Introducción
Esta entrada nos permitirá dar un breve espacio a las funciones compatibles. Será de gran importancia hacer una parada en este concepto pues será de gran utilidad en la demostración de nuestro siguiente teorema: el teorema de recursión.
Funciones compatibles
En esta entrada exploraremos la pregunta de cuándo y en qué sentido la unión de dos o más funciones es una función. La definición que nos ayudará a explorar esto es la siguiente.
Definición. Sean $f$ y $g$ funciones. Decimos que $f$ y $g$ son funciones compatibles si y sólo si $f(x)=g(x)$ para cualquier $x\in dom(f)\cap dom(g)$.
Como consecuencia de la definición, si $f$ y $g$ son funciones tales que $dom(f)\cap dom(g)=\emptyset$, entonces por vacuidad $f$ y $g$ son compatibles.
Ejemplo.
Consideremos las funciones $f:\{1,2,3\}\to\{1,2\}$ y $g:\{0,4\}\to \{1,2,3\}$ dadas por $f(1)=f(2)=1$, $f(3)=2$, $g(0)=1$, $g(4)=3$. Como $dom(f)\cap dom(g)=\emptyset$, entoces $f$ y $g$ son compatibles.
$\square$
Ejemplo.
Consideremos las funciones $h:\{1,3\}\to \{0,1\}$ y $k:\{0,1,2\}\to \{0,1,2,3,4\}$ dadas como sigue:
\begin{align*}
h&=\{(1,0), (3,1)\}\\
k&=\{(0,3),(1,0),(2,2)\}
\end{align*}
Para ver que $h$ y $k$ son funciones compatibles, basta ver que para cada elemento $x$ en $dom(h)\cap dom(k)=\{1\}$ se cumple que $h(x)=k(x)$. Como el único elemento en la intersección es el $1$, basta ver que $h(1)=k(1)$. Y en efecto, $h(1)=0=k(1)$. Por lo tanto, $f$ y $g$ son funciones compatibles.
$\square$
Hay una definición más general, para cuando se tienen varias funciones.
Definición. Sea $\mathcal{F}$ un conjunto de funciones. Diremos que $\mathcal{F}$ es un sistema compatible de funciones si para cualesquiera $f,g\in \mathcal{F}$, se tiene que $f$ y $g$ son compatibles.
Ejemplo.
Si consideramos a $\mathcal{F}=\set{h,k}$ con $h$ y $k$ como en el ejemplo anterior, tenemos que $\mathcal{F}$ es un sistema compatible de funciones pues $h$ y $k$ son funciones compatibles.
$\square$
Ejemplo.
Para cada $n\in\mathbb{N}\setminus\set{0}$ definamos $f_n:n\to\mathbb{N}$ por medio de $f_n(k)=s(k)$ para cada $k\in n$, donde $s(k)$ es el sucesor de $k$. Veamos que $\mathcal{F}=\set{f_n:n\in\mathbb{N}\setminus\set{0}}$ es un sistema de funciones compatibles. Si $n,m\in\mathbb{N}\setminus\set{0}$, entonces, $n\leq m$ o $m\leq n$ y, por consiguiente, $dom(f_n)\subseteq dom(f_m)$ o $dom(f_m)\subseteq dom(f_n)$; más aún, $f_n\subseteq f_m$ o $f_m\subseteq f_n$ y, por tanto, $f_n$ y $f_m$ son funciones compatibles. Por tanto, $\mathcal{F}$ es un sistema de funciones compatibles.
$\square$
Cuándo la unión de funciones es función
Teorema. Sean $f:X\to Y$ y $g:X’\to Y’$ funciones compatibles. Entonces $f\cup g$ es una función de $X\cup X’$ en $Y\cup Y’$.
Demostración.
Sean $f:X\to Y$ y $g:X’\to Y’$ funciones compatibles. Consideremos $f\cup g$. Debemos ver que $f\cup g$ tiene el dominio y codominio correctos, que es total y que es funcional.
La unión de $f$ y $g$ tiene el dominio y codominio correctos
Veamos que $f\cup g$ es una relación de $X\cup X’$ en $Y\cup Y’$. En efecto, cada pareja en $f\cup g$ es de la forma $(x,y)$ con $(x,y)$ en $X\times Y$, o $(x,y)$ en $X’\times Y’$. Si $(x,y)\in X\times Y$, entonces $x\in X \subseteq X\cup X’$ y $y\in Y\subseteq Y\times Y’$, y así $(x,y)\in (X\cup X’)\times (Y \cup Y’)$. De manera análoga, si $(x,y)\in X’\times Y’$, entonces $(x,y)\in (X\cup X’)\times (Y \cup Y’)$.
$f\cup g$ es total
Consideremos $x\in X\times X’$. Si $x\in X$, como $f$ es función, entonces es total y por lo tanto existe $y\in Y$ tal que $(x,y)\in f$. Así, $(x,y)\in f\cup g$. Si $x\in X’$, como $g$ es función, entonces es total y por lo tanto existe $y\in Y’$ tal que $(x,y)\in g$. Así, $(x,y)\in f\cup g$. En cualquier caso, existe $y\in Y\cup Y’$ para el cual $(x,y)\in f\cup g$. Esto muestra que $f\cup g$ es total.
$f\cup g$ es funcional
Supongamos que $(x,y) \in f\cup g$ y $(x,y’)\in f\cup g$. Debemos mostrar que $y=y’$.
Caso 1. $(x,y)\in f$ y $(x,y’)\in f$. En este caso, como $f$ es función, entonces es funcional y así $y=y’$.
Caso 2. $(x,y)\in g$ y $(x,y’)\in g$. Análogamente al caso anterior, $y=y’$.
Caso 3. $(x,y)\in f$ y $(x,y’)\in g$. Tenemos entonces que $x\in dom(f)\cap dom(g)$ y, por tanto, $f(x)=g(x)$, es decir, $y=y’$, ya que $f$ y $g$ son funciones compatibles.
Caso 4.$(x,y)\in g$ y $(x,y’)\in f$. Análogamente al caso anterior.
Por lo tanto $f\cup g$ es funcional.
Por lo tanto, $f\cup g$ es función de $X\cup X’$ en $Y\cup Y’$.
$\square$
El siguiente teorema generaliza el resultado anterior
Teorema. Sea $\mathcal{F}$ una familia de funciones compatibles. Entonces se cumple que $\bigcup \mathcal{F}$ es una función con dominio $\bigcup\set{dom(f):f\in \mathcal{F}}$ y codominio $\bigcup\set{cod(f):f\in \mathcal{F}}$.
Como parte de los ejercicios de esta entrada, deberás demostrar esta generalización.
Tarea moral
La siguiente lista de ejercicios te permitirá reforzar el contenido visto en esta entrada.
- En esta entrada probamos que si $f$ y $g$ son funciones compatibles, entonces $f\cup g$ es función. ¿Será cierto que si $f\cup g$ es función, entonces $f$ y $g$ son funciones compatibles?
- ¿Qué se necesita para que si $f:X\to Y$ y $g:X’\to Y’$ son funciones, entonces $f\cap g$ sea función de $X\cap X’$ en $Y\cap Y’$?
- Muestra que la unión de funciones compatibles es función, en el sentido en el que lo enuncia la generalización de la sección anterior.
- Sea $\mathcal{F}=\{f_i\}_{i\in \mathbb{N}}$ una familia de funciones tal que $f_{i}\subseteq f_{i+1}$. Demuestra que $\bigcup \mathcal{F}$ es una función con dominio $\bigcup\set{dom(f):f\in \mathcal{F}}$ y codominio $\bigcup\set{cod(f):f\in \mathcal{F}}$.
Más adelante…
En la siguiente entrada enunciaremos y probaremos el teorema de recursión. Dicho teorema nos permitirá definir operaciones como la suma y el producto en el conjunto de los números naturales.
Entradas relacionadas
- Ir a Teoría de los Conjuntos I
- Entrada anterior: Buen orden en los naturales
- Siguiente entrada: Teorema de recursión
Agradecimientos
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»