La entrada anterior definimos a las funciones complejas trigonométricas e hiperbólicas, a través de la exponencial compleja y vimos que tanto las funciones trigonométricas como las funciones hiperbólicas son periódicas, puesto que la función exponencial compleja es $2\pi i $-periódica. Al igual que en el caso real, podemos preguntarnos si es que existen las funciones inversas de estas funciones, por lo que nuestro objetivo en esta entrada será responder esa pregunta y en particular deducir y definir a las funciones inversas de dichas funciones.
Durante esta entrada utilizaremos nuevamente al logaritmo complejo para deducir a las funciones inversas. Es importante recordar, entrada 21, que la función logaritmo complejo es una función multivaluada, por lo que las funciones definidas en esta entrada serán también multivaluadas. Recordemos que aunque esta terminología no cumple con la definición habitual de función, desde que asigna más de un valor a cada elemento del dominio, es importante mencionar que cada una de las ramas de dichas funciones multivaluadas sí cumplen con la definición de función con la que estamos familiarizados. Más aún, cada una de las ramas cumple con muchas de las propiedades que conocemos para sus versiones reales.
Observación 23.1. Como veremos en la entrada 26, la imagen de las funciones $\operatorname{sen}(w)$ y $\operatorname{cos}(w)$ es todo el plano complejo $\mathbb{C}$, por lo que dado $w\in\mathbb{C}$ siempre existirá $z\in\mathbb{C}$ que satisfaga $z = \operatorname{sen}(w)$ ó $z = \operatorname{cos}(w)$.
Sea $z = \operatorname{sen}(w)$. De acuerdo con la definición 22.1 tenemos que: \begin{equation*} z = \operatorname{sen}(w) = \frac{e^{iw} – e^{-iw}}{2i}, \end{equation*}de donde: \begin{equation*} (e^{iw})^2-i2z(e^{iw}) – 1 = 0. \end{equation*}Notemos que esta última expresión es una ecuación cuadrática para la variable $e^{iw}$, por lo que podemos utilizar la fórmula general para resolver dicha ecuación. En este punto es importante que recordemos que la función compleja raíz cuadrada es una función multivaluada, por lo que nos dará dos raíces complejas, entonces: \begin{equation*} e^{iw} = \frac{2iz + \sqrt{4(1-z^2)}}{2} = iz + \sqrt{1-z^2}. \end{equation*}Dependiendo de la rama que consideremos, la función $ \sqrt{1-z^2}$ nos determina dos raíces cuadradas de $1-z^2$. Estableciendo la rama de la función multivaluada $ \sqrt{1-z^2}$ con la que trabajaremos, podemos utilizar la proposición 20.1(6) obteniendo: \begin{equation*} iw = \operatorname{log}\left(iz + \sqrt{1-z^2}\right) + i2k\pi, \quad k\in\mathbb{Z}. \end{equation*}Por lo que, para $k, n\in\mathbb{Z}$: \begin{align*} w &= \frac{1}{i}\operatorname{log}\left(iz + \sqrt{1-z^2}\right) + 2 k\pi\\ &= \frac{1}{i} \left[\operatorname{ln}\left|iz + \sqrt{1-z^2}\right| + i\left(\operatorname{Arg}\left(iz + \sqrt{1-z^2}\right) + 2n\pi\right)\right] + 2 k\pi\\ &= \frac{1}{i} \left[\operatorname{ln}\left|iz + \sqrt{1-z^2}\right| + i\left(\operatorname{Arg}\left(iz + \sqrt{1-z^2}\right) + 2m\pi\right)\right]\\ &= \frac{1}{i} \left[\operatorname{ln}\left|iz + \sqrt{1-z^2}\right| + i\operatorname{arg}\left(iz + \sqrt{1-z^2}\right)\right]\\ &= -i \operatorname{log}\left(iz + \sqrt{1-z^2}\right), \end{align*}donde $m=k+n\in\mathbb{Z}$.
Se deja como ejercicio al lector
Se deja como ejercicio al lector
Sea $z = \operatorname{cot}(w)$. De acuerdo con la definición 22.2 sabemos que: \begin{equation*} \operatorname{cot}(w) = \frac{\operatorname{cos}(w)}{\operatorname{sen}(w)}, \end{equation*}donde $w \neq k \pi$, con $k\in\mathbb{Z}$.
Observación 23.2. Puesto que todas las funciones inversas, de las funciones trigonométricas, están dadas en términos de la función multivaluada logaritmo, entonces también dichas funciones son multivaluadas. Más aún, de acuerdo con la proposición 23.1, debe ser claro que se puede elegir una rama de alguna de estas funciones eligiendo primero una rama de la función multivaluada raíz cuadrada y luego una rama adecuada del logaritmo de modo que la función en cuestión esté bien definida.
Ejemplo 23.1. Supongamos que $z$ es un número real en el intervalo $(-1,1)$. Veamos que si utilizamos las ramas principales de las funciones multivaluadas raíz cuadrada y logaritmo complejo entonces obtenemos la rama principal de la función inversa de la función real seno.
Solución. Sean $z=x+iy\in\mathbb{C}$. Consideremos a la funciones multivaluadas: \begin{equation*} F(z) = \operatorname{log}(z) \quad \text{y} \quad G(z) = \sqrt{1-z^2} = e^{\frac{1}{2} \operatorname{Log}(1-z^2)} e^{ik\pi}, \,\, k=0,1. \end{equation*}
Para la primera función tenemos que su corte de rama está dado por los $z=x+iy\in\mathbb{C}$ tales que: \begin{equation*} -\pi < \operatorname{Arg}(z) \leq \pi \quad \Longleftrightarrow \quad \left\{ \begin{array}{l} \operatorname{Re}(z) = x \leq 0, \\ \\ \operatorname{Im}(z) = y = 0. \end{array} \right. \end{equation*}
De manera análoga, para la segunda función tenemos que su corte de rama está dado por los $z=x+iy\in\mathbb{C}$ tales que: \begin{equation*} \left\{ \begin{array}{l} \operatorname{Re}(1-z^2) = 1-x^2+y^2 \leq 0, \\ \\ \operatorname{Im}(1-z^2) = -2xy = 0. \end{array} \right. \end{equation*}
Como trabajaremos con las ramas principales de ambas funciones y $z=x\in\mathbb{R}$, entonces los cortes de rama de cada función, son respectivamente: \begin{equation*} \left\{x\in\mathbb{R} : x\leq 0\right\} \quad \text{y} \quad \left\{x\in\mathbb{R} : |x|\geq 1\right\}. \end{equation*}
Para $k=0$ tenemos de la segunda función que su rama principal es: \begin{equation*} g_0(z) := \sqrt{1-z^2} = e^{\frac{1}{2} \operatorname{Log}(1-z^2)}. \end{equation*}
Como $|z|=|x|<1$, entonces la función $g_0$ está bien definida, más aún, tenemos que $ 0<1-z^2\leq 1$, por lo que $\operatorname{Arg}(1-z^2) = 0$, entonces: \begin{equation*} \operatorname{Log}(1-z^2) = \operatorname{ln}|1-z^2| + i \operatorname{Arg}(1-z^2) = \operatorname{ln}(1-z^2), \end{equation*}de donde: \begin{equation*} e^{\frac{1}{2} \operatorname{Log}(1-z^2)} = \sqrt{1-x^2} \in \mathbb{R}^+. \end{equation*}
Así, al considerar las ramas principales de ambas funciones tenemos que: \begin{align*} \operatorname{sen}^{-1}(z) & = -i \operatorname{Log}\left(iz +\sqrt{1-z^2}\right)\\ & = -i \operatorname{Log}\left(iz + e^{\frac{1}{2} \operatorname{Log}(1-z^2)}\right)\\ & = -i \operatorname{Log}\left(ix + \sqrt{1-x^2}\right). \end{align*}
Dado que $iz$ es un número imaginario puro, entonces los valores que toma $iz + e^{\frac{1}{2} \operatorname{Log}(1-z^2)}$ están en la mitad derecha del plano complejo, por lo que no están en el corte de rama de la función logaritmo. De hecho, dichos valores están sobre la mitad de la circunferencia unitaria que está en la mitad derecha del plano complejo, figura 83, ya que: \begin{equation*} \left| iz +\sqrt{1-z^2} \right| = \sqrt{x^2+(1-x^2)} = 1. \end{equation*}
donde $-\dfrac{\pi}{2}<\operatorname{Arg}\left(ix + \sqrt{1-x^2}\right)<\dfrac{\pi}{2}$, entonces: \begin{equation*} -\dfrac{\pi}{2}<\operatorname{sen}^{-1}(z)<\dfrac{\pi}{2}, \end{equation*}para los $z=x\in\mathbb{R}$ tales que $|x|<1$.
Ejemplo 23.2. Resolvamos la ecuación $\operatorname{tan}(z)=2$.
Solución. De acuerdo con la proposición 23.1(3), si elegimos la rama principal del logaritmo tenemos que: \begin{align*} \operatorname{tan}^{-1}(2) & = \dfrac{i}{2} \operatorname{log}\left(\dfrac{i+2}{i-2}\right)\\ & = \dfrac{i}{2} \operatorname{log}\left(\dfrac{-3-4i}{5}\right)\\ & = \dfrac{i}{2}\left[ \operatorname{ln}\left|\dfrac{-3-4i}{5}\right| + i \left( \operatorname{Arg}\left(\dfrac{-3-4i}{5}\right) + 2 k\pi \right)\right]\\ & = \dfrac{i}{2}\left[ \operatorname{ln}\left(1\right) + i \left( \operatorname{arctan}\left(\dfrac{4}{3}\right) -\pi + 2 k\pi \right)\right]\\ & = \dfrac{1}{2}\left[ (2 k – 1)\pi – \operatorname{arctan}\left(\dfrac{4}{3}\right) \right], \quad k\in\mathbb{Z}. \end{align*}
Observación 23.3. Dado que las funciones inversas de las funciones trigonométricas complejas son multivaluadas, entonces debemos ser cuidadosos al derivar estas expresiones. En general, una vez establecidas las ramas de las funciones multivaluadas raíz cuadrada y logaritmo, se puede derivar las funciones inversas dentro de su dominio de analicidad mediante la regla de la cadena.
$\dfrac{d}{dz}\operatorname{sen}^{-1}(z) = \dfrac{1}{\sqrt{1-z^2}}$, para $z\neq \pm 1$.
$\dfrac{d}{dz}\operatorname{cos}^{-1}(z) = -\dfrac{1}{\sqrt{1-z^2}}$, para $z\neq \pm 1$.
$\dfrac{d}{dz}\operatorname{tan}^{-1}(z) = \dfrac{1}{1+z^2}$, para $z\neq \pm i$.
$\dfrac{d}{dz}\operatorname{cot}^{-1}(z) = -\dfrac{1}{1+z^2}$, para $z\neq \pm i$.
$\dfrac{d}{dz}\operatorname{sec}^{-1}(z) = \dfrac{1}{z^2\sqrt{1-\frac{1}{z^2}}}$, para $z\neq \pm 1$ y $z\neq 0$.
$\dfrac{d}{dz}\operatorname{csc}^{-1}(z) = – \dfrac{1}{z^2\sqrt{1-\frac{1}{z^2}}}$, para $z\neq \pm 1$ y $z\neq 0$.
Demostración.
Una vez elegida una rama de la función multivaluada $\sqrt{1-z^2}$ y una adecuada rama para la función logaritmo, por la regla de la cadena tenemos que: \begin{align*} \dfrac{d}{dz}\operatorname{sen}^{-1}(z) & = \dfrac{d}{dz} = -i \operatorname{log}\left(iz +\sqrt{1-z^2}\right)\\ & = -i \left(\dfrac{i-\dfrac{z}{\sqrt{1-z^2}}}{iz +\sqrt{1-z^2}}\right)\\ & = -i \left(\dfrac{i\sqrt{1-z^2} – z}{\left[iz +\sqrt{1-z^2}\right] \sqrt{1-z^2}}\right)\\ & = \dfrac{1}{\sqrt{1-z^2}}. \end{align*}Donde la igualdad se mantiene siempre que se utilice la misma rama de $\sqrt{1-z^2}$ tanto en la definición de la función $\operatorname{sen}^{-1}(z)$ como en la expresión de su derivada.
Se deja como ejercicio al lector.
Se deja como ejercicio al lector.
Se deja como ejercicio al lector.
Se deja como ejercicio al lector.
Se deja como ejercicio al lector.
$\blacksquare$
Ejemplo 23.3. Consideremos a las ramas principales de la funciones multivaluadas raíz cuadrada y logaritmo y determinemos el valor de la derivada de la función $\operatorname{sen}^{-1}(z)$ en el punto $z=i$.
Solución. De acuerdo con el ejemplo 23.1, sabemos que los cortes de rama de las ramas principales de las funciones multivaluadas $\operatorname{log}(z)$ y $\sqrt{1-z^2}$ son, respectivamente: \begin{equation*} (-\infty,0]=\left\{z=x+iy\in\mathbb{C} : x \leq 0, y=0\right\} \quad \text{y} \quad A:= \left\{z=x+iy\in\mathbb{C} : |x|\geq 1, y=0\right\}. \end{equation*}
De acuerdo con lo anterior, es claro que el punto $z=i$ no pertenece al corte de rama, de la rama principal de $\sqrt{1-z^2}$. Por otra parte, tenemos que $1-i^2 = 2$, entonces: \begin{equation*} i(i) + \sqrt{1-i^2} = -1+\sqrt{2}, \end{equation*}el cual no es un punto sobre el corte de rama, de la rama principal del logaritmo. Por lo tanto, de la proposición 23.2(1) se sigue que: \begin{align*} \left. \frac{d}{dz} \operatorname{sen}^{-1}(z) \right|_{z=i} & = \left. \dfrac{1}{\sqrt{1-z^2}}\right|_{z=i}\\ & = \dfrac{1}{\sqrt{1-i^2}}\\ & = \dfrac{1}{\sqrt{2}}. \end{align*}
Por último, si utilizamos la rama principal de la función $\sqrt{1-z^2}$ tenemos: \begin{align*} \left. \sqrt{1-z^2} \right|_{z=i} = \left. e^{\frac{1}{2} \operatorname{Log}(1-z^2)} \right|_{z=i} & = e^{\frac{1}{2} \operatorname{Log}(1-i^2)} \\ & = e^{\frac{1}{2} \operatorname{Log}(2)}\\ & = e^{\frac{1}{2}\left[\operatorname{ln}|2| + i \operatorname{Arg}(2)\right]}\\ & = e^{\operatorname{ln}\left(\sqrt{2}\right)}\\ & = \sqrt{2}. \end{align*}
Por lo que la derivada es $\dfrac{1}{\sqrt{2}}$, es decir, el resultado coincide con el valor obtenido al utilizar la fórmula de la derivada.
Ejemplo 23.4. Consideremos ahora el punto $z=\sqrt{5}$. De acuerdo con el ejemplo anterior, es claro que dicho punto está en el corte de rama, de la rama principal de la función multivaluada $\sqrt{1-z^2}$, por lo que utilizando dicha rama no podemos obtener el valor de la función $\operatorname{sen}^{-1}(z)$ ni de su derivada en $z=\sqrt{5}$. Entonces procedemos a elegir una nueva rama para la raíz cuadrada de modo que sea posible determinar dichos valores.
Solución. Por simplicidad elegimos a la rama natural de la raíz, es decir: \begin{equation*} \sqrt{1-z^2} = e^{\frac{1}{2} \operatorname{Log}_{[0,2\pi)}(1-z^2)}, \quad 0 \leq \operatorname{Arg}(1-z^2) < 2\pi. \end{equation*}
El corte de rama de esta función está dado por los $z=x+iy\in\mathbb{C}$ tales que: \begin{align*} 0 \leq \operatorname{Arg}(1-z^2) < 2\pi & \quad \Longleftrightarrow \quad \left\{ \begin{array}{l} \operatorname{Re}(1-z^2) = 1+y^2-x^2 \geq 0, \\ \\ \operatorname{Im}(1-z^2) = -2xy = 0. \end{array} \right.\\ & \\ & \quad \Longleftrightarrow \quad B:= \left\{z=x+iy\in\mathbb{C} : |x|\leq 1, y=0\right\} \cup \left\{z=x+iy\in\mathbb{C} : x=0, y\in\mathbb{R}\right\}. \end{align*}
Para esta rama es claro que el punto $z=\sqrt{5}$ no está en su corte de rama, por tanto podemos utilizarla. Tenemos que $1-(\sqrt{5})^2 = -4$, entonces: \begin{align*} \operatorname{Log}_{[0,2\pi)}(-4) &= \operatorname{ln}|-4| + i\operatorname{Arg}_{[0,2\pi)}(-4)\\ &= \operatorname{ln}(4) + i\pi, \end{align*}por lo que: \begin{align*} \left.\sqrt{1-z^2}\right|_{z=\sqrt{5}} & = \sqrt{1-(\sqrt{5})^2}\\ & = e^{\frac{1}{2} \operatorname{Log}_{[0,2\pi)}(-4)}\\ & = e^{\operatorname{ln}(2)} e^{i\frac{\pi}{2}}\\ &= 2i. \end{align*}
Dado que $i \sqrt{5}+2i = i(2+\sqrt{5})$ no es un punto sobre el corte de rama, de la rama principal del logaritmo, entonces utilizaremos de nuevo dicha rama. Por lo que: \begin{align*} \left.\operatorname{sen}^{-1}(z)\right|_{z=\sqrt{5}} & = \left. – i\operatorname{Log}\left(iz+\sqrt{1-z^2}\right)\right|_{z=\sqrt{5}}\\ & = -i\operatorname{Log}\left(i\left(2+\sqrt{5} \right)\right)\\ & = -i\left[\operatorname{ln}\left|i\left(2+\sqrt{5} \right)\right| + i \operatorname{Arg}\left(i\left(2+\sqrt{5} \right)\right)\right]\\ & = -i\left[\operatorname{ln}\left(2+\sqrt{5}\right) + i \frac{\pi}{2}\right]\\ & = \frac{\pi}{2} -i\operatorname{ln}\left(2+\sqrt{5}\right). \end{align*}
Procediendo de forma completamente análoga que con la proposición 23.1, es posible establecer las expresiones para las funciones inversas de las funciones hiperbólicas, que al estar definidas en términos de la exponencial compleja, también resultan ser funciones multivaluadas.
$\operatorname{tanh}^{-1}(z) = \dfrac{1}{2} \operatorname{log}\left(\dfrac{1+z}{1-z}\right)$, para $z\neq \pm 1$.
$\operatorname{coth}^{-1}(z) = \dfrac{1}{2} \operatorname{log}\left(\dfrac{z+1}{z-1}\right)$, para $z\neq \pm 1$.
$\operatorname{sech}^{-1}(z) = \operatorname{log}\left(\dfrac{1 + z\sqrt{\dfrac{1}{z^2}-1}}{z}\right)$, para $z\neq 0$.
$\operatorname{csch}^{-1}(z) = \operatorname{log}\left(\dfrac{1 + z\sqrt{\dfrac{1}{z^2}+1}}{z}\right)$, para $z\neq 0$.
Demostración.
Se deja como ejercicio al lector.
Sea $z = \operatorname{cosh}(w)$. De acuerdo con la definición 22.3 tenemos que: \begin{equation*} z = \operatorname{cosh}(w) = \frac{e^{w} + e^{-w}}{2}, \end{equation*}de donde: \begin{equation*} (e^{w})^2-2z(e^{w}) + 1 = 0. \end{equation*}Resolvemos la ecuación cuadrática para $e^w$ utilizando la fórmula general, entonces: \begin{equation*} e^{w} = \frac{2z + \sqrt{4(z^2-1)}}{2} = z + \sqrt{z^2-1}, \end{equation*}donde la función multivaluada $\sqrt{z^2-1}$ determina dos raíces complejas de $z^2-1$. Por lo que, una vez establecida la rama de dicha función multivaluada, podemos utilizar la proposición 20.1(6), para $k, n\in\mathbb{Z}$, como sigue: \begin{align*} w &= \operatorname{log}\left(z + \sqrt{z^2-1}\right) + i2k\pi\\ &= \operatorname{ln}\left|z + \sqrt{z^2-1}\right| + i\left(\operatorname{Arg}\left(z + \sqrt{z^2-1}\right) + 2m\pi\right)\\ &= \operatorname{ln}\left|z + \sqrt{z^2-1}\right| + i\operatorname{arg}\left(z + \sqrt{z^2-1}\right)\\ &= \operatorname{log}\left(z + \sqrt{z^2-1}\right), \end{align*}donde $m=k+n\in\mathbb{Z}$.
Se deja como ejercicio al lector.
Se deja como ejercicio al lector.
Se deja como ejercicio al lector.
Se deja como ejercicio al lector.
$\blacksquare$
Ejemplo 23.5. Veamos que $\operatorname{tanh}^{-1}\left(\dfrac{1}{z}\right) = \operatorname{coth}^{-1}\left(z\right)$.
$\dfrac{d}{dz}\operatorname{senh}^{-1}(z) = \dfrac{1}{\sqrt{1+z^2}}$, para $z\neq \pm i$.
$\dfrac{d}{dz}\operatorname{cosh}^{-1}(z) = \dfrac{1}{\sqrt{z^2 – 1}}$, para $z\neq \pm 1$.
$\dfrac{d}{dz}\operatorname{tanh}^{-1}(z) = \dfrac{1}{1-z^2}$, para $z\neq \pm 1$.
$\dfrac{d}{dz}\operatorname{coth}^{-1}(z) = \dfrac{1}{1-z^2}$, para $z\neq \pm 1$.
$\dfrac{d}{dz}\operatorname{sech}^{-1}(z) = -\dfrac{1}{z^2\sqrt{\dfrac{1}{z^2}-1}}$, para $z\neq \pm 1$ y $z\neq 0$.
$\dfrac{d}{dz} \operatorname{csch}^{-1}(z) = – \dfrac{1}{z^2\sqrt{\dfrac{1}{z^2}+1}}$, para $z\neq \pm i$ y $z\neq 0$.
Demostración.
Se deja como ejercicio al lector.
Una vez establecida una rama de la función multivaluada $\sqrt{z^2-1}$ y una adecuada rama para la función logaritmo, procedemos a derivar utilizando la regla de la cadena, entonces: \begin{align*} \dfrac{d}{dz}\operatorname{cosh}^{-1}(z) & = \dfrac{d}{dz} \operatorname{log}\left(z + \sqrt{z^2-1}\right)\\ & = \dfrac{1+\dfrac{z}{\sqrt{z^2-1}}}{z + \sqrt{z^2-1}}\\ & = \dfrac{z +\sqrt{z^2-1}}{\left(z +\sqrt{z^2-1} \,\right) \sqrt{z^2-1}}\\ & = \dfrac{1}{\sqrt{z^2-1}}. \end{align*}Donde la igualdad se mantiene siempre que se utilice la misma rama de $\sqrt{z^2-1}$ tanto en la definición de la función $\operatorname{cosh}^{-1}(z)$ como en la expresión de su derivada.
Se deja como ejercicio al lector.
Se deja como ejercicio al lector.
Se deja como ejercicio al lector.
Se deja como ejercicio al lector.
$\blacksquare$
Ejemplo 23.6. Utilizando la rama natural de la función $\sqrt{z^2-1}$ y la rama principal del logaritmo determinemos: a) $\operatorname{cosh}^{-1}\left(\dfrac{1}{\sqrt{2}}\right)$. b) $\dfrac{d}{dz}\operatorname{cosh}^{-1}\left(\dfrac{1}{\sqrt{2}}\right)$.
¿Es posible determinar los valores de cada inciso si se considera la rama principal de la función $\sqrt{z^2-1}$?
Solución. De acuerdo con el ejercicio 13.15, sabemos que para la función multivaluada $\sqrt{z^2-1}$ los cortes de rama, considerando las ramas principal y natural son, respectivamente: \begin{equation*} \left\{z=x+iy\in\mathbb{C} : |x|\leq 1, y=0\right\} \quad \text{y} \quad \left\{z=x+iy\in\mathbb{C} : |x|\geq 1, y=0\right\}. \end{equation*}
Dado que $z=\dfrac{1}{\sqrt{2}}$ y $|z|<1$, entonces dicho punto está sobre el corte de rama, de la rama principal de la función $\sqrt{z^2-1}$, por tanto no podemos utilizar dicha rama para determinar los valores que nos pide cada inciso.
Por otra parte, es claro que $z=\dfrac{1}{\sqrt{2}}$ no está sobre el corte de rama, de la rama natural de la función $\sqrt{z^2-1}$, entonces: \begin{equation*} \sqrt{1-z^2} = e^{\frac{1}{2} \operatorname{Log}_{[0,2\pi)}(z^2-1)}, \quad 0 \leq \operatorname{Arg}(z^2-1) < 2\pi. \end{equation*}
Dado que $\dfrac{1}{\sqrt{2}} + i\dfrac{1}{\sqrt{2}} = \dfrac{1}{\sqrt{2}}\left(1+i\right)$ no es un punto sobre el corte de rama, de la rama principal del logaritmo, entonces utilizaremos de nuevo dicha rama. Por lo que: \begin{align*} \left.\operatorname{cosh}^{-1}(z)\right|_{z=\frac{1}{\sqrt{2}}} & = \left. \operatorname{Log}\left(z+\sqrt{z^2-1}\right)\right|_{z=\frac{1}{\sqrt{2}}}\\ & =\operatorname{Log}\left( \dfrac{1}{\sqrt{2}}\left(1+i\right)\right)\\ & =\operatorname{ln}\left| \dfrac{1}{\sqrt{2}}\left(1+i\right)\right| + i \operatorname{Arg}\left( \dfrac{1}{\sqrt{2}}\left(1+i\right)\right)\\ & = \operatorname{ln}\left(1\right) + i \frac{\pi}{4}\\ & = i\frac{\pi}{4}. \end{align*}
Completa las demostraciones de las proposiciones de esta entrada.
Sean $w=\operatorname{cos}(z)$ y $\zeta = e^{iz}$. Muestra que: \begin{align*} \zeta & = w+\sqrt{w^2-1},\\ \operatorname{cos}^{-1}(w) & = -i\operatorname{log}\left(w\pm \sqrt{w^2-1}\right). \end{align*}
Muestra que los puntos de ramificación de la función multivaluada $\operatorname{sen}^{-1}(z)$ son $z=\pm 1$.
Demuestra que si $a\in\mathbb{R}$ y $a>1$, entonces: \begin{equation*} \operatorname{tanh}^{-1}(a) = \operatorname{Log}\sqrt{\frac{a+1}{a-1}} + i \frac{2k+1}{2} \pi, \quad k\in\mathbb{Z}. \end{equation*}
Muestra que si se usa la misma rama de la función $\sqrt{1-z^2}$ en la definición de las funciones multivaluadas $\operatorname{sen}^{-1}(z)$ y $\operatorname{cos}^{-1}(z)$, proposición 23.1, entonces: a) $\operatorname{sen}^{-1}(z) + \operatorname{cos}^{-1}(z) = 2k\pi +\frac{\pi}{2}, \,\, k\in\mathbb{Z}$. b) $\operatorname{tan}^{-1}(z) + \operatorname{cot}^{-1}(z) = k\pi -\frac{\pi}{2}, \,\, k\in\mathbb{Z}$.
Resuelve las siguientes ecuaciones: a) $\operatorname{senh}(5z+i) = -\sqrt{3} i$. b) $\operatorname{tanh}\left(\frac{z-3}{2}\right) = -1+ i$. c) $\operatorname{cot}(z) = 2i$. d) $\operatorname{cosh}^2(z) = -1$.
Prueba que: \begin{equation*} \operatorname{tanh}^{-1}\left(e^{i\theta}\right) = \frac{1}{2} \operatorname{log}\left(i \operatorname{cot}\left(\frac{\theta}{2}\right)\right). \end{equation*}Determina una expresión similar para $\operatorname{tan}^{-1}\left(e^{i\theta}\right)$.
Demuestra que: \begin{equation*} \operatorname{tan}\left(i \operatorname{log}\left(\frac{a-ib}{a+ib}\right)\right) = \frac{2ab}{a^2 – b^2}. \end{equation*}Hint: sustituye $z$ por $\dfrac{2ab}{a^2 – b^2}$ en la definición de $\operatorname{tan}^{-1}(z)$.
Determina los puntos de ramificación de las siguientes funciones: a) $\operatorname{cos}^{-1}(z)$. b) $\operatorname{tan}^{-1}(z^2+2z+1)$.
Más adelante…
En esta entrada hemos abordado de manera general las definiciones de las funciones inversas de las funciones trigonométricas e hiperbólicas. Vimos que estas funciones resultan ser funciones multivaluadas, por lo que es importante recordar los conceptos de la entrada 13 referentes a este tipo de funciones, como los conceptos de rama de una función multivaluada, corte de rama y puntos de ramificación, ya que a través de estos conceptos es posible determinar de manera clara los dominios de analicidad de dichas funciones. Así mismo, vimos que una vez definida una rama de alguna de estas funciones inversas, es posible determinar su derivada a través de la regla de la cadena.
La siguiente entrada abordaremos el concepto de transformación, que como hemos visto en nuestros cursos de Geometría y Álgebra Lineal resulta ser una herramienta muy útil para el estudio de funciones de varias variables, en este caso para las funciones complejas, ya que a través de dicho concepto podremos dar una interpretación geométrica del comportamiento de las funciones complejas.
A lo largo de nuestros cursos hemos trabajado con el concepto de función. Intuitivamente entendemos a una función como una regla que asocia elementos entre dos conjuntos, con la condición de que a cada elemento del primer conjunto se le asigne uno y solo uno del segundo conjunto.
Para el caso complejo el concepto de función que conocemos no es una excepción, sin embargo resulta necesario introducir un nuevo concepto referente a funciones que «asignan más de un valor» a un mismo número complejo, las funciones multivaluadas. En el sentido estricto de la palabra es claro que esta idea de función carece de sentido pues rompe con la definición de lo que entendemos por función, pero para las funciones complejas esta idea resulta algo necesario al abordar el concepto de función inversa. Nuestro objetivo en esta entrada será definir esta nueva idea de «función», la cual nos permitirá ver que los conceptos de función inversa y función multivaluada están estrechamente ligados.
Observación 13.1. Recordemos que para un número complejo $z\neq 0$, tal que $z=r\operatorname{cis}(\theta)$, con $r=|\,z\,|$ y $\theta = \operatorname{arg} z$, sus $n$-raíces complejas están dadas por: \begin{equation*} w_k = \sqrt[n]{r} \left[\operatorname{cos}\left(\frac{\theta + 2k\pi}{n}\right) + i \operatorname{sen}\left( \frac{\theta + 2k\pi}{n} \right)\right], \end{equation*} donde $k=0, 1,\ldots, n-1$.
Para motivar una definición de función multivaluada consideremos el siguiente:
Ejemplo 13.1. De acuerdo con la observación 4.8 (entrada 4 de la primera unidad) sabemos que para $n\in\mathbb{N}^+$ la expresión $z^{1/n}$ es $n$-valuada. Si consideramos a la función $w= g(z) = z^{1/3}$, con $z\neq 0$, entonces está función es $3$-valuada, es decir, para cada valor de $z$ existen tres valores distintos de $w$ que satisfacen la ecuación $z=w^3$. Por ejemplo, para la ecuación $w^3 = 1$, si consideramos el argumento principal de $z=1$, es decir $\operatorname{Arg} z = 0$, tenemos que: \begin{align*} w_0 = 1,\\ w_1 = \frac{-1 + i\sqrt{3}}{2},\\ w_2 = \frac{-1 – i\sqrt{3}}{2}, \end{align*} son las 3 raíces cúbicas de la unidad, es decir las soluciones de la ecuación. Entonces, para $z=1$ la función $g(z) = z^{1/3}$, asigna los valores $w_0, w_1$ y $w_2$ dados.
Notemos que si consideramos a las funciones $f(z)=z^3$ y $g(z) = z^{1/3}$, entonces $g$ no puede ser la inversa de $f$ desde que $f$ no es inyectiva pues claramente $f(w_0) = 1 = f(w_1)$, pero $w_0 \neq w_1$.
Debe ser claro que en general las funciones de la forma $f(z)=z^{1/n}$, con $n\in\mathbb{N}^+$, asignan más de un valor para cada número complejo $z\neq 0$, por lo que en el sentido estricto dichas reglas de asignación no representan a una función, sino a un conjunto de funciones. Podemos visualizar este hecho en el siguiente Applet de GeoGebra https://www.geogebra.org/m/mqwkd66u.
Definición 13.1. (Función univaluada y función multivaluada.) Sea $U\subset\mathbb{C}$ un conjunto abierto y $f:U \to \mathbb{C}$ una función. Diremos que $f$ es una función univaluada o simplemente una función compleja si para cada $z\in U$ existe un único $w\in \mathbb{C}$ tal que $f(z) = w$. En caso contrario diremos que $f$ es una función multivaluada.
Observación 13.2. Para representar a una función multivaluada usaremos como notación letras mayúsculas, mientras que para referirnos a funciones univaluadas utilizaremos letras minúsculas, así por ejemplo, para $n\in\mathbb{N}^+$, la función $F(z) = z^{1/n}$ es multivaluada, mientras que la función $f(z) = 3z+1$ es univaluada.
Definición 13.2. (Rama de una función multivaluada.) Sea $F(z)$ una función multivaluada definida en un dominio $D\subset\mathbb{C}$. Diremos que $f(z)$ es una rama de $F(z)$ en $D$ si:
$f$ está bien definida en $D$, es decir $f$ es una función univaluada.
$f(z)$ es uno de los posibles valores de $F(z)$ para cada $z\in D$.
$f$ es continua en $D$.
Observación 13.3. Cuando representemos ramas de una función multivaluada $F$ utilizaremos subíndices en la notación de función univaluada, por ejemplo $f_0, f_1, f_2, \ldots$.
Observación 13.4. El concepto de dominio en la definición anterior corresponde con el de una región en el plano complejo $\mathbb{C}$, es decir, un conjunto abierto y conexo.
Observación 13.5. Aunque en esta entrada no abordaremos formalmente el concepto de continuidad de una función compleja, utilizamos esta propiedad fuertemente en la definición de una rama de una función multivaluada, ya que en ocasiones el dominio de una función multivaluada no corresponderá con el dominio de una rama puesto que puede suceder que la función univaluada no sea continua en dicho conjunto, como veremos en los ejemplos 13.2 y 13.4. Para mayor detalle sobre el concepto de continuidad se puede consultar la entrada 15 de esta unidad.
Ejemplo 13.2. En la definición 4.1, de la entrada 4, se específico que la notación usada para referirnos al argumento de un número complejo, es decir $\operatorname{arg} z$, no representa a una función de $z$, ya que dicha notación describe a un conjunto de números reales $\theta$ que satisfacen las ecuaciones: \begin{equation*} \text{sen}(\theta) = \frac{\text{Re}(z)}{|\, z \,|}, \quad \text{cos}(\theta) = \frac{\text{Im}(z)}{|\, z \,|}. \tag{13.1} \end{equation*}
Considerando el concepto de función multivaluada podemos hablar de la función $F(z) = \operatorname{arg}(z)$, la cual asignará a cada número complejo $z\neq 0$ una infinidad de argumentos que satisfacen las ecuaciones (13.1), ya que para cada $n\in\mathbb{Z}$, si $\theta\in\mathbb{R}$ satisface las ecuaciones (13.1), entonces $\theta + 2\pi n$ también lo hará.
Si fijamos un valor de $k\in\mathbb{Z}$, obtenemos una función univaluda que comunmente es llamada «rama» de la función $F(z)= \operatorname{arg}(z)$. Es importante hacer énfasis aquí en el hecho de que esta «rama» no es necesariamente una rama en el sentido estricto de la palabra, es decir de acuerdo con la definición 13.2, pues como veremos en el ejemplo 15.6 de la entrada 15, la función argumento es continua en el dominio $\mathbb{C}\setminus\left(-\infty,0\right]$, mientras que la función multivaluada $F(z)= \operatorname{arg}(z)$ está definida en el dominio $\mathbb{C}\setminus\{0\}$.
Es claro que existen infinitas ramas, en particular, si elegimos el valor $k = 0$, obtenemos la rama que denominamos la rama principal, que corresponde con el argumento principal de un número complejo $z\neq 0$, es decir $\operatorname{Arg} z \in (-\pi, \pi]$.
Notemos que tanto la función multivaluada $F(z) = \operatorname{arg}(z)$ como la función univaluada $f(z) = \operatorname{Arg}(z)$ están definidas en $\mathbb{C}\setminus\{0\}$ y toman valores en intervalos reales de la forma $\left((2n-1)\pi, (2n+1)\pi\right]$, con $n\in\mathbb{Z}$, por lo que su gráfica tiene lugar en $\mathbb{R}^3$. Podemos visualizar estas gráficas en el siguiente Applet de GeoGebra: https://www.geogebra.org/m/cwt5ctuf.
Procedemos a deducir una nueva expresión para obtener el argumento principal de un número complejo que nos será de utilidad más adelante.
Supongamos que $z\in \mathbb{R}^{-}$, entonces: \begin{equation*} z = -|\,z\,| = |\,z\,| \left[\operatorname{cos}(\pi) + i \operatorname{sen}(\pi)\right] = |\,z\,| \operatorname{cis}(\pi), \end{equation*} por lo que $\operatorname{Arg}(z) = \pi \in \operatorname{arg} z$ y claramente $\pi \in (-\pi,\pi]$.
de donde: \begin{equation*} \tan\left(\frac{\theta_0}{2}\right) = \dfrac{b}{1 + a}. \end{equation*}
Recordemos que se cumplen las siguientes identidades trigonométricas: \begin{equation*} \tan\left(\frac{\theta_0}{2}\right) = \dfrac{\operatorname{sen}(\theta_0)}{1 + \operatorname{cos}(\theta_0)}, \quad \tan^2\left(\frac{\theta_0}{2}\right) = \dfrac{1 – \operatorname{cos}(\theta_0)}{1 + \operatorname{cos}(\theta_0)}, \quad \tan\left(\frac{\theta_0}{2}\right) = \dfrac{2 \operatorname{tan}\left(\frac{\theta_0}{2}\right)}{1 – \tan^2\left(\frac{\theta_0}{2}\right)}, \end{equation*} por lo que: \begin{equation*} \operatorname{sen}(\theta_0) = \dfrac{2 \operatorname{tan}\left(\frac{\theta_0}{2}\right)}{1 + \tan^2\left(\frac{\theta_0}{2}\right)} = b, \end{equation*} \begin{equation*} \operatorname{cos}(\theta_0) = \dfrac{1 – \tan^2\left(\frac{\theta_0}{2}\right)}{1 + \tan^2\left(\frac{\theta_0}{2}\right)} = a. \end{equation*}
Más aún, dado que $z\neq 0$ y $z\not\in \mathbb{R}^{-}$, es decir $z\not\in (-\infty, 0] = \left\{z = x+iy : x\leq 0, y =0\right\}$, para $z=x+iy$ se cumple que $x>0$ ó $y\neq 0$, por lo que $|\,z\,| + x >0$, entonces: \begin{equation*} \operatorname{arc tan}\left(\dfrac{y}{|\,z\,| + x}\right) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \end{equation*} de donde $\theta_0 \in (-\pi, \pi)$ y: \begin{equation*} z = |\,z\,| \left[\operatorname{cos}(\theta_0) + i \operatorname{sen}(\theta_0)\right] = |\,z\,| \operatorname{cis}(\theta_0). \end{equation*} Por lo tanto, $\theta_0 = \operatorname{Arg}(z)$.
$\blacksquare$
Observación 13.6. De acuerdo con los resultados de la entrada 4, Unidad I, sabemos que para $z_1,z_2\in\mathbb{C}\setminus\{0\}$, se cumple que: \begin{equation*} \operatorname{arg} z_1 z_2 = \operatorname{arg} z_1 + \operatorname{arg} z_2 = \operatorname{Arg} z_1 + \operatorname{Arg} z_2 + 2\pi n, \quad n\in\mathbb{Z}, \end{equation*} \begin{equation*} \operatorname{arg} \frac{z_1}{z_2} = \operatorname{arg} z_1 – \operatorname{arg} z_2 = \operatorname{Arg} z_1 – \operatorname{Arg} z_2 + 2\pi n, \quad n\in\mathbb{Z}, \end{equation*} \begin{equation*} \operatorname{arg} z_1^k = k \operatorname{arg} z_1 = k \operatorname{Arg} z_1 + 2\pi n, \quad k, n\in\mathbb{Z}, \end{equation*} donde $\operatorname{Arg} z \in (-\pi, \pi]$.
Es importante recordar que estas igualdades son entre conjuntos. Sin embargo, considerando la definición de función multivaluada es claro que estas propiedades se heredan a la función multivaluada $G(z) = \operatorname{arg}(z)$, para $z\neq 0$.
Más aún, de nuestros cursos de Cálculo sabemos que la función $f(x) = [x]$, llamada parte entera, determina el mayor entero menor o igual a $x$. Para $x\in\mathbb{R}$ y $n\in\mathbb{Z}$ dicha función cumple que: \begin{equation*} [x] = n \quad \Longleftrightarrow \quad x-1 < n \leq x \quad \Longleftrightarrow \quad n \leq x < n+1. \end{equation*}
Notemos que mediante esta función podemos obtener una expresión para determinar el argumento principal de un número complejo a través de cualquier elemento del conjunto de argumentos, es decir, para $z\in\mathbb{C}$, con $z\neq 0$, sabemos que: \begin{equation*} \operatorname{arg} z = \operatorname{Arg} z + 2\pi k, \quad k\in\mathbb{Z}, \end{equation*} de donde: \begin{equation*} \operatorname{Arg} z = \operatorname{arg} z + 2\pi n, \quad n=-k\in\mathbb{Z}. \end{equation*}
Puesto que $\operatorname{Arg} z \in (-\pi, \pi]$, entonces: \begin{equation*} -\pi < \operatorname{arg} z + 2\pi n \leq \pi \quad \Longleftrightarrow \quad \frac{1}{2} – \frac{\operatorname{arg} z}{2\pi} – 1 < n \leq \frac{1}{2} – \frac{\operatorname{arg} z}{2\pi}, \end{equation*} es decir: \begin{equation*} \operatorname{Arg} z = \operatorname{arg} z + 2\pi \left[ \frac{1}{2} – \frac{\operatorname{arg} z}{2\pi}\right], \end{equation*} donde $[\,x\,]$ corresponde con la función parte entera y $\operatorname{arg} z$ es un argumento $\theta$ cualquiera que satisface (13.1).
De acuerdo con observación anterior, no es difícil verificar que la función argumento principal definida antes, satisface las siguientes propiedades.
Para todo $n\in\mathbb{Z}$ se cumple que: \begin{equation*} \operatorname{Arg}\left(z_1^n\right) = n\, \operatorname{Arg}\left(z_1\right) + 2\pi N_{n}, \end{equation*} donde $N_n$ es un número entero dado por: \begin{equation*} N_n = \left[ \frac{1}{2} – \frac{n}{2\pi}\operatorname{Arg}(z_1)\right], \end{equation*} con $[\, x \,]$ la función parte entera de $x$.
Demostración. Sean $z_1, z_2 \in \mathbb{C}\setminus\{0\}$.
Sean $\theta_1 = \operatorname{Arg}(z_1)$ y $\theta_1 = \operatorname{Arg}(z_2)$, entonces $\theta_1, \theta_2 \in (-\pi, \pi]$, por lo que: \begin{equation*} -2\pi < \theta_1 + \theta_2 \leq 2\pi \quad \Longleftrightarrow \quad -2\pi \leq -\left(\theta_1 + \theta_2\right) < 2\pi. \end{equation*} De acuerdo con la observación 13.6 es claro que: \begin{equation*} \operatorname{Arg}(z_1 z_2) = \theta_1 + \theta_2 + 2\pi N_{+}, \end{equation*} donde $N_{+} = \left[ \dfrac{1}{2} – \dfrac{\theta_1 + \theta_2}{2\pi}\right] \in \mathbb{Z}$.
Entonces: \begin{equation*} -\dfrac{1}{2} – \frac{2\pi}{2\pi} \leq -\dfrac{1}{2} – \dfrac{\theta_1 + \theta_2}{2\pi} < N_{+} \leq \dfrac{1}{2} – \dfrac{\theta_1 + \theta_2}{2\pi} < \dfrac{1}{2} + \dfrac{2\pi}{2\pi}, \end{equation*} es decir $-\dfrac{3}{2} < N_{+} < \dfrac{3}{2}$, por lo que $N_{+} \in \left\{-1, 0, 1\right\}$.
Dado que $ \operatorname{Arg}(z_1 z_2) \in (-\pi, \pi]$, entonces: \begin{equation*} -\pi < \theta_1 + \theta_2 +2\pi N_{+} \leq \pi. \end{equation*} Si $ -2\pi < \theta_1 + \theta_2 \leq -\pi$, entonces $N_{+} = 1$. Mientras que si $ \pi < \theta_1 + \theta_2 \leq 2\pi$, entonces $N_{+} = -1$.
Se deja como ejercicio al lector.
Se deja como ejercicio al lector.
Se sigue de la observación 13.6.
$\blacksquare$
Ejemplo 13.3. Sean $z_1 = i$ y $z_2 = -1$. Calcular:
a) $\operatorname{Arg}(z_1 z_2)$.
Solución. Tenemos que $z_1 z_2 = -i$, por lo que $\operatorname{Arg}\left(z_1 z_2\right) = -\dfrac{\pi}{2}$.
Por otra parte, tenemos que $\operatorname{Arg}\left(z_1\right) = \dfrac{\pi}{2}$ y $\operatorname{Arg}\left(z_2\right) = \pi$, por lo que: \begin{equation*} \operatorname{Arg}\left(z_1\right) + \operatorname{Arg}\left(z_2\right) = \dfrac{\pi}{2} + \pi = \frac{3\pi}{2}. \end{equation*} De acuerdo con la propiedad 1, como $\operatorname{Arg}\left(z_1\right) + \operatorname{Arg}\left(z_2\right) > \pi$, entonces: \begin{equation*} \operatorname{Arg}(z_1 z_2) = -\frac{\pi}{2} = \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2) -2\pi. \end{equation*} b) $\operatorname{Arg}\left(z_2^{-1}\right)$.
Solución. Como $\operatorname{Im}(z_2) = 0$ y $z_2\neq 0$, entonces por la propiedad 3 tenemos que: \begin{equation*} \operatorname{Arg}\left(z_2^{-1}\right) = \operatorname{Arg}(z_2) = \pi. \end{equation*} c) $\operatorname{Arg}(z_1^2)$.
Observación 13.7. De nuestros cursos de Cálculo sabemos que las funciones reales seno y coseno son continuas en $\mathbb{R}$ y que para todo $x\in\mathbb{R}$ se cumple que: \begin{equation*} -1 \leq \operatorname{sen}(x) \leq 1 \quad \text{y} \quad -1 \leq \operatorname{cos}(x) \leq 1. \end{equation*}
Por lo que, si $r,s \in [-1,1]$, entonces existen $x,y\in\mathbb{R}$ tales que: \begin{equation*} \operatorname{sen}(y) = s \quad \text{y} \quad \operatorname{cos}(x) = r. \end{equation*}
Si imponemos la condición $r^2 + s^2 = 1$, es decir que $(r,s)$ cae en la circunferencia unitaria de $\mathbb{R}^2$, entonces se cumple que: \begin{equation*} \operatorname{sen}(y) = \pm \operatorname{sen}(x) = \operatorname{sen}\left(\pm x\right). \end{equation*}
Dado que $\operatorname{cos}\left( \pm x\right) = \operatorname{cos}(x)$, entonces existe $\theta\in\mathbb{R}$ tal que: \begin{equation*} s = \operatorname{sen}\left(\theta\right) \quad \text{y} \quad r = \operatorname{cos}\left(\theta\right). \end{equation*}
De las observaciones 13.7 y 13.8 tenemos que si $r,s\in\mathbb{R}$, con $r^2+s^2 = 1$, entonces dado $\alpha\in\mathbb{R}$ existe $\theta \in [\alpha, \alpha+2\pi)$ tal que: \begin{equation*} s = \operatorname{sen}\left(\theta\right) \quad \text{y} \quad r = \operatorname{cos}\left(\theta\right). \end{equation*}
Notemos que dicho $\theta$ es único. Supongamos que existen $\theta, \theta’ \in [\alpha, \alpha+2\pi)$ tales que: \begin{equation*} \operatorname{sen}\left(\theta\right) = s = \operatorname{sen}\left(\theta’\right) \quad \text{y} \quad \operatorname{cos}\left(\theta\right) = r = \operatorname{cos}\left(\theta’\right), \end{equation*} entonces $\operatorname{cos}(\theta-\theta’) = \operatorname{sen}^2\left(\theta\right) + \operatorname{cos}^2\left(\theta\right) = 1$, pero lo anterior solo es posible si y solo si $\theta – \theta’ = 2k\pi$ para algún $k\in\mathbb{Z}$.
Puesto que $\theta, \theta’ \in [\alpha, \alpha+2\pi)$ y $\theta = \theta’ + 2k\pi$, para algún $k\in\mathbb{Z}$, entonces $k = 0$ y por tanto $\theta = \theta’$.
Más aún, dado que para todo $\alpha\in\mathbb{R}$ se cumple que: \begin{equation*} \operatorname{sen}(\alpha + 2\pi) = \operatorname{sen}(\alpha) \quad \text{y} \quad \operatorname{cos}(\alpha + 2\pi) = \operatorname{cos}(\alpha), \end{equation*} entonces existe un único $\theta’ \in (\alpha, \alpha + 2\pi]$ tal que: \begin{equation*} s = \operatorname{sen}\left(\theta’\right) \quad \text{y} \quad r = \operatorname{cos}\left(\theta’\right). \end{equation*}
Considerando lo anterior, podemos definir una rama arbitraria de la función multivaluada $F(z) = \operatorname{arg}(z)$.
Definición 13.4. (Rama del argumento en un intervalo $I$.) Sean $\alpha\in\mathbb{R}$, $z\in\mathbb{C}\setminus\{0\}$ y sea $I\subset\mathbb{R}$ un intervalo semiabierto de longitud $2\pi$, es decir de la forma $[\alpha, \alpha + 2\pi)$ ó $(\alpha, \alpha + 2\pi]$. Al único número real $\theta\in I$ tal que: \begin{equation*} \text{sen}(\theta) = \frac{\text{Re}(z)}{|\, z \,|} \quad \text{y} \quad \text{cos}(\theta) = \frac{\text{Im}(z)}{|\, z \,|}, \end{equation*} lo llamaremos el argumento de $z$ en $I$ y lo denotaremos como $\operatorname{Arg}_{I} z$.
La utilidad de la definición 13.4 la veremos cuando definamos al logaritmo complejo, pues en ocasiones el trabajar con ramas distintas de la principal nos permitirá hablar de ciertas funciones en las que tengamos que estudiar algunas de sus propiedades como la continuidad y la analicidad.
Considerando la definición 13.4, es posible definir a la función $\operatorname{Arg}_{I}: \mathbb{C}\setminus\{0\} \to I$ como $\operatorname{Arg}_{I}(z) = $ el único valor de $\operatorname{arg} z$ que pertenece a $I$.
Observación 13.9. En general la función $\operatorname{Arg}_{I}(z)$ será una rama, de acuerdo con la definición 13.2, siempre que se defina sobre el dominio $\mathbb{C}\setminus L\alpha$, con $L_\alpha = \{r\operatorname{cis}(\alpha) : r\geq 0\}$, figura 60, es decir todo el plano complejo menos la semirrecta que parte desde el origen y que forma un ángulo $\alpha$ con respecto al eje real positivo, pues en dicha semirrecta la función no es continua, como veremos en el ejemplo 15.6 de la entrada 15.
Observación 13.10. Notemos que si $\alpha=-\pi$ e $I = (\alpha, \alpha + 2\pi]$, entonces para $z\neq 0$ se cumple que $\operatorname{Arg}(z) = \operatorname{Arg}_{(-\pi, \pi]}(z)$, es decir obtenemos la rama principal o el argumento principal. Mientras que si consideramos a $\alpha=0$ e $I = [\alpha, \alpha + 2\pi)$, entonces para $z\neq 0$ obtenemos $\operatorname{Arg}_{[0, 2\pi)}(z)$ que suele llamarse el argumento natural de $z$.
Podemos deducir que el argumento principal y el argumento natural de un número complejo $z\neq 0$ están relacionados como sigue: \begin{equation*} \operatorname{Arg}(z) = \left\{ \begin{array}{lcc} \operatorname{Arg}_{[0, 2\pi)}(z) & \text{si} & 0 \leq \operatorname{Arg}_{[0, 2\pi)}(z) \leq \pi, \\ \operatorname{Arg}_{[0, 2\pi)}(z) – 2\pi & \text{si} & \pi < \operatorname{Arg}_{[0, 2\pi)}(z) < 2 \pi. \end{array} \right. \end{equation*} \begin{equation*} \operatorname{Arg}_{[0, 2\pi)}(z) = \left\{ \begin{array}{lcc} \operatorname{Arg}(z) & \text{si} & 0 \leq \operatorname{Arg}(z) \leq \pi, \\ \operatorname{Arg}(z) + 2\pi & \text{si} & -\pi < \operatorname{Arg}(z) < 0. \end{array} \right. \end{equation*}
Gráficamente podemos ver dónde toman valores el argumento principal y el argumento natural de un número complejo $z\neq 0$, figura 61.
Ejemplo 13.4. Si consideramos $\alpha=-\pi$ e $I = (\alpha, \alpha + 2\pi]$, entonces para $z=-1-i$ tenemos que: \begin{equation*} \operatorname{Arg}_{(-\pi, \pi]}(z) = -\frac{3\pi}{4}. \end{equation*}
Por otra parte si consideramos $\alpha=0$ e $I = [\alpha, \alpha + 2\pi)$, entonces para $z=-1-i$ tenemos que: \begin{equation*} \quad \operatorname{Arg}_{[0, 2\pi)}(z) = \frac{5\pi}{4}. \end{equation*}
Procedemos a establecer un resultado que relacione a la función $\operatorname{Arg}_{I}(z)$ con las funciones $\operatorname{Arg}(z)$ y $\operatorname{Arg}{[0, 2\pi)}(z)$.
Proposición 13.3. Sean $z\neq 0$, $\alpha\in\mathbb{R}$ y sea $I\subset\mathbb{R}$ un intervalo semiabierto de longitud $2\pi$, es decir de la forma $[\alpha, \alpha + 2\pi)$ ó $(\alpha, \alpha + 2\pi]$.
por lo que: \begin{align*} \operatorname{Arg}_{\left(\frac{3\pi}{2}, \frac{7\pi}{2}\right]}(i) & = \operatorname{Arg}\left(- i \operatorname{cis} \left(-\frac{3\pi}{2}\right)\right) + \frac{3\pi}{2} + \pi\\ & = \operatorname{Arg}\left(1\right) + \frac{5\pi}{2}\\ & = 0 + \frac{5\pi}{2}\\ & = \frac{5\pi}{2}. \end{align*}
Observación 13.11. En el caso real para garantizar la existencia de la inversa de la función $f(x) = x^2$, bastaba con restringir el dominio de $f$ al intervalo $[0, \infty )$. Sin embargo, dado que en $\mathbb{C}$ el orden inducido en $\mathbb{R}$, bajo la relación «$>0$», no es válido y considerando el hecho de que nuestro candidato para ser la inversa de la función $f(z) = z^2$, es decir la función $F(z) = z^{1/2}$ es una función multivaluada, entonces para el caso complejo debemos ser aún más minuciosos en la elección del dominio al que debemos restringir a la función $f(z) = z^2$ para que sea inyectiva y por tanto invertible.
Ejemplo 13.7. En el ejemplo 12.7(a) vimos que la función compleja $f(z) = z^2$ no es inyectiva, por lo que no es biyectiva y de acuerdo con la definición 12.4 no podemos hablar de su función inversa. Veamos que si restringimos el dominio de esta función es posible garantizar que $f$ es inyectiva.
Solución. De acuerdo con la observación 13.1 tenemos que para $n=2$ y $z\neq 0$, la función $f(z) = z^2$ tiene dos raíces, las cuales están dadas por: \begin{equation*} w_k = \sqrt{r} \left[\operatorname{cos}\left(\frac{\theta + 2k\pi}{2}\right) + i \operatorname{sen}\left( \frac{\theta + 2k\pi}{2} \right)\right], \tag{13.2} \end{equation*} donde $k=0, 1$.
Definimos el siguiente dominio: \begin{equation*} D= \left\{z\in\mathbb{C} : -\frac{\pi}{2} < \operatorname{arg} z \leq \frac{\pi}{2}\right\}. \tag{13.3} \end{equation*}
Veamos que $f$ es inyectiva en $D$. Sean $z_1, z_2 \in D$, con $z_1 = r_1 \operatorname{cis}(\theta_1)$ y $z_2 = r_2 \operatorname{cis}(\theta_2)$ ambos distintos de cero, entonces $\theta_1, \theta_2 \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
Supongamos que $f(z_1) = f(z_2)$, entonces por la fórmula de De Moivre tenemos que: \begin{equation*} r_1^2 \operatorname{cis}(2\theta_1) = r_2^2 \operatorname{cis}(2\theta_2), \end{equation*} de donde es claro que los números complejos $z_1^2$ y $z_2^2$ tienen el mismo módulo y el mismo argumento principal, es decir: \begin{equation*} r_1^2=r_2^2 \quad \text{y} \quad \operatorname{Arg} z_1^2 = \operatorname{Arg} z_2^2. \end{equation*}
Dado que $r_1, r_2>0$, entonces $r_1 = r_2$. Por otra parte, como $\theta_1, \theta_2 \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right]$, entonces: \begin{equation*} -\pi < 2\theta_1 \leq \pi \quad \text{y} \quad -\pi < 2\theta_2 \leq \pi, \end{equation*} por lo que $\operatorname{Arg} z_1^2 = 2\theta_1$ y $\operatorname{Arg} z_2^2 = 2\theta_2$, es decir $2\theta_1 = 2\theta_2$, entonces $\theta_1 = \theta_2$. Por lo tanto, como $z_1$ y $z_2$ tienen el mismo módulo y el mismo argumento principal, concluimos que $z_1 = z_2$.
Así, $f$ restringida al dominio $D$, dado en (13.3), es inyectiva.
En general, para la función compleja $f(z) = z^n$, con $n\geq 2$, el planteamiento dado en este último ejemplo puede utilizarse para garantizar que dicha función es inyectiva, solo habría que modificar el dominio dado en (13.3) por: \begin{equation*} D_n = \left\{z\in\mathbb{C} : -\frac{\pi}{n} < \operatorname{arg} z \leq \frac{\pi}{n}\right\}. \tag{13.4} \end{equation*}
Observación 13.12. No es difícil verificar que el dominio dado por (13.4) es mapeado bajo la función $f(z) = z^n$ en el conjunto $\mathbb{C}\setminus\{0\}$, para más detalle de este hecho se puede consultar la entrada 26 de esta unidad.
Notemos que si hacemos $k=0$ y $\theta = \operatorname{Arg}(z)$ en (13.2), entonces obtenemos una función que a cada $z\neq 0$ asigna únicamente una raíz cuadrada, la raíz principal.
Definición 13.5. (Raíz cuadrada principal.) Sea $z\neq 0$. Definimos a la función raíz cuadrada principal como: \begin{equation*} f(z) = z^{1/2} = \sqrt{r} \operatorname{cis}\left(\frac{\theta}{2}\right), \end{equation*} donde $r = |\,z\,|$ y $\theta = \operatorname{Arg}(z)$.
Debe ser claro que al tomar $\theta = \operatorname{Arg}(z)$ en la definición anterior estamos garantizando que los valores que tomará la función raíz cuadrada principal, es decir su imagen, serán los $z\neq 0$ tales que $-\pi < \operatorname{Arg}(z) \leq \pi$, el cual es un conjunto más grande que el dominio $D$ dado en (13.3.).
Ejemplo 13.8. Obtengamos el valor de la raíz cuadrada principal de los puntos: $z_1 = -i$, $z_2 = -\sqrt{3}+i$ y $z_3 = 9$.
Solución.
a) Para $z_1 = -i$ tenemos que $|\,z_1\,| = 1$ y $\operatorname{Arg}(z_1) = -\frac{\pi}{2}$, por lo que: \begin{equation*} f(-i) = \sqrt{1} \operatorname{cis}\left(\frac{-\frac{\pi}{2}}{2}\right) = \operatorname{cos}\left(-\frac{\pi}{4}\right) + i \operatorname{cos}\left(-\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}\left(1-i\right). \end{equation*} b) Para $z_2 = -\sqrt{3}+i$ tenemos que $|\,z_1\,| = 1$ y: \begin{equation*} \operatorname{Arg}(z_2) = \operatorname{arctan}\left(-\frac{1}{\sqrt{3}}\right) + \pi = \frac{5\pi}{6}, \end{equation*} por lo que: \begin{equation*} f\left(-\sqrt{3}+i\right) = \sqrt{2} \operatorname{cis}\left(\frac{\frac{5\pi}{6}}{2}\right) = \sqrt{2} \left[\operatorname{cos}\left(\frac{5\pi}{12}\right) + i \operatorname{sen}\left(\frac{5\pi}{12}\right)\right] = \frac{\sqrt{3} – 1}{2} + i \frac{\sqrt{3} + 1}{2}. \end{equation*} c) Para $z_1 = 9$ tenemos que $|\,z_3\,| = 9$ y $\operatorname{Arg}(z_1) = 0$, por lo que: \begin{equation*} f(9) = \sqrt{9} \operatorname{cis}\left(0\right) = 3\left[ \operatorname{cos}\left(0\right) + i \operatorname{sen}\left(0\right) \right] = 3. \end{equation*}
Ejemplo 13.9. Veamos que la función $g(z) = z^{1/2}$, con $g$ la raíz cuadrada principal, es una inversa de la función $f(z) = z^2$ siempre que restrinjamos el dominio de $f$ al dominio $D$ dado por (13.3).
Solución. De acuerdo con el ejemplo 13.7 sabemos que la función $f(z) = z^2$ es inyectiva en el dominio $D$ dado por los $z\neq 0$ tales que $-\pi/2 < \operatorname{Arg}(z) \leq \pi/2$ y por la observación 13.12 tenemos que $f$ es biyectiva en $D$ y por tanto existe $f^{-1}$.
Procedemos ahora a verificar que $g(z) = z^{1/2}$, con $g$ la raíz cuadrada principal, es una inversa de $f$. Sean $z,w\neq 0$ y supongamos que $f^{-1}(z) = w$. Escribiendo a $z$ y $w$ en su forma polar tenemos que: \begin{equation*} z = r\operatorname{cis}(\theta), \quad w = \rho \operatorname{cis}(\alpha), \end{equation*} donde $r=|\,z\,|$, $\rho=|\,w\,|$, $\operatorname{Arg}(z) = \theta$ y $\operatorname{Arg}(w) = \alpha$.
Dado que el rango de $f^{-1}$ es el dominio de $f$, entonces el argumento principal de $w$, es decir $\alpha$, cumple que: \begin{equation*} -\frac{\pi}{2} < \alpha \leq \frac{\pi}{2}. \end{equation*}
Además, como $f(w) = w^2 = z$, entonces $w$ debe ser una de las dos raíces cuadradas dadas por (13.2), es decir $w = \sqrt{r} \operatorname{cis}\left(\frac{\theta}{2}\right)$ ó $w = \sqrt{r} \operatorname{cis}\left(\frac{\theta + 2\pi}{2}\right)$.
Por reducción al absurdo supongamos que: \begin{equation*} w = f^{-1}(z) = \sqrt{r} \operatorname{cis}\left(\frac{\theta + 2\pi}{2}\right). \tag{13.5} \end{equation*}
Como $\operatorname{Arg}(z) = \theta$, entonces $-\pi < \theta \leq \pi$, por lo que: \begin{equation*} \frac{\pi}{2} < \frac{\theta + 2\pi}{2} \leq \frac{3\pi}{2}. \tag{13.6} \end{equation*}
Tenemos que $\operatorname{Arg}(w) = \alpha$, entonces $\alpha \in (-\pi,\pi]$. Mientras que de (13.5) y (13.6) se sigue que $\pi/2 < \alpha \leq 3\pi/2$, por lo que $\pi/2 < \alpha \leq \pi$ ó $-\pi < \alpha \leq -\pi/2$. Sin embargo ninguna de estas condiciones se cumple desde $-\frac{\pi}{2} < \alpha \leq \frac{\pi}{2}$, por lo que nuestro supuesto en (13.5) es falso, entonces: \begin{equation*} w = f^{-1}(z) = \sqrt{r} \operatorname{cis}\left(\frac{\theta}{2}\right), \end{equation*} la cual corresponde con la función $g(z) = z^{1/2}$ dada en la definición 13.5.
En general, considerando la observación 13.1, podemos definir una función que asigne una sola raíz, en particular la raíz $n$-ésima principal a cada $z\neq 0$, con $n\geq 2$.
Definición 13.6. (Raíz $n$-ésima principal.) Sea $z\neq 0$. Para $n\geq 2$ definimos a la función raíz $n$-ésima principal como: \begin{equation*} f(z) = z^{1/n} = \sqrt[n]{r} \operatorname{cis}\left(\frac{\theta}{n}\right), \end{equation*} donde $r = |\,z\,|$ y $\theta = \operatorname{Arg}(z)$.
Ejemplo 13.10. De acuerdo con el ejemplo 13.1 sabemos que para la función multivaluada $F(z) = z^{1/3}$ se cumple que: \begin{equation*} F(1) = \left\{ 1, \frac{-1 + i\sqrt{3}}{2}, \frac{-1 – i\sqrt{3}}{2} \right\}. \end{equation*}
Mientras que si consideramos a la función raíz cúbica principal $f(z) = z^{1/3}$, entonces: $f(1) = 1$.
Observación 13.13. De nueva cuenta, es importante mencionar que aunque la función raíz $n$-ésima principal, con $n\geq 2$, es una función univaluda, no necesariamente es una rama de la función multivaluada $F(z) = z^{1/n}$, pues como veremos en el ejemplo 15.7 de la entrada 15, la función raíz cuadrada principal $f(z)=z^{1/2}$ es discontinua en todo el eje real negativo desde que la función argumento principal es discontinua en dicho conjunto, el cual es un subconjunto del dominio $\mathbb{C}\setminus\{0\}$, correspondiente con el dominio de definición de dicha función.
De acuerdo con las observaciones 13.10 y 13.13 es interesante notar que podemos definir ramas de la función multivaluada $F(z) = z^{1/n}$, $n\geq 2$, de acuerdo con la definición 13.2, considerando ramas de la función multivaluada $G(z) = \operatorname{arg}(z)$, para ello solo debemos hacer uso de la definición 13.4. Más aún, dado un dominio donde esté definida la función $F$, entonces tendremos exactamente $n$ ramas diferentes para dicha función.
Para mostrar esto consideremos el siguiente:
Ejemplo 13.11. Sea $ I = \left(\frac{3\pi}{2}, \frac{7\pi}{2}\right]$. Entonces, para $z\in\mathbb{C}\setminus L_{\frac{3\pi}{2}} = \left\{ z\in\mathbb{C} : |z|>0, \,\, \frac{3\pi}{2} <\operatorname{arg}(z)<\frac{7\pi}{2}\right\}$, podemos definir una rama de la función multivaluada $F(z) = z^{1/2}$, como: \begin{equation*} f_1(z) = z^{1/2} = \sqrt{r} \operatorname{cis}\left(\frac{\theta}{2}\right), \end{equation*} donde $r = |\,z\,|$, $\theta = \operatorname{Arg}_I(z)$ y $L_{\frac{3\pi}{2}} = \left\{-ir : r\geq 0\right\}$, es decir la semirrecta imaginaria negativa que parte del origen.
Por el ejemplo 13.6 sabemos que para $z=i$ se tiene que: \begin{equation*} \operatorname{Arg}_{\left(\frac{3\pi}{2}, \frac{7\pi}{2}\right]}(i) = \frac{5\pi}{2}. \end{equation*}
Por otra parte, si utilizamos la función raíz cuadrada principal restringida al dominio $\mathbb{C}\setminus(-\infty, 0]$, es decir considerando el intervalo $I = (-\pi, \pi]$, tenemos: \begin{equation*} f_0(z) = z^{1/2} = \sqrt{r} \operatorname{cis}\left(\frac{\beta}{2}\right), \quad -\pi < \beta < \pi, \end{equation*} donde $r = |\,z\,|$, $\beta = \operatorname{Arg}(z)$ y $L{-\pi} = \left\{-r : r\geq 0\right\}$, la cual es llamada la rama principal.
Entonces para $z=i$ tenemos que $\operatorname{Arg}(z) = \frac{\pi}{2}$, por lo que: \begin{equation*} f_0(i) = \sqrt{1} \operatorname{cis}\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}. \end{equation*}
Es claro que $f_0(i) \neq f_1(i)$, por lo que $f_0$ y $f_1$ son dos ramas diferentes de la función multivaluada $F(z) = z^{1/2}$.
Más aún, si tomamos $ I = \left(\pi, 3\pi\right]$, para para $z \in\mathbb{C}\setminus L_{\frac{3\pi}{2}} = \left\{ z\in\mathbb{C} : |z|>0, \,\, \pi <\operatorname{arg}(z)<3\pi\right\}$, podemos definir una tercera rama de la función multivaluada $F(z) = z^{1/2}$, como: \begin{equation*} f_2(z) = z^{1/2} = \sqrt{r} \operatorname{cis}\left(\frac{\theta}{2}\right), \end{equation*} donde $r = |\,z\,|$, $\theta = \operatorname{Arg}_I(z)$ y $L{\pi} = \left\{-r : r\geq 0\right\}$.
Notemos que tanto $f_0$ como $f_2$ comparten el dominio $\mathbb{C}\setminus L_{\pi} = \mathbb{C}\setminus(-\infty, 0]$.
Por lo que: \begin{equation*} f_2(i) = \sqrt{i} \operatorname{cis}\left(\frac{\frac{5\pi}{2}}{2}\right) = \operatorname{cis}\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2} -i\frac{\sqrt{2}}{2}. \end{equation*}
Desde que $f_0(i) \neq f_2(i)$, es claro que $f_0$ y $f_2$ son dos ramas diferentes de la función multivaluada $F(z) = z^{1/2}$. Sin embargo, puesto que $f_0$ y $f_2$ están definidas sobre el mismo dominio podemos obtener la siguiente relación.
Primeramente, procediendo como en la prueba de la proposición 13.3 es fácil verificar que: \begin{equation*} \operatorname{cis}\left(\theta+\beta\right) = \operatorname{cis}\left(\theta\right) \operatorname{cis}\left(\beta\right), \quad \forall \theta, \beta\in\mathbb{R}. \tag{13.7} \end{equation*}
Dado que $\theta\in (\pi, 3\pi)$ y $\beta \in (-\pi, \pi)$, entonces: \begin{equation*} \pi< \theta < 3\pi \quad \Longleftrightarrow \quad -\pi< \theta – 2\pi < \pi, \end{equation*} por lo que tomando $\beta= \theta – 2\pi$ tenemos que $\theta = \beta + 2\pi$.
Entonces, por (13.7) tenemos que: \begin{align*} f_2(z) &= \sqrt{r} \operatorname{cis}\left(\frac{\beta+2\pi}{2}\right)\\ & = \sqrt{r} \operatorname{cis}\left(\frac{\beta}{2} + \pi \right)\\ & = \sqrt{r} \operatorname{cis}\left(\frac{\beta}{2} \right) \operatorname{cis}\left(\pi \right)\\ & = – \sqrt{r} \operatorname{cis}\left(\frac{\beta}{2} \right),\quad -\pi< \beta < \pi, \end{align*} de donde se sigue que $f_0 = -f_2$.
Haciendo una analogía con el caso real, en el que hablábamos de la raíz positiva y la raíz negativa de un número real positivo, podemos pensar a las ramas $f_0$ y $f_2$, de la función multivaluada $F(z) = z^{1/2}$, como la raíz positiva y negativa de un número complejo.
Observación 13.14. De acuerdo con lo anterior, debe ser claro que la función multivaluada $F(z)=z^{1/2}$ está completamente determinada por sus dos ramas, es decir, una vez elegida una rama del argumento, entonces $F$ está dada por sus ramas positiva y negativa.
Sea $z=r\operatorname{cis}(\theta) \neq 0$, con $r=|z|>0$ y $\theta = \operatorname{arg}(z) = \theta_I + 2\pi n$, para $n\in\mathbb{Z}$, $\theta_I = \operatorname{Arg}_{I}(z) \in I$ e $I$ un intervalo de longitud $2\pi$, definición 13.4. Entonces: \begin{align*} F(z) = z^{1/2} & = \left(r\operatorname{cis}(\theta)\right)^{1/2}\\ & = \sqrt{r}\operatorname{cis}\left(\frac{\theta}{2}\right)\\ & = \sqrt{r}\operatorname{cis}\left(\frac{\theta_I}{2} + \pi n\right)\\ & = \sqrt{r}\operatorname{cis}\left(\frac{\theta_I}{2} \right) \operatorname{cis}\left(\pi n\right), \quad n\in\mathbb{Z}. \end{align*}
Considerando los resultados de la entrada 5, sabemos que únicamente $n=0$ y $n=1$ determinan valores distintos para $F$, ya que si $n$ es par obtenemos el mismo valor que $n=0$ y si $n$ es impar obtenemos el mismo valor que $n=1$, es decir que para otros valores enteros de $n$ obtenemos los mismos valores para $F$ que los dados por $n=0$ y $n=1$. Entonces: \begin{equation*} F(x)= \left\{ \begin{array}{lcc} \sqrt{r}\operatorname{cis}\left(\frac{\theta_I}{2} \right) & \text{si} & n=0,\\ \\- \sqrt{r}\operatorname{cis}\left(\frac{\theta_I}{2} \right) & \text{si} & n=1, \end{array} \right. \end{equation*} con $\theta_I \in I$. Es decir, estos dos valores distintos de $F$ determinan sus dos ramas.
Por ejemplo si elegimos a la rama principal del argumento, es decir $\theta_I = \operatorname{Arg}(z)$ con $I = (-\pi, \pi]$, entonces para $z=r\operatorname{cis}\left(\theta_I\right) \neq 0$ tenemos que: \begin{equation*} F(z) = f_{\pm}(z) = \pm \sqrt{r} \operatorname{cis}\left(\frac{\theta_I}{2}\right), \quad -\pi < \theta_I < \pi. \end{equation*}
Cerraremos esta entrada con dos nuevos conceptos que también juegan un papel importante al trabajar con funciones multivaluadas, los cuales utilizaremos más adelante.
Definición 13.6.(Punto de ramificación.) Sea $F(z)$ una función multivaluada definida en un dominio $D\subset\mathbb{C}$ y sea $z_0 \in \mathbb{C}$. Decimos que $z_0$ es un punto de ramificación de $F$ si una vuelta alrededor de $z_0$ (y suficientemente cerca a $z_0$) produce un cambio de rama de la función.
Si $n$ es el menor número natural tal que $n$ vueltas alrededor de $z_0$ llevan cada rama sobre sí misma, decimos que $z_0$ es un punto de ramificación de orden $n-1$. Si nunca vuelve a la rama original, diremos que es de orden $\infty$. El punto al infinito $z_\infty = \infty$ es un punto de ramificación de $F(z)$ si una vuelta alrededor de una circunferencia suficientemente grande provoca un cambio de rama. Equivalentemente, $z_\infty = \infty$ es un punto de ramificación de $F(z)$ si $z = 0$ es un punto de ramificación de la función $F(1/z)$.
Ejemplo 13.12. Consideremos a la función multivaluada $F(z) = z^{1/2}$. Veamos que $z_0=0$ y $z_\infty = \infty$ son puntos de ramificación de $F$.
Solución. Es claro que la función $F$ no está definida para $z=0$, por lo que no es casualidad que dicho punto sea una punto de ramificación de $F$. Sea $C(z_0,\varepsilon)$ una circunferencia con centro en $z_0=0$ y radio $\varepsilon>0$, con $\varepsilon$ arbitrariamente pequeño. Sabemos que un punto $z\in C(z_0,\varepsilon)$ en su forma polar está dado por: \begin{equation*} z = \varepsilon \operatorname{cis}(\theta), \quad -\pi < \theta \leq \pi, \end{equation*} donde $\theta = \operatorname{Arg}(z)$ y $\varepsilon = |\,z\,|$.
De acuerdo con la observación 13.14, sabemos que la función multivaluada $F(z) = z^{1/2}$ tienes dos ramas diferentes, su rama positiva y su rama negativa, es decir $f_{+}$ y $f_{-}$. Supongamos que a $z_1 \in C(z_0,\varepsilon)$ le hemos aplicado $F$, entonces tenemos que: \begin{equation*} F(z_1) = \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta}{2}\right) = f_+(z_1), \quad -\pi < \theta <\pi. \end{equation*}
Si consideramos que $z_1$ ha dado una vuelta completa sobre la circunferencia $C(z_0,\varepsilon)$, en el sentido contrario al de las manecillas del reloj, es decir que $\theta$ aumento $2\pi$, entonces tenemos que: \begin{align*} F(z_1) & = \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta+2\pi}{2}\right)\\ & = \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta}{2}\right) \operatorname{cis}\left(\pi\right)\\ &= – \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta}{2}\right), \quad -\pi < \theta <\pi,\ & = – f_+(z_1)\\ & = f_{-}(z_1), \end{align*} es decir, al partir de un punto arbitrario sobre la circunferencia $C(z_0,\varepsilon)$ y dar una vuelta completa sobre dicha circunferencia la función multivaluada $F(z)=z^{1/2}$ cambio de rama, por lo que $z_0 =0$ es un punto de ramificación de dicha función, figura 62.
Notemos que si $z_1$ da dos vueltas completas sobre la circunferencia $C(z_0,\varepsilon)$, es decir $ 3\pi < \theta + 4\pi < 5\pi$, entonces: \begin{align*} F(z_1) & = \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta+4\pi}{2}\right)\\ & = \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta}{2}\right) \operatorname{cis}(2\pi)\\ & = \sqrt{\varepsilon} \operatorname{cis}\left(\frac{\theta}{2}\right), \quad -\pi<\theta<\pi,\\ & = f_+(z_1), \end{align*} por lo que, después de dos vueltas completas alrededor del punto $z_0 = 0$ el valor de la función multivaluada $F$ regresa al valor de la rama principal $f_0$, es decir a su rama positiva, entonces $z_0 = 0$ es un punto de ramificación de orden $1$.
Recordemos que en la esfera de Riemann el punto al infinito $z_\infty=\infty$ corresponde con el polo norte $N$. Por lo que una circunfernecia alrededor de $N$, de radio arbitrariamente pequeño sobre la esfera de Riemann, determina una circunferencia de radio muy grande en el plano complejo. Esta curva rodea, necesariamente, a $z_0=0$. Por lo tanto, una vuelta completa sobre esta circunferencia causará un cambio de rama de la función multivaluada $F(z) = z^{1/2}$.
Procediendo como antes, podemos concluir fácilmente que $z_\infty = \infty$ también es un punto de ramificación de orden $1$ de $F$.
Tomemos un punto $z$ sobre la circunferencia $C(z_0,\varepsilon)$, con $z_0 =0$ y $\varepsilon>0$ arbitrariamente pequeño. Si $z$ da una vuelta completa alrededor de $z_0$ tendremos que $\theta$ habrá aumentado $2\pi$, por lo que: \begin{align*} F\left(\frac{1}{z}\right) & = r^{-1/2} \operatorname{cis}\left(\frac{-\theta + 2\pi}{2}\right)\\ & = r^{-1/2} \operatorname{cis}\left(-\frac{\theta}{2}\right) \operatorname{cis}\left(\pi\right)\\ & = r^{-1/2} \operatorname{cis}\left(-\frac{\theta}{2}\right) \operatorname{cis}\left(\pi\right)\\ & = -r^{-1/2} \operatorname{cis}\left(-\frac{\theta}{2}\right), \quad -\pi<\theta<\pi,\\ & = f_{-}\left(\frac{1}{z}\right). \end{align*}
Entonces, después de una vuelta alrededor del punto $z_0=0$, la función multivaluada $F(1/z)$ cambio de rama, por lo que $z=0$ es un punto de ramificación de $F(1/z)$ y por tanto $z_\infty = \infty$ es un punto de ramificación de $F(z)$.
De manera análoga, si $z$ da dos vueltas alrededor de $z_0 = 0$, entonces $F$ vuelve a tomar el valor de la rama principal, es decir que con dos vueltas la rama principal regresa a sí misma, por tanto $z_0$ es un un punto de ramificación de orden $2-1 = 1$ de $F(1/z)$.
Definición 13.6.(Corte de rama.) Un corte de rama es una línea (habitualmente recta) que separa dos ramas de una misma función multivaluada. Equivalentemente, es la línea en la que una rama se hace discontinua.
Observación 13.15. Los cortes de rama son, en realidad, curvas por las que hacemos discontinuas las ramas y que impiden que podamos dar una vuelta completa alrededor de un punto de ramificación. Es muy importante hacer notar que los cortes de rama no son únicos y podemos elegirlos según nos convenga.
Ejemplo 13.13. Consideremos a la función multivaluada $F(z) = z^{1/2}$. De acuerdo con el ejemplo 13.11, tenemos que para las ramas $f_0, f_1$ y $f_2$ sus cortes de ramas son, respectivamente, las semirrectas: \begin{align*} L_{-\pi} = \left\{-r : r\geq 0\right\} = (-\infty,0],\\ L_{\frac{3\pi}{2}} = \left\{-ir : r\geq 0\right\},\\ L_{\pi} = \left\{-r : r\geq 0\right\} = (-\infty,0], \end{align*} pues en dichos conjuntos cada una de las ramas no son continuas.
Ejemplo 13.14. Consideremos a \begin{equation*} I = \left(\frac{3\pi}{2}, \frac{7\pi}{2}\right]. \end{equation*}
La función $\operatorname{Arg}_I(z)$ es discontinua en: \begin{equation*} L_{\frac{3\pi}{2}} = \left\{-ir : r\geq 0\right\}, \end{equation*} por lo que dicha semirrecta corresponde con su corte de rama.
Por otra parte, para la función $\operatorname{Arg}(z)$ se tiene que su corte de rama es la semirrecta: \begin{equation*} L_{-\pi} = \left\{-r : r\geq 0\right\} = (-\infty,0], \end{equation*} pues en dicho conjunto la función es discontinua.
Ejemplo 13.15. Considerando las ramas principal y natural del argumento determina los corte de rama para la función multivaluada $F(z) = \sqrt{z^2-1}$. ¿Cuáles son los puntos de ramificación de $F$?
Solución. Sabemos que para la función multivaluada $F(w)=\sqrt{w}$, se tiene que $w=0$ y $w=\infty$ son ambos puntos de ramificación de orden 1, por lo que si $w=z^2-1$, entonces un primer candidato a ser punto de ramificación es $w=0$, es decir, $z^2-1=(z-1)(z+1) = 0$, de donde inferimos que $z=1$ y $z=-1$ son ambos puntos de ramificación.
Y para $n=1$ tenemos: \begin{equation*} f_{-}(z) = \sqrt{z^2 -1} = \sqrt{(z-1)(z+1)} = -\sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1+\theta_2}{2}\right). \end{equation*}
En ambos casos $r_1, r_2 >0$ y $-\pi < \theta_1, \theta_2 <\pi$.
Si elegimos la rama principal del argumento, entonces tenemos que: \begin{equation*} -\pi < \operatorname{Arg}(w)\leq \pi \quad \Longleftrightarrow \quad \left\{w\in\mathbb{C} : \operatorname{Re}(w)\leq 0, \operatorname{Im}(w) = 0 \right\}. \end{equation*}
Por lo que, tomando $z=x+iy\in\mathbb{C}$ y $w = z^2-1$, con $x,y\in\mathbb{R}$, tenemos que el corte de rama de la rama principal $f_0(z) = \sqrt{z^2-1}$ está dado por las siguientes condiciones: \begin{equation*} \left\{ \begin{array}{l} \operatorname{Re}(z^2-1) = x^2 – y^2 -1 \leq 0,\\ \\ \operatorname{Im}(z^2-1) = 2xy = 0. \end{array} \right. \end{equation*}
De la segunda condición es claro que puede sucder que $x=0$ ó $y=0$. Si $x=0$, entonces de la primera condición se sigue que $y^2 +1 \geq 0$, lo cual se cumple para todo $y\in\mathbb{R}$.
Por otra parte, si $y=0$, entonces de la primera condición se sigue que $x^2 \leq 1$, lo cual se cumple para todo $x\in\mathbb{R}$ tal que $|\,x\,| \leq 1$.
Entonces, considerando la rama principal del argumento, tenemos que el corte de rama de $f_0$ es: \begin{equation*} L_P = \left\{z =x+iy\in\mathbb{C} : x=0, y \in\mathbb{R} \right\} \cup \left\{z =x+iy\in\mathbb{C} : |\,x\,| \leq 1, y = 0 \right\}. \end{equation*}
El conjunto anterior corresponde con todo el eje imaginario y el intervalo real $[-1,1]$, sin embargo, geométricamente podemos notar que el primer conjunto de discontinuidades para la rama principal $f_0$ se puede omitir desde que dicho conjunto ya se considera si definimos a dicha rama como: \begin{equation*} f_0(z) = \sqrt{z^2-1} = \left\{ \begin{array}{lcc} f_+(z) & \text{si} & \operatorname{Re}(z)>0,\\ \\ f_-(z) & \text{si} & \operatorname{Re}(z)<0, \end{array} \right. \end{equation*}cuyo corte de rama, para cada función, es respectivamente: \begin{equation*} \left\{z =x+iy\in\mathbb{C} : y=0, 0<x\leq 1 \right\} \quad \text{y} \quad \left\{z =x+iy\in\mathbb{C} : y=0, -1 \leq x <0 \right\}. \end{equation*}
Por tal motivo, resulta completamente innecesario mencionar a las discontinuidades del eje imaginario, pues están implícitas en la definición de la rama principal dada antes, por ello, al hablar del corte de rama para esta función bastará con mencionar al intervalo real $[-1,1]$, es decir: \begin{equation*} L_P = \left\{z =x+iy\in\mathbb{C} : |\,x\,| \leq 1, y = 0 \right\}. \end{equation*}
Por otra parte, si elegimos la rama natural del argumento entonces tenemos que: \begin{equation*} 0 \leq \operatorname{Arg}(w) < 2\pi \quad \Longleftrightarrow \quad \left\{w\in\mathbb{C} : \operatorname{Re}(w)\geq 0, \operatorname{Im}(w) = 0 \right\}. \end{equation*}
Por lo que, tomando $w = z^2-1$ y $z=x+iy$, con $x,y\in\mathbb{R}$, tenemos que el corte de rama de la rama $f(z) = \sqrt{z^2-1}$ está dado por las condiciones: \begin{equation*} \left\{ \begin{array}{l} \operatorname{Re}(z^2-1) = x^2 – y^2 -1 \geq 0,\\ \\ \operatorname{Im}(z^2-1) = 2xy = 0. \end{array} \right. \end{equation*}
De manera análoga concluimos que $x\neq 0$, por lo que de la segunda condición se sigue que $y=0$, entonces $x^2\geq 1$, es decir $|\,x\,| \geq 1$.
Entonces, considerando la rama natural del argumento, tenemos que el corte de rama de $f$ son dos semirrectas dadas por: \begin{equation*} L_N = \left\{z =x+iy\in\mathbb{C} : |\,x\,| \geq 1, y = 0 \right\}. \end{equation*}
De lo anterior es claro que los puntos $z=1$ y $z=-1$ aparecen en ambos cortes de rama, por lo que procedemos a verificar que son puntos de ramificación de la función multivaluada $\sqrt{z^2-1}$.
Consideremos una circunferencia con centro en $1$ y radio suficientemente pequeño para que el punto $z=-1$ sea un punto exterior a ella, figura 65, y tomemos a un punto cualquiera $z$ sobre ella, entonces: \begin{equation*} F(z) = \sqrt{z^2 -1} = \sqrt{(z-1)(z+1)} = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1+\theta_2}{2}\right) = f_{+}(z). \end{equation*}
Notemos que si damos una vuelta alrededor del punto $z=1$, considerando el punto $z$ sobre la circunferencia dada, entonces solo el argumento de $z-1$ se verá afectado, es decir: \begin{align*} F(z) & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\left(\theta_1 + 2\pi\right) +\theta_2}{2}\right)\\ & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1+\theta_2}{2}\right) \operatorname{cis}\left(\pi\right)\\ & = – \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1 +\theta_2}{2}\right)\\ & = f_{-}(z)\\ & \neq f_{+}(z), \end{align*}por lo que, después de una vuelta alrededor del punto $z=1$, la función $F$ cambió de rama, es decir que $z=1$ es un punto de ramificación de orden $1$.
De manera similar, si tomamos un punto $z$ sobre una circunferencia con centro en el punto $z=-1$ y radio suficientemente pequeño de tal forma que el punto $z=1$ sea un punto exterior a ella, figura 66, entonces el argumento de $z+1$ se verá modificado en $2\pi$, es decir: \begin{align*} F(z) & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\left(\theta_2 + 2\pi\right) +\theta_1}{2}\right)\\ & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1+\theta_2}{2}\right) \operatorname{cis}\left(\pi\right)\\ & = – \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1 +\theta_2}{2}\right)\\ & = f_1(z)\\ & \neq f_0(z), \end{align*} por lo que, de nueva cuenta la función $F$ cambio de rama, entonces $z=-1$ también es un punto de ramificación de orden $1$.
Por último, tomemos a un punto $z_0\in\mathbb{C}$, con $z_0 \neq 1, -1$, y tracemos una circunferencia con centro en $z_0$ y radio suficientemente pequeño, de tal forma que $1$ y $-1$ sean puntos exteriores a ella, figura 67. Notemos que si un punto $z$ da una vuelta completa sobre dicha circunferencia, entonces los argumentos de $z-1$ y $z+1$ no se ven modificados, por lo que la función $F$ no cambia de rama, es decir que $z_0$ no es un punto de ramificación, por lo que $z=1$ y $z=-1$ son los únicos puntos de ramificación.
Más aún, si tomamos una circunferencia que encierre a ambos puntos de ramificación, al dar una vuelta completa sobre dicha circunferencia tendremos que tanto el argumento de $z-1$ como el de $z+1$ se verán modificados, es decir: \begin{align*} F(z) & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\left(\theta_1 + 2\pi\right) + \left(\theta_2 + 2\pi\right)}{2}\right)\\ & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1+\theta_2}{2}\right) \operatorname{cis}\left(2\pi\right)\\ & = \sqrt{r_1 r_2} \operatorname{cis}\left(\frac{\theta_1 +\theta_2}{2}\right), \end{align*} de donde se sigue que $z=\infty$ no es un punto de ramificación.
Es sencillo verificar esto último considerando a la función $F(1/z)$, por lo que se deja como ejercicio al lector.
Gráficamente, los cortes de rama dados en la figura 64 nos aseguran que una rama definida en un dominio que excluya a dichos conjuntos en efecto será una función continua univaluada, es decir, solo nos determinará un único valor para cada $z$ en dicho dominio.
Tarea moral
Verifica que se cumple la observación 13.3.
Demuestra la proposición 13.2.
Obtén, en las regiones apropiadas, las funciones inversas $z=g(w)$ de: a) $w = f(z) = z^3$. b) $w = f(z) = (z-1)^4+i$. c) $w = f(z) = z^7+1+i$. d) $w = f(z) = 2z^2+iz-i+1$.
Verifica que se cumple (13.7).
Considera a la función multivaluada $F(z) = z^{1/3}$ dada por sus tres ramas $f_0, f_1$ y $f_2$ siguientes: \begin{equation*} F(z) = \left\{ \begin{array}{lcc} f_0(z) = \sqrt[3]{r}\operatorname{cis}\left(\frac{\theta}{3}\right) & \text{si} & 0 \leq \theta < 2\pi, \\ f_1(z) = \sqrt[3]{r}\operatorname{cis}\left(\frac{\theta}{3}\right) & \text{si} & 2\pi \leq \theta < 4\pi, \\ f_2(z) = \sqrt[3]{r}\operatorname{cis}\left(\frac{\theta}{3}\right) & \text{si} & 4\pi \leq \theta < 6\pi, \end{array} \right. \end{equation*} donde $\theta = \operatorname{Arg}_{[0,2\pi)}(z)$ y $r=|\,z\,|$. Prueba que $z_0 = 0$ y $z_\infty = \infty$ son puntos de ramificación de $F$, ambos de orden $2$.
Muestra que los puntos dados son los puntos de ramificación de las siguientes funciones multivaluadas. a) $z=0$, $z=\infty$ ambos de orden $n-1$ para $F(z) = \sqrt[n]{z}$, $n\geq 2$. Recuerda que para esta función existen exactamente $n$ ramas distintas. b) $z=5$, $z=i$ y $z=2i-3$, los tres de orden $1$ para $F(z) = \sqrt{(z-5)(z-i)(z-2i+3)}$.
Prueba que el corte de rama de la función $f(z) = \operatorname{Arg}(iz-1)$ es la semirrecta: \begin{equation*} L = \left\{z=x+iy\in\mathbb{C} : x=0, y\geq 0\right\} \end{equation*} Hint: Observa que $-\pi < \operatorname{Arg}(w) \leq \pi \quad \Longleftrightarrow \quad \left\{w\in\mathbb{C} : \operatorname{Re}(w)\leq 0, \operatorname{Im}(w)=0\right\}$.
Sean $\alpha\in\mathbb{R}$ e $I = (\alpha, \alpha+2\pi]$. Define: \begin{equation*} \alpha^* = \alpha – 2\pi\left(\left\lceil\frac{\alpha}{2\pi}\right\rceil – 1 \right). \end{equation*} Muestra que: \begin{equation*} \operatorname{Arg}_I(z) = \left\{ \begin{array}{lcc} \operatorname{Arg}(z) + 2\pi\left( \left\lceil\frac{\alpha}{2\pi}\right\rceil – 1\right) & \text{si} & \alpha^*< \operatorname{Arg}(z) \leq \pi, \\ \operatorname{Arg}(z) + 2\pi \left\lceil\frac{\alpha}{2\pi}\right\rceil & \text{si} & \alpha^*< \operatorname{Arg}(z) \leq \pi, \end{array} \right. \end{equation*} donde $\lceil x \rceil = n \quad \Longleftrightarrow \quad n-1<x\leq n \quad \Longleftrightarrow \quad x \leq n < x+1$, para $n\in\mathbb{Z}$.
Más adelante…
En esta entrada introducimos de manera formal el concepto de función multivaluada y vimos algunos ejemplos puntuales de funciones de este tipo considerando algunos resultados que habíamos obtenido a lo largo de la unidad anterior.
En resumen, una función multivaluada puede pensarse como una colección de funciones univaluadas a las cuales llamamos ramas de la función. Más aún, las funciones multivaluadas pueden caracterizarse por sus puntos de ramificación y sus cortes de ramas. Los cortes de ramas, nos definen una rama de la función multivaluada, de acuerdo con la definición 13.2, la cual es una función discontinua sobre los puntos del corte ramal.
Dado que cada corte de rama impone una restricción en los valores del argumento, los cuales están limitados a un intervalo de longitud $2\pi$, y a su vez cada rama del argumento implica un corte en el plano complejo, entonces no existe una única forma de definir un corte de rama, esto dependerá en esencia de las necesidades del cálculo en cierto problema.
En las siguientes entradas estaremos trabajando con más ejemplos de funciones multivaluadas, como el logaritmo y las funciones inversas de las funciones trigonométricas e hiperbpolicas, que resultan ser de las funciones más elementales para el caso complejo, por lo que es importante familiarizarnos con este nuevo concepto y con las propiedades que lo definen.
La siguientes dos entradas veremos dos conceptos fundamentales en la teoría de las funciones, el del límite y continuidad. Como vimos en nuestros cursos de Cálculo, es posible estudiar y caracterizar a una función real a través del límite y la continuidad en un punto de la misma. Nuestro objetivo en las siguientes entradas consistirá en trabajar dichos conceptos pero desde la perspectiva de la variable compleja.