4=\{[0]_4,[1]_4, [2]_4,[3]_4\} tiene 4 elementos. El elemento [3]_4 consiste de todos los enteros que dejan residuo 3 al dividirse entre 4, es decir, [\ldots,-5,-1,3,7,\ldots].

Definición. Sea n un entero positivo y [a]_n y [b]_n clases de equivalencia de la relación «ser congruentes módulo n«. Definimos las siguientes operaciones de suma y producto:

  • [a]_n + [b]_n = [a+b]_n, y
  • [a]_n [b]_n = [ab]_n.

Estas operaciones es decir, esta suma y producto «están bien definidas» y no dependen de los representantes elegidos, como muestra la siguiente proposición:

Proposición. Sea n un entero positivo. Si a\equiv a' \pmod n y b\equiv b' \pmod n, entonces a+b \equiv a'+b' \pmod n y ab\equiv a'b' \pmod n.

Demostración. De la primer congruencia tenemos n\mid a-a' y de la segunda n\mid b-b'. Como n divide a estos dos números, divide a su suma, y reacomodando tenemos que n\mid (a+b) - (a'+b'), que es equivalente a a+b\equiv a'+b' \pmod n, una de las congruencias que queríamos.

Para el producto, de n\mid a-a' podemos obtener

    \[n\mid (a-a')b=ab-a'b\]

y de n\mid b-b' podemos obtener

    \[n\mid a'(b-b')=a'b-a'b'.\]

Así,

    \[n\mid (ab-a'b)+(a'b-a'b')=ab-a'b'.\]

De aqui, ab\equiv a'b' \pmod n, la otra congruencia que queríamos.

\square

El anillo de enteros módulo n es precisamente \mathbb{Z}_n equipado con las operaciones de suma y producto que acabamos de definir.

Ejemplos de operaciones en \mathbb{Z}_n

Estos son algunos ejemplos básicos de operaciones en \mathbb{Z}_7 y en \mathbb{Z}_{11}:

  • [8]_7+[4]_7=[12]_7=[5]_7
  • [4]_{11}[8]_{11}=[32]_{11}=[21]_{11}=[10]_{11}

En una siguiente entrada, preparada por Clau, verán más ejemplos de operaciones en \mathbb{Z}_n.

Inversos multiplicativos en \mathbb{Z}_n

El cero del anillo de enteros módulo n es [0]_n, pues para cualquier entero a se tiene que [a]_n+[0]_n=[a+0]_n=[a]_n. Como [0]_n consiste precisamente de los múltiplos de n, tenemos entonces que [a]_n+[kn]_n=[a]_n.

La multiplicación en este anillo tiene como identidad a [1]_n, de lo cual te puedes convencer con una cuenta similar.

La suma de este anillo tiene inversos aditivos pues para cualquier entero a se tiene que la clase de a y la de -a cumplen

    \[[a]_n+[-a]_n=[a+(-a)]_n=[0]_n.\]

Sin embargo, no es cierto que para cualquier clase [a]_n esta tenga un inverso multiplicativo. A los números que sí tienen un inverso multiplicativo se les conoce como unidades del anillo.

Problema: Muestra que [4]_{12} no tiene inverso multiplicativo en \mathbb{Z}_{12}

Intenta resolver este problema antes de ver la solución.

Solución. Procedamos por contradicción. Si [a]_{12} fuera el inverso multiplicativo de [4]_{12}, tendríamos que [1]_{12}=[4a]_{12} y por lo tanto que 4a\equiv 1 \pmod {12}, es decir, que 12\mid 4a-1. Como 4\mid 12 y 4\mid 4a, tendríamos entonces que 4\mid (4a-1)-4a = -1. Esto es una contradicción.

La siguiente proposición dice exactamente quienes son los elementos en \mathbb{Z}_n que tienen inversos multiplicativos en \mathbb{Z}_n.

Teorema. Sea n un entero positivo. La clase [a]_n de \mathbb{Z}_n tiene inverso multiplicativo si y sólo si a y n son primos relativos.

Demostración. Recordemos que por definición a y n son primos relativos si su máximo común divisor MCD(a,n) es igual a 1. Recordemos también que MCD(a,n) puede escribirse como combinación lineal entera de a y n.

Si a y n son primos relativos, entonces existen p y q enteros tales que 1=ap+nq. Así,

    \[[ap]_n=[ap+nq]_n=[1]_n,\]

de modo que la clase [a]_n tiene como inverso multiplicativo a la clase [p]_n.

Si a y n no son primos relativos y suponemos que [a]_n tiene inverso multiplicativo, entonces llegaremos a una contradicción similar a la del problema anterior. Verifica los detalles.

\square

Recuerda que un campo es un anillo conmutativo en el cual todo elemento distinto de cero tiene un inverso multiplicativo. Terminamos esta sesión con un resultado que nos dice cuándo \mathbb{Z}_n es un campo.

Proposición. Sea n un entero. El conjunto \mathbb{Z}_n con las operaciones de suma y producto que definimos es un campo si y sólo si n es un número primo.

Demostración. Como ya sabemos que es un anillo conmutativo, basta con determinar cuándo sucede que todos los elementos distintos de cero tienen un inverso multiplicativo. Estos elementos son son [1]_n, \ldots, [n-1]_n. Por la proposición anterior, estos tienen inversos si y sólo si cada uno de los números 1,2,\ldots,n-1 es primos relativos con n.

Si n es primo, entonces todos esos números son primos relativos con n pues el único factor en común que tienen con n es 1. Si n no es primo, entonces tiene un divisor d que satisface 1<d<n, y por lo tanto n y d no son primos relativos, así que [d]_n no tiene inverso multiplicativo.

De esta forma, \mathbb{Z}_n es un campo si y sólo si n es primo.

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Argumenta por qué «el mundo de los minutos» también es un ejemplo de enteros módulo n.
  • Muestra que n\mathbb{Z} es uno de los elementos de \mathbb{Z}_n.
  • Muestra que las operaciones de suma y producto en \mathbb{Z}_n en efecto satisfacen la definición de anillo conmutativo. Sugerencia: aprovecha que \mathbb{Z} es un anillo conmutativo con sus operaciones de suma y producto.
  • Muestra que [1]_n es identidad para el producto en \mathbb{Z}_n.
  • Completa la prueba del teorema de inversos multiplicativos.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.