Álgebra Lineal I: Matrices de bloques

Por Julio Sampietro

Introducción

En esta entrada definimos el concepto de submatriz y estudiamos las llamadas matrices de bloques que esencialmente son matrices grandes obtenidas por matrices más pequeñas (esto tendrá sentido después de algunos ejemplos). Las matrices de bloque aparecen frecuentemente en muchas áreas y permiten realizar cálculos que podrían ser bastante complicados de otra manera.

Dentro de este curso, nos encontraremos con las matrices de bloque cuando hablemos de solución de ecuaciones lineales y de encontrar inversas de matrices usando el método de reducción gaussiana.

Definición de matrices de bloques

Definición. Una submatriz de una matriz $A\in M_{m,n}(F)$ es una matriz que se obtiene al quitar filas y/o columnas de $A$.

Notamos que $A$ es submatriz de si misma. Una matriz puede partirse en submatrices marcando líneas verticales u horizontales en la matriz. Llamamos a una matriz de este estilo una matriz de bloques y a las submatrices marcadas las llamamos bloques.

Unos ejemplos de matrices de bloques:

\begin{align*}
\left( \begin{array}{c|cc}
1 & 2 & 3\\
0& 5 & 6\\
0 & 0&9
\end{array}\right)
,\hspace{2mm} \left( \begin{array}{c|cc} 1 & 0 & 1 \\ \hline 2 & 5 & -3\end{array}\right),\\ \left(\begin{array}{ccc|c} 1 & 0 & 0 & 2\\ \hline 5 & 16 & 2 & 0\\ 17 & 19 & -5 & 3\\ 117 & 0 & 0 & 11\end{array}\right). \end{align*}

Como mencionamos en la introducción, podemos ver a una matriz de bloques como una ‘matriz de matrices’: una matriz de bloques en $M_{m,n}(F)$ típica se ve como

\begin{align*}
\begin{pmatrix}
A_{11} & A_{12} & \dots & A_{1k}\\
A_{21} & A_{22} & \dots & A_{2k}\\
\vdots & \vdots & \ddots & \vdots\\
A_{l1} & A_{l2} & \dots & A_{lk}
\end{pmatrix},
\end{align*}

en donde cada submatriz $A_{ij}$ es una matriz de tamaño $m_i\times n_j$ para algunos enteros positivos $m_1,\dots, m_l$ y $n_1,\dots, n_k$ tales que $m_1+\dots +m_l=m$ y $n_1+\dots+n_k=n$. La matriz tiene entonces $l$ filas de bloques y $k$ columnas de bloques.

Si $l=k$, llamamos a los bloques $A_{11}, \dots, A_{kk}$ los bloques diagonales y decimos que $A$ es diagonal por bloques si todos los bloques aparte de los diagonales son la matriz cero del tamaño correspondiente. Es decir, una matriz diagonal por bloques es de la forma

\begin{align*}
A=\begin{pmatrix} A_{11} & 0 &\dots & 0\\
0 & A_{21} & \dots & 0\\
\vdots & \vdots & \ddots &\vdots\\
0 & 0 &\dots & A_{kk}.
\end{pmatrix}
\end{align*}

Observa que sólo estamos pidiendo que $k=l$, es decir, que haya la misma cantidad de filas de bloques y de columnas de bloques. Sin embargo, no es necesario que la matriz $A$ sea cuadrada para que sea diagonal por bloques.

Por más que la definición en abstracto pueda ocultar su sentido práctico, uno siempre reconoce una matriz diagonal por bloques cuando la ve.

Ejemplo. La matriz

\begin{align*}
\begin{pmatrix}
1& -1 & 0 & 0\\
0& 2 & 0 & 0\\
0&0 & 3 &0\\
0 & 0 & 15 & -2
\end{pmatrix}
\end{align*}

es diagonal por bloques, y los resaltamos con las líneas de división

\begin{align*}
\left( \begin{array}{cc|cc}
1& -1 & 0 & 0\\
0& 2 & 0 & 0\\ \hline
0&0 & 3 &0\\
0 & 0 & 15 & -2
\end{array}\right).\end{align*}

La matriz
\begin{align*}
\begin{pmatrix}
2 & -1 & 0 & 0\\
8 & 3 & 0 & 0\\
0& 3 & 0 &0\\
0&0 & 0 & -2\\
0 & 0 & 1 & 0
\end{pmatrix}
\end{align*}

también es diagonal por bloques, aunque los bloques no necesariamente sean cuadrados. Resaltamos la lineas divisorias a continuación:

\begin{align*}
\left( \begin{array}{cc|cc}
2& -1 & 0 & 0\\
8 & 3 & 0 & 0\\
2 & 3 & 0 & 0\\ \hline
0 & 0 & 0 &-2\\ 0 & 0 & 1 & 0
\end{array}\right).\end{align*}

Los bloques diagonales son \begin{align*}\begin{pmatrix} 2 & -1 \\ 8 & 3 \\2 & 3 \end{pmatrix}\end{align*} y \begin{align*}\begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}. \end{align*}

$\triangle$

Operaciones con matrices de bloques

Al ser ‘matrices de matrices’, las matrices de bloques se comportan adecuadamente con las operaciones de suma y producto de matrices que conocemos. Enunciamos esto con más detalle en la siguiente proposición que no demostraremos. Las demostraciones son directas pero tediosas.

Proposición.

  • Si
    \begin{align*}
    A= \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1k}\\ A_{21} & A_{22} & \dots & A_{2k}\\ \vdots & \vdots & \ddots & \vdots\\ A_{l1} & A_{l2} & \dots & A_{lk} \end{pmatrix}\end{align*} y \begin{align*} B=\begin{pmatrix} B_{11} & B_{12} & \dots & B_{1k}\\ B_{21} & B_{22} & \dots & B_{2k}\\ \vdots & \vdots & \ddots & \vdots\\ B_{l1} & B_{l2} & \dots & B_{lk} \end{pmatrix} \end{align*}
    son matrices de bloques con $A_{ij}$ y $B_{ij}$ del mismo tamaño para cada $i,j$ (es decir, la partición es igual) entonces
    \begin{align*}
    A+B=\begin{pmatrix} A_{11} +B_{11} & A_{12}+B_{12} & \dots & A_{1k}+B_{1k}\\ A_{21} +B_{21}& A_{22}+B_{22} & \dots & A_{2k}+B_{2k}\\ \vdots & \vdots & \ddots & \vdots\\ A_{l1}+B_{l1} & A_{l2}+B_{l2} & \dots & A_{lk}+B_{lk} \end{pmatrix}
    \end{align*}
  • Si
    \begin{align*}
    A=\begin{pmatrix} A_{11} & A_{12} & \dots & A_{1k}\\ A_{21} & A_{22} & \dots & A_{2k}\\ \vdots & \vdots & \ddots & \vdots\\ A_{l1} & A_{l2} & \dots & A_{lk} \end{pmatrix}\end{align*} y \begin{align*} B=\begin{pmatrix} B_{11} & B_{12} & \dots & B_{1r}\\ B_{21} & B_{22} & \dots & B_{2r}\\ \vdots & \vdots & \ddots & \vdots\\ B_{k1} & B_{k2} & \dots & B_{kr} \end{pmatrix} \end{align*}
    son de tamaño $m\times n$ y $n\times p$ respectivamente tal que $A_{ij}$ es de tamaño $m_i \times n_j$y $B_{ij}$ de tamaño $n_i\times p_j$, entonces
    \begin{align*}
    AB=\begin{pmatrix} C_{11} & C_{12} & \dots & C_{1r}\\ C_{21} & C_{22} & \dots & C_{2r}\\ \vdots & \vdots & \ddots & \vdots\\ C_{l1} & C_{l2} & \dots & C_{lr} \end{pmatrix}
    \end{align*}
    donde
    \begin{align*}
    C_{ij}=\sum_{u=1}^{k} A_{iu} B_{uj}.
    \end{align*}

Más adelante…

En unas cuantas entradas hablaremos del algoritmo de reducción gaussiana y lo usaremos para resolver sistemas de ecuaciones y encontrar inversas de matrices. Nos encontraremos con matrices de bloque muy específicas, por ejemplo, las que resultan de «pegarle» un vector columna a una matriz, por ejemplo

\begin{align*}
\left( \begin{array}{cccc|c}
-3& -1 & 3 & -11 & 0\\
8 & 3 & 0 & 2 & -1\\
1 & -5 & 0 & 0 & 0
\end{array}\right).\end{align*}

y las que resultan de «pegarle» la matriz identidad a una matriz cuadrada, por ejemplo

\begin{align*}
\left( \begin{array}{ccc|ccc}
-3& -1 & 3 & 1 & 0 & 0\\
8 & 3 & 0 & 0 & 1 & 0\\
1 & -5 & 0 & 0 & 0 & 1
\end{array}\right).\end{align*}

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • ¿Cómo se portan las matrices de bloques respecto a la transposición?
  • Escribe todas las formas en las que puedes dividir a la matriz $I_3$ para que quede como una matriz de bloques. Aquí hay algunas: \begin{align*}\left(\begin{array}{c|cc} 1 & 0 & 0 \\ \hline 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), \left(\begin{array}{c|c|c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & 1\end{array}\right), \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right). \end{align*}
  • Demuestra que toda matriz diagonal puede verse como una matriz diagonal por bloques. Muestra que no toda matriz diagonal por bloques es una matriz diagonal.
  • Escribe todas las formas en las que puedes dividir a la matriz $I_4$ para que quede como una matriz diagonal por bloques.
  • ¿Cómo es la inversa de una matriz diagonal por bloques?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

2 comentarios en “Álgebra Lineal I: Matrices de bloques

  1. Laura Jazmín González Rangel

    Hola, sólo una observación. Cuando se indica la forma en que es una matriz diagonal por bloques hay un error en la matriz pues aparece A_{21} y debería ser A_{22}. Saludos. 🙂

    Responder
  2. Tonatiuh

    Un detalle, en la matriz diagonal por bloques del segundo ejemplo cuando no es una matriz cuadrada, el elemento M_{3,1} debería ser 2 en lugar de 0.

    Responder

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.