Álgebra Lineal I: Problemas de cambio de base

En las entradas anteriores platicamos acerca de matrices de cambio de base. Vimos cómo nos ayudan a pasar un vector expresado en una base a otra. También vimos cómo nos ayudan a entender una transformación lineal en bases distintas. En esta entrada, veremos algunos ejemplos para repasar estos conceptos.

Problema 1. Considera las familias de vectores B=\{v_1,v_2,v_3\}, B'=\{w_1,w_2,w_3\}, donde

    \[v_1=(0,1,1), \ v_2=(1,0,1), \ v_3=(1,1,0)\]

y

    \[w_1=(1,1,-1), \ w_2=(1,0,-1), \ w_3=(-1,-1,0).\]

  1. Prueba que B y B' son bases de \mathbb{R}^3.
  2. Encuentra la matriz de cambio de base P de B a B' usando la definición de P.
  3. Encuentra la matriz de cambio de base P usando la base canónica de \mathbb{R}^3 y la última proposición de esta entrada.

Solución. (1) Dado que \dim \mathbb{R}^3=3 y estas familias son de tres vectores, basta con demostrar que son vectores linealmente independientes. Una manera de hacerlo es formando la matriz obtenida al colocar a los vectores como renglones y reducirla hasta la matriz identidad I_3.

Para B, la matriz asociada es

    \[\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.\]

Haciendo los cálculos de la reducción, obtenemos que

    \[\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}\]


    \[\longrightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.\]


Esto implica que los vectores en B son linealmente independientes y, por lo tanto, forman una base \mathbb{R}^3.

Para B', la matriz asociada es

    \[\begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}.\]

Reduciendo la matriz, tenemos que

    \[\begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.\]


Por lo tanto, B' también es una base de \mathbb{R}^3.

(2) Recordemos que la matriz de cambio de base P está definida como la matriz [p_{ij}] cuya columna j tiene como entradas a las coordenadas de w_j escrito en términos de la base B. Entonces, expresemos

(1,1,-1)=w_1=av_1+bv_2+cv_3=(b+c,a+c,a+b),

(1,0,-1)=w_2=dv_1+ev_2+fv_3=(e+f,d+f,d+e),

(-1,-1,0)=w_3=gv_1+hv_2+kv_3=(h+k,g+k,g+h),

obteniendo que

    \begin{align*}b+c&=1\\a+c&=1\\a+b&=-1\\e+f&=1\\d+f&=0\\d+e&=-1\\h+k&=-1\\g+k&=-1\\g+h&=0.\end{align*}

Si resolvemos el sistema anterior, concluimos que a=b=-\frac{1}{2}, c=\frac{3}{2}, d=-1, e=0, f=1, g=h=0, k=-1. Por lo tanto

P=\begin{pmatrix} a & d & g \\ b & e & h \\ c & f & k  \end{pmatrix}= \begin{pmatrix} -\frac{1}{2} & -1 & 0 \\ -\frac{1}{2} & 0 & 0 \\ \frac{3}{2} & 1 & -1  \end{pmatrix}.

(3) Sea B''=\{e_1,e_2,e_3\} la base canónica de \mathbb{R}^3. Queremos encontrar la matriz de cambio de base denotada como \text{Mat}_B (B'). Usando la última proposición de la clase del lunes, tenemos que

\text{Mat}_B (B')=\text{Mat}_{B} (B'') \cdot \text{Mat}_{B''} (B')=(\text{Mat}_{B''} (B))^{-1} \cdot \text{Mat}_{B''} (B').

Por definición,

\text{Mat}_{B''} (B)=\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \  \text{Mat}_{B''} (B')=\begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}.

Para calcular (\text{Mat}_{B''} (B))^{-1}, lo haremos como ya lo hemos visto en clases: pegando a la derecha una matriz identidad y aplicando reducción gaussiana:

    \begin{align*} &\left( \begin{array}{ccc|ccc} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{array} \right) \\\rightarrow &\left( \begin{array}{ccc|ccc} 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \end{array} \right) \\ \rightarrow &\left( \begin{array}{ccc|ccc} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \end{array} \right) \\\rightarrow &\left( \begin{array}{ccc|ccc} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 1 & -1 & 1 \\ 0 & 0 & 2 & 1 & 1 & -1 \end{array} \right) \\ \rightarrow &\left( \begin{array}{ccc|ccc} 1 & 0 & 0 & -1/2 & 1/2 & 1/2 \\ 0 & 1 & 0 & 1/2 & -1/2 & 1/2 \\ 0 & 0 & 1 & 1/2 & 1/2 & -1/2 \end{array} \right). \end{align*}

Por lo tanto,

    \[(\text{Mat}_{B''}(B))^{-1}=\begin{pmatrix} -1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \end{pmatrix}.\]

Finalmente, usando la proposición, tenemos que

P=\text{Mat}_B (B')=\begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}\cdot\begin{pmatrix} 1 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}

=\begin{pmatrix} -\frac{1}{2} & -1 & 0 \\ -\frac{1}{2} & 0 & 0 \\ \frac{3}{2} & 1 & -1 \end{pmatrix}.

Esto coincide con el cálculo que hicimos previamente.

\square

Problema 2. Considera la matriz

A=\begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}

y sea T:\mathbb{R}^3 \rightarrow \mathbb{R}^3 la transformación lineal asociada, es decir T(X)=AX para todo X\in\mathbb{R}^3. Considera los vectores

v_1=\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \ v_2=\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \ v_3=\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.

  1. Prueba que v_1,v_2,v_3 forman una base de \mathbb{R}^3 y calcula la matriz de T con respecto a esta base.
  2. Encuentra la matriz de cambio de base de la base canónica a la base \{v_1,v_2,v_3\}.
  3. Calcula A^n para todo entero positivo n.

Antes de ver la solución a este problema este problema, observa que sería muy difícil decir quién es A^{100} «a mano» si procedes directamente. Se tendrían que hacer muchas multiplicaciones matriciales, que son difíciles. Ten en mente esto cuando leas la solución de la parte 3.

Solución. (1) Dado que la dimensión de \mathbb{R}^3 es 3 y \{v_1,v_2,v_3\} son tres vectores, basta con demostrar que éstos son linealmente independientes para probar que forman una base. Sean a,b,c\in\mathbb{R} tales que av_1+bv_2+cv_3=0, entonces

a+b+c=0, \ a-c=0, \ -a-b=0

\Rightarrow a=c, -a=b, a-a+a=0 \Rightarrow a=0, c=0, b=0.

Entonces, son linealmente independientes y, por lo tanto, forman una base de \mathbb{R}^3.

Nota: Otra manera de demostrarlo es considerar la matriz formada por los vectores v_1,v_2,v_3 como sus columnas, reducirla y llegar a que la matriz reducida es la matriz identidad.

Ahora, para calcular la matriz de T con respecto a la nueva base, expresaremos T(v_1),T(v_2), T(v_3) en términos de v_1,v_2,v_3. Entonces tenemos que

T(v_1)=Av_1=\begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}\cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}=\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}=v_1,

T(v_2)=Av_2=\begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}\cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}=\begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}=2v_2,

T(v_3)=Av_3=\begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}\cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}=\begin{pmatrix} 3 \\ -3 \\ 0 \end{pmatrix}=3v_3.

Por lo tanto, la matriz que buscamos es

    \[B=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.\]

(2) Lo haremos de la misma manera que en el inciso (2) del problema anterior, que consiste en escribir a los v_1,v_2,v_3 en la base canónica, pero ésto es obvio ya que están escritos de esa manera, por lo tanto

    \[P=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0  \end{pmatrix}.\]

(3) Sabemos que la matriz de T con respecto a v_1,v_2,v_3 (que nombramos en el inciso (1) como B) es igual a P^{-1}AP, gracias al último corolario de la sección «Matrices de cambio de base y transformaciones lineales» de la entrada anterior. Entonces

    \[P^{-1}AP=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.\]

Es fácil ver (pero lo pueden demostrar por inducción en n) que

    \[(P^{-1}AP)^n=(P^{-1}AP)(P^{-1}AP)\dots (P^{-1}AP)=P^{-1}A^n P.\]

Esto implica que P^{-1}A^n P=B^n, es decir

    \[P^{-1}A^n P=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}.\]

Multiplicando por P a la izquierda y por P^{-1} a la derecha, obtenemos que

    \[A^n=P\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}P^{-1} .\]

Para ello, nos falta calcular la inversa de P, y eso lo haremos como siempre lo hemos hecho: reduciendo la matriz. Entonces

    \begin{align*} &\left( \begin{array}{ccc|ccc} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 & 1 & 0 \\ -1 & -1 & 0 & 0 & 0 & 1 \end{array} \right) \\\rightarrow &\left( \begin{array}{ccc|ccc} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{array} \right) \\\rightarrow &\left( \begin{array}{ccc|ccc} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & -1 & -2 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{array} \right) \\\rightarrow &\left( \begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 & -1 & -2 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{array} \right). \end{align*}

Como consecuencia, tenemos que

    \[P^{-1}=\begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -2 \\ 1 & 0 & 1 \end{pmatrix}.\]

Por lo tanto,

    \begin{align*}A^n &=P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix} P^{-1}\\&=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^n & 0 \\ 0 & 0 & 3^n \end{pmatrix}\begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -2 \\ 1 & 0 & 1 \end{pmatrix}\end{align*}

A^n= \begin{pmatrix} 1-2^n+3^n & 1-2^n & 1-2^{n+1}+3^n \\ 1-3^n & 1 & 1-3^n \\ 2^n-1 & 2^n-1 & 2^{n+1}-1 \end{pmatrix}.

\square

El ejercicio anterior deja una moraleja importante de álgebra lineal: si tenemos una matriz A y logramos encontrar una matriz diagonal B similar a ella, entonces será fácil encontrar A^n. Para finalizar esta sesión, tenemos el siguiente problema.

Problema 3. Prueba que las matrices

    \[A=\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \ \text{y} \ B=\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}\]

son similares.

Solución. Para resolverlo usaremos el corolario visto en la clase de ayer, que dice (adaptándolo al problema):

Corolario. Sea T:\mathbb{R}^4\rightarrow \mathbb{R}^4 una transformación lineal. Sean B' y B'' bases de \mathbb{R}^4 y P la matriz de cambio de base de B' a B''. Entonces \text{Mat}_{B''}(T)=P^{-1} \text{Mat}_{B'}(T) P.

Si podemos encontrar una transformación T y bases B' y B'' tales que \text{Mat}_{B'}(T)=A y \text{Mat}_{B''} (T)=B, podemos calcular la matriz de cambio de base P, y satisface que B=P^{-1}AP, implicando que A y B sean matrices similares. Entonces, el problema se reduce a encontrar la transformación, las bases y calcular P.

Dado que \text{Mat}_{B'}(T)=A, si B' es la base canónica, es claro que la transformación T satisface que T(X)=AX para todo X\in\mathbb{R}^4.

Ahora, encontremos B''. Sea B''=\{ v_1,v_2,v_3,v_4 \} con

v_1=\begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{pmatrix}, v_2=\begin{pmatrix} x_2 \\ y_2 \\ z_2 \\ w_2 \end{pmatrix}, v_3=\begin{pmatrix} x_3 \\ y_3 \\ z_3 \\ w_3 \end{pmatrix}, v_4=\begin{pmatrix} x_4 \\ y_4 \\ z_4 \\ w_4 \end{pmatrix}.

Dado que \text{Mat}_{B''}(T)=B, entonces satisface

T(v_1)=Av_1=v_1, \ T(v_2)=Av_2=2v_1+v_2,

T(v_3)=Av_3=3v_1+2v_2+v_3, \ T(v_4)=Av_4=4v_1+3v_2+2v_3+v_4.

Resolviendo lo anterior, obtenemos que

Av_1=\begin{pmatrix} x_1+y_1 \\ y_1+z_1 \\ z_1+w_1 \\ w_1 \end{pmatrix}=\begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{pmatrix} \ \Rightarrow \ v_1=\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix},

Av_2=\begin{pmatrix} x_2+y_2 \\ y_2+z_2 \\ z_2+w_2 \\ w_2 \end{pmatrix}=\begin{pmatrix} x_2+2 \\ y_2 \\ z_2 \\ w_2 \end{pmatrix} \ \Rightarrow \ v_2=\begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \end{pmatrix},

Av_3=\begin{pmatrix} x_3+y_3 \\ y_3+z_3 \\ z_3+w_3 \\ w_3 \end{pmatrix}=\begin{pmatrix} x_3+5 \\ y_3+4 \\ z_3 \\ w_3 \end{pmatrix} \ \Rightarrow \ v_3=\begin{pmatrix} 1 \\ 5 \\ 4 \\ 0 \end{pmatrix},

y por último

Av_4=\begin{pmatrix} x_4+y_4 \\ y_4+z_4 \\ z_4+w_4 \\ w_4 \end{pmatrix}=\begin{pmatrix} x_4+9 \\ y_4+16 \\ z_4+8 \\ w_4 \end{pmatrix} \ \Rightarrow \ v_4=\begin{pmatrix} 1 \\ 9 \\ 16 \\ 8 \end{pmatrix}

Aquí estamos usando que los sistemas de ecuaciones que se obtienen tienen como variables libres a x_1,x_2,x_3,x_4, las cuales las estamos tomando todas ellas iguales a 1.

Estos vectores son linealmente independientes pues la matriz con ellos como columnas es triangular superior con entradas en la diagonal distintas de cero, de modo que su matriz reducida es la identidad. Como \mathbb{R}^4 es de dimensión 4 y B'' es un conjunto de cuatro vectores linealmente independientes, entonces B'' es una base. Más aún, B'' es una base tal que \text{Mat}_{B''} (T)=B, por construcción.

Finalmente, podemos calcular la matriz de cambio de base P de B' a B'', pero es fácil ya que B' es la base canónica, entonces

    \[P=\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 5 & 9 \\ 0 & 0 & 4 & 16 \\ 0 & 0 & 0 & 8 \end{pmatrix}.\]

Por propiedades de la matriz de cambio de base, sabemos que P es invertible. Entonces, para terminar la prueba, podemos encontrar P^{-1} y verificar que B=P^{-1}AP, o simplemente verificamos que PB=AP, y por lo tanto A y B son matrices similares. Lo haremos de la segunda manera. En efecto,

PB=\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 5 & 9 \\ 0 & 0 & 4 & 16 \\ 0 & 0 & 0 & 8 \end{pmatrix}\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}=\begin{pmatrix} 1 & 3 & 6 & 10 \\ 0 & 2 & 9 & 25 \\ 0 & 0 & 4 & 24 \\ 0 & 0 & 0 & 8 \end{pmatrix}

AP=\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 5 & 9 \\ 0 & 0 & 4 & 16 \\ 0 & 0 & 0 & 8 \end{pmatrix}=\begin{pmatrix} 1 & 3 & 6 & 10 \\ 0 & 2 & 9 & 25 \\ 0 & 0 & 4 & 24 \\ 0 & 0 & 0 & 8 \end{pmatrix}.

Por lo tanto, A y B son matrices similares.

Nota: si calculas la inversa de P, obtienes como resultado que

    \[P^{-1}=\begin{pmatrix} 1 & -\frac{1}{2} & \frac{3}{8} & -\frac{5}{16} \\ 0 & \frac{1}{2} & -\frac{5}{8} & \frac{11}{16} \\ 0 & 0 & \frac{1}{4} & -\frac{1}{2} \\ 0 & 0 & 0 & \frac{1}{8} \end{pmatrix}.\]

\square


Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.