Introducción
En la entrada pasada introdujimos el concepto de vector en $F^n$ y el concepto de matriz en $M_{m,n}(F)$. También definimos las operaciones básicas de suma y producto escalar. En esta entrada exploraremos la relación que existe entre estos. Más precisamente, veremos cómo una matriz define una función que manda vectores en vectores, y cómo algunas de estas funciones (que resultarán ser las transformaciones lineales) nos dan una matriz. Más adelante hablaremos de espacios vectoriales en general y de transformaciones lineales entre ellos. Pero es muy importante entender estos conceptos primero en una situación concreta.
Procederemos construyendo primero la transformación asociada a una matriz. Luego, verificaremos algunas propiedades de la construcción realizada. Finalmente, veremos que hay una biyección entre matrices y transformaciones lineales.
Construir una transformación a partir de una matriz
Comencemos con un campo $F$ y una matriz $A\in M_{m,n}(F)$ con entradas $a_{ij}$, es decir
\begin{align*}
A=\begin{pmatrix}
a_{11} & a_{12} & \ldots & a_{1n}\\
a_{21} & a_{22} & \ldots & a_{2n}\\
& \vdots & \ddots & \vdots\\
a_{m1} & a_{m2} & \ldots & a_{mn}
\end{pmatrix}
\end{align*}
A un vector $X=\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in F^n$ le podemos asociar un nuevo vector que denotaremos (de manera sugestiva) $AX\in F^m$ (observa el cambio de superíndice) y definimos como $$AX= \begin{pmatrix} a_{11}x_1+a_{12}x_2 +\dots+ a_{1n} x_n \\ a_{21} x_1 +a_{22} x_2 +\dots + a_{2n} x_2 \\ \vdots \\ a_{m1}x_1 +a_{m2} x_2 + \dots +a_{mn}x_n \end{pmatrix}.$$
Así, obtenemos una función de $F^n$ a $ F^m$ que manda a cada vector $X$ de $F^n$ en el vector $AX$ de $F^m$.
Ejemplo. A la matriz $$A=\begin{pmatrix} 1 & 0 & 1 &0 \\ 1 & 2 &3 &4 \\ 0 & 0 & 0 & 1 \end{pmatrix}\in M_{3,4}(\mathbb{R})$$ le asociamos entonces la función $f: \mathbb{R}^4\to \mathbb{R}^3$ definida por $$f\left( \begin{pmatrix} x \\ y \\z \\ w \end{pmatrix} \right) = A\cdot \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x+ z\\ x+2y+3z+4w\\ w \end{pmatrix}.$$
$\triangle$
Observación. Si denotamos por $e_1, \dots, e_n$ a la base canónica de $F^n$ y $A\in M_{m,n}(F)$ tiene entradas $a_{ij}$ entonces
\begin{align*}
Ae_i&=\begin{pmatrix} a_{11}\cdot 0+\dots + a_{1i} \cdot 1+\dots +a_{1n}\cdot 0\\ a_{21}\cdot 0+\dots + a_{2i} \cdot 1+\dots + a_{2n}\cdot 0\\ \vdots \\ a_{n1}\cdot 0 +\dots + a_{ni} \cdot 1+ \dots + a_{nn}\cdot 0 \end{pmatrix}\\
&= \begin{pmatrix} a_{1i}\\ a_{2i}\\ \vdots \\ a_{mi} \end{pmatrix}=C_i.\end{align*}
Dónde, recordamos, $C_i$ es la $i$-ésima columna de $A$. Más generalmente, si $X=\begin{pmatrix} x_1\\ x_2 \\ \vdots \\ x_n \end{pmatrix}\in F^n$ es cualquier vector, entonces $$AX= x_1 C_1+ \dots +x_n C_n.$$
Las sutilezas de esta asignación matriz-transformación se resumen en el siguiente resultado:
Teorema: Para cualesquiera matrices $A,B\in M_{m,n} (F)$, cualesquiera vectores $X,Y\in F^n$ cualesquiera escalares $\alpha, \beta \in F$ se cumple:
- $A(\alpha X +\beta Y)=\alpha AX+\beta AY$
- $(\alpha A+ \beta B)X= \alpha A X +\beta B X$
- Si $AX=BX$ para toda $X\in F^n$, entonces $A=B$.
Demostración: Escribimos $A=[a_{ij}], B=[b_{ij}]$ y $X=\begin{pmatrix} x_1\\ x_2\\ \vdots \\ x_n \end{pmatrix}$ y $Y=\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$. Así $\alpha A+ \beta B= [\alpha a_{ij}+\beta b_{ij}]$ y $\alpha X+ \beta Y= \begin{pmatrix} \alpha x_1 + \beta y_1 \\ \alpha x_2 +\beta y_2\\ \vdots \\ \alpha x_n +\beta y_n \end{pmatrix} $
- Por definición, la $i$-ésima coordenada de $A(\alpha X+ \beta Y)$ es $$\sum_{j=1}^{n} a_{ij}(\alpha x_j+\beta y_j)= \alpha \sum_{j=1}^n a_{ij} x_j+ \beta \sum_{j=1}^{n} a_{ij} y_j.$$ Aquí estamos las propiedades distributivas en $F$. El lado derecho de la ecuación corresponde a la $i$-ésima coordenada de $\alpha AX+\beta AY$, lo que prueba el resultado.
- El argumento es esencialmente el mismo, el cálculo esta vez se reduce a la igualdad $$ \sum_{j=1}^{n} \left(\alpha a_{ij}+\beta b_{ij}\right) x_j = \alpha \sum_{j=1}^{n} a_{ij} x_j +\beta \sum_{j=1}^n b_{ij} x_j.$$ Esta sabemos es verdadera por las propiedades distributivas en $F$.
- Por hipótesis, tenemos $A e_i = B e_i$ dónde $e_i$ denota el $i$-ésimo elemento de la base canónica de $F^n$. Por la observación anterior, esto implica que la $i$-ésima columna de $A$ es igual a la $i$-ésima columna de $B$, para todo $i$. Luego $A$ y $B$ son iguales.
$\square$
Observa que en las demostraciones (1) y (2) anteriores estamos usando las propiedades del campo $F$ para poder distribuir la suma y producto. A grandes rasgos, lo importante que estamos haciendo es ver que, gracias a que todo sucede entrada a entrada, entonces la distributividad también sucede para matrices y vectores.
La asignación que a cada matriz le asocia una función
La última condición del teorema nos dice que la asignación que manda a cada matriz $A$ a su función $\varphi_A=X\mapsto AX$ (en símbolos, la asignación $A\mapsto \varphi_A$) es inyectiva: si a dos matrices le asociamos la misma función, es porque eran la misma matriz para empezar. Esta asignación tiene como dominio el conjunto de matrices $M_{m,n} (F)$ y como codominio el conjunto de funciones $\varphi: F^n \to F^m$ que (por las parte (1) del último teorema) cumplen $$\varphi(\alpha X +\beta Y)= \alpha \varphi(X)+\beta \varphi(Y)$$ para cualesquiera $\alpha,\beta \in F$ y $X,Y\in F^n$.
A una función (o bien «transformación») $\varphi: F^n \to F^m$ que cumple esta última condición se le llama lineal. Observamos que cualquier transformación lineal satisface $\varphi(0)=0$, ya que si en la condición ponemos $\alpha=\beta=0$ tenemos que $$\varphi(0)=\varphi(0\cdot X+ 0 \cdot Y)= 0\cdot \varphi(X)+0\cdot \varphi(Y)=0.$$ En otras áreas de las matemáticas el término «lineal» denota otro tipo de transformaciones, por ejemplo las de la forma $\psi(X)=aX+b$, que nosotros llamaremos afines. Más que «función lineal» usaremos el término transformación lineal.
El siguiente teorema nos dice que la asignación $A\mapsto \varphi_A$ discutida arriba no es sólo inyectiva, si no también suprayectiva. Es decir, cualquier transformación lineal $\varphi: F^n\to F^m$ es la función asociada de alguna matriz $A\in M_{m,n}(F)$.
Teorema: Sea $\varphi: F^n\to F^m$ una transformación lineal. Existe una única matriz $A\in M_{m,n} (F)$ tal que $\varphi(X)=AX$ para toda $X\in F^n$.
Demostración: La unicidad fue establecida en el último inciso del teorema anterior, basta con verificar existencia. Sea $\varphi: F^n\to F^m$ lineal, y sea $e_1, \dots, e_n$ la base canónica para $F^n$. Construimos la matriz $A$ tal que la $i$-ésima columna $C_i$ es el vector $\varphi(e_i)\in F^m$. Así, por una observación previa, tenemos que $Ae_i= C_i = \varphi(e_i)$ para cualquier $1\leq i \leq n$.
Si $X=\begin{bmatrix} x_1\\ x_2\\ \vdots \\ x_n \end{bmatrix} \in F^n$ es cualquier vector, entonces $X=x_1 e_1 +x_2 e_2 +\dots + x_n e_n$. Como $\varphi$ es lineal, entonces
\begin{align*}
\varphi(X)&=\varphi(x_1 e_1 +x_2 e_2 + \dots + x_n e_n)\\&= x_1 \varphi(e_1)+x_2 \varphi(e_2)+\dots + x_n \varphi(e_n)\\&= x_1 C_1+ x_2 C_2 +\dots + x_n C_n= AX.
\end{align*}
La última igualdad es de nuevo una consecuencia de la observación que hicimos. Luego $\varphi(X)=AX$ para toda $X\in F^n$ y queda así probado el teorema.
$\square$
Tenemos entonces una biyección entre matrices en $M_{m,n}(F)$ y transformaciones lineales $\varphi: F^n\to F^m$. En símbolos $$M_{m,n}(F) \leftrightarrow \lbrace \varphi: F^n \to F^m \mid \varphi \text{ es lineal }\rbrace.$$
Ejemplo. Ya vimos cómo obtener la transformación lineal asociada a una matriz, ahora queremos hacer el proceso inverso. Por ejemplo, si tenemos el mapeo $f: \mathbb{R}^4 \to \mathbb{R}^3$ dado por $$f: (x,y,z,w) \mapsto (x+y-z, 3z-w, z+2y),$$ entonces ¿cuál es la matriz $A$ tal que $f(X)=AX$?
De acuerdo con nuestra demostración del teorema, las columnas de $A$ corresponden a las imágenes $f(e_i)$. Hacemos entonces el cálculo directo:
- $f(e_1)= f(1,0,0,0)=(1,0,0)$
- $f(e_2)=f(0,1,0,0)=(1,0,2)$
- $f(e_3)= f(0,0,1,0)= (-1, 3,1)$
- $f(e_4)= f(0,0,0,1)=(0,-1,0)$
Así $$A=\begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & 0 &3 & -1 \\ 0 & 2 & 1 & 0 \end{pmatrix}$$ En realidad, pudimos habernos saltado el cálculo y solo fijarnos en los coeficientes de cada coordenada: La primer coordenada de $f(x,y,z,w)$ no es más que $x+y-z= 1\cdot x+ 1\cdot y +(-1)\cdot z +0\cdot w$, acomodando estos coeficientes $[1\ 1 \ -1 \ 0]$ en las columnas correspondientes nos da el primer renglón de $A$. De manera análoga, con la segunda coordenada recuperamos el segundo renglón y con la tercer coordenada el tercero, y así recuperamos $A$.
$\triangle$
Más adelante…
La conclusión principal de esta entrada es que para entender transformaciones lineales basta con entender las matrices con entradas en el campo. Este fenómeno será muy recurrente en el álgebra lineal, y muchos problemas de transformaciones lineales se traducen en problemas de matrices y vice-versa. ¡A veces la traducción es tan inmediata que incluso se omite!
Tarea moral
A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.
- Encuentra la matriz de la transformación lineal que manda al vector $(x,y,z)$ de $\mathbb{R}^3$ al vector $(x+y+z,x-y+z, x + 3y, 2y-z, 8x+z)$ de $\mathbb{R}^5$.
- Considera la matriz $A=\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \\ -2 & 2 & -2\end{pmatrix}$. Si la pensamos como transformación lineal, ¿de dónde a dónde va? ¿cómo se escribe de manera explícita $AX$ en términos de las coordenadas del vector $X$ al que se le aplica?
- Sea $A$ la matriz del punto anterior. Sean $X=(1,2,3)$ y $Y=(3,-1,4)$. Encuentra $AX$ y $AY$. Realiza la suma $AX+AY$. Luego, por separado, realiza primero la suma $X+Y$ y usando esto encuentra el valor de $A(X+Y)$. Verifica en en efecto ambos procesos te dan el mismo resultado.
- Explica por qué no es posible encontrar una matriz que represente a la función que manda al vector $(x,y,z,w)$ de $\mathbb{R}^4$ al vector $(x+y+z+w, xy+yz+zw+wx)$ de $\mathbb{R}^2$.
- ¿Cuál es la matriz que representa a la transformación lineal que manda al vector $(x_1,x_2,\ldots,x_n)$ de $F^n$ al vector $(x_2,x_3,\ldots,x_n,x_1)$, también de $F^n$?
Entradas relacionadas
- Ir a Álgebra Lineal I
- Entrada anterior del curso: Introducción al curso, vectores y matrices
- Siguiente entrada del curso: Problemas de vectores, matrices y matrices como transformaciones lineales
Agradecimientos
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»
En el punto 1 del teorema hay un error, en una de las sumatorias no es alfa, en ve, que alfa debe ser «a»
Tienes toda la razón, ya hice el cambio, gracias por la observación.
Hola! Buenos días, en la parte de la observación hay un error. Dado que la matriz A tiene m renglones y n columnas, entonces el producto A*e_i debe tener m renglones y 1 columna y no n renglones. Saludos!
Ya lo corregí. ¡Gracias por la observación!
Otro comentario, jiji.
En la parte donde mencionan que toda transformación lineal satisface que phi(0) = 0. En el punto donde lo muestran, me parece que hay una confusión, dado que lo que hay que mostrar no es phi(0) = phi(0*X +0*Y) sino en todo caso, phi(0) = phi(alpha*0 + beta*0). Aunque esto igual puede ser confusión mía.
Dado que 0*X=0 para cualquier vector X, en particular se cumple que 0=0*X+0*Y para cualesquiera dos vectores. Luego phi(0)= phi(0*X+0*Y)= 0*phi(X)+0*phi(Y) pero nuevamente al multiplicar por cero un vector obtenemos cero, luego este último número es cero. Espero que esto aclare la duda.
Hola ! Buena tarde , detecte un pequeño error de notación que hasta ahorita me di cuenta , en el primer apartado de esta entrada donde se muestra la multiplicación explicita : AX , en la segunda fila de la matriz en el ultimo sumando en vez de x_{2} , ¿Debería de ser x_{n} , no?
Saludos.
Hola, en la parte de Observación hay un error. En la notación explícita de la matriz A, todos los subíndices tienen «n», lo que la haría una matriz M_n(F), siendo que debería ser una matriz M_m,n(F). El vector resultante, que corresponde a C_i sí está correcto ya que tiene m renglones.
Saludos.
Perdón, es en la notación explícita del producto A*e_i. Si te das cuenta el último elemento es a_nn*0, en vez de a_mn*0
Hola, muy buenas semens tenga profesao, soy Santi gimenez, jugador del Cruz Azul, adoro a Arigameplays y las mates, sos imbecil viva el Madrid siu