Archivo de la etiqueta: compadre ortogonal

Geometría Analítica I: Producto interior y el ortogonal canónico

Por Elsa Fernanda Torres Feria

Introducción

Continuando la conexión con la geometría Euclidiana con la que empezamos, hay un concepto en la geometría analítica que se conecta con la noción de ángulo, la de distancia y la de norma en la primera geometría mencionada, el producto interior. Dentro del contenido de esta entrada esta su definición en una dimensión de $2$ o mayor, ejemplos y sus propiedades. También, se discute el concepto del vector ortogonal canónico, que en conjunción con el producto interior, sirve como herramienta para detectar ciertas características de rectas y vectores.

Producto interior

Abramos esta entrada con la definición de este nuevo concepto.

Definición. Si tenemos dos vectores $u=(u_1,u_2)$ y $v=(v_1,v_2)$ en $\mathbb{R}^2$, el producto interior (o producto punto) en $\mathbb{R}^2$ de $u$ con $v$, está dado por

$u\cdot v := (u_1,u_2) \cdot (v_1,v_2) = u_1v_1 +u_2 v_2$

Esta definición se puede expresar en dimensiones mayores.

Definición. Si tenemos dos vectores $u=(u_1,u_2, \dots, u_n)$ y $v=(v_1,v_2, \dots, v_n)$ en $\mathbb{R}^n$, el producto interior (o producto punto) en $\mathbb{R}^n$ de $u_1$ con $u_2$, está definido como

\begin{align*}
u\cdot v : &= (u_1,u_2, \dots, u_n) \cdot (v_1,v_2, \dots, v_n) \\
&= u_1v_1 +u_2 v_2+u_3 v_3 + \dots + u_n v_n \\
&= \sum _{j=1} ^{n} u_j v_j
\end{align*}

Es importante notar que el resultado del producto interior (que es una operación vectorial), es un escalar.

Ejemplos:

1. Sean los vectores $(5,3)$ y $(2,-4)$ en $\mathbb{R}^2$, el producto interior de estos es

\begin{align*}
(5,3) \cdot (2,-4)&=5(2)+3(-4)\\
&=10-12\\
&=-2
\end{align*}

2. Sean los vectores $(-3,1,-1)$ y $(-6,2,-3)$ en $\mathbb{R}^3$, el producto interior de estos es

\begin{align*}
(-3,1,-1) \cdot (-6,2,-3)&=-3(-6)+1(2)+(-1)(-3)\\
&=18+2+3\\
&=23
\end{align*}

3. Sean los vectores $(1,0,-5,2,0,1)$ y $(0,-6,0,0,2,0)$ en $\mathbb{R}^6$, el resultado de su producto interior es cero, verifica.

Ahora que hemos definido una nueva operación, nos gustaría demostrar algunas propiedades asociadas a esta.

Teorema. Para todos los vectores $u,v,w \in \mathbb{R}^n$ y para todo número $t \in \mathbb{R}$ se cumple que

  1. $u \cdot v = v \cdot u$
  2. $u \cdot (tv)=t(u\cdot v)$
  3. $u \cdot (v + w)= u \cdot v + u \cdot w$
  4. $u \cdot u \geq 0$
  5. $u \cdot u =0 \Leftrightarrow u=(0,0)$

La primera propiedad nos dice que el producto interior es conmutativo; la siguiente que la operación saca escalares; la tercera expresa que esta abre sumas; la cuarta que al hacer el producto interior de un vector consigo mismo, el resultado es siempre mayor o igual a cero la última que la igualdad a cero sólo sucede cuando el vector $u$ es el vector cero.

Demostración

Haremos la demostración para vectores en $\mathbb{R}^2$, (el caso para dimensión $n$ es análogo) y usaremos los axiomas de los números reales.

Para empezar definamos los vectores $u=(u_1,u_2)$, $v=(v_1,v_2)$ y $w=(w_1,w_2)$ en $\mathbb{R}^2$

1. P. D. $u \cdot v = v \cdot u$. Comencemos con la definición y desarrollemos a partir de ella

\begin{align*}
u \cdot v &=(u_1,u_2) \cdot (v_1,v_2)\\
&=u_1v_1+u_2v_2 \\
&=v_1u_1+v_2u_2 \\
&=(v_1,v_2) \cdot (u_1,u_2)\\
&=v \cdot u
\end{align*}

$\therefore$ $u\cdot v= v \cdot u$

2. P.D. $u \cdot (tv)=t(u\cdot v)$

\begin{align*}
u \cdot (tv)&=(u_1,u_2) \cdot t(v_1,v_2) \\
&= (u_1,u_2) \cdot (tv_1,tv_2) \\
&= u_1(tv_1)+u_2(tv_2)\\
&= t(u_1v_1+u_2v_2) \\
&=t(u_1,u_2) \cdot (v_1,v_2)\\
&= t (u \cdot v)
\end{align*}

$\therefore u \cdot (tv)=t(u\cdot v)$

3. P.D. $u \cdot (v + w)= u \cdot v + u \cdot w$

\begin{align*}
u \cdot (v + w)&=(u_1,u_2) \cdot ((v_1,v_2) + (w_1,w_2)) \\
&= (u_1,u_2) \cdot (v_1+w_1,v_2+w_2) \\
&=u_1(v_1+w_1)+u_2(v_2+w_2) \\
&=u_1v_1+u_1w_1+u_2v_2+u_2w_2 \\
&=u_1v_1+u_2v_2+u_1w_1+u_2w_2 \\
&=(u_1v_1+u_2v_2)+(u_1w_1+u_2w_2) \\
&=((u_1,u_2)\cdot(v_1,v_2)) + ((u_1,u_2) \cdot (w_1,w_2)) \\
&= u \cdot v + u \cdot w
\end{align*}

$\therefore$ $u \cdot (v + w)= u \cdot v + u \cdot w$

4 y 5. P.D. $u \cdot u \geq 0$ y $u \cdot u =0 \Leftrightarrow u=(0,0)$

\begin{align*}
u \cdot u&=(u_1,u_2) \cdot (u_1,u_2) \\
&= u_1u_1+u_2u_2\\
&= u_1^2 + u_2^2 \geq 0
\end{align*}

La última relación se da ya que es una suma de números al cuadrado y cada término por sí sólo es mayor o igual a cero.

Resulta que si $u_1 \neq 0$ ó $u_2 \neq 0$, entonces $u_1^2 + u_2^2 > 0$, por lo que el único caso en el que se da la igualdad a cero es cuando $u=(0,0)$.

$\therefore$ $u \cdot u \geq 0$ y $u \cdot u =0 \Leftrightarrow u=(0,0)$

$\square$

Lo usado en esta demostración se restringe a los axiomas de los reales y la definición del producto interior, por lo que aunque no haya mucha descripción, espero que te sea clara.

El ortogonal canónico

Definición. Sea $v=(x,y)$ un vector en $\mathbb{R}^2$, el vector ortogonal canónico a v es el vector

$v^{\perp}=(-y,x)$

Si te das cuenta, esta definición hace referencia a lo que sucede al aplicar el ortogonal a un vector. Además, esta definición define al ortogonal canónico, pero no significa que sea el único vector perpendicular (ortogonal) a $v$.

Antes de definir o probar más cosas relacionadas al ortogonal, hagamos algunas observaciones.

Observación: Si aplicamos 4 veces el ortogonal a un vector $v$, regresamos al mismo vector:


$v^{\perp}=(x,y)^{\perp}=(-y,x)$

$(-y,x)^{\perp}=(-x,-y)$

$(-x,-y)^{\perp}=(y,-x)$

$(y,-x)^{\perp}=(x,y)$

Observación: Para cualquier $v=(x,y) \in \mathbb{R}^2$, tenemos que

$v \cdot v^{\perp} =(a,b) \cdot (-b,a)=a(-b)+b(a)=-ab+ab=0$

Para continuar, usemos el producto interior para definir y probar ciertas cosas con relación al compadre ortogonal.

Definición. Diremos que dos vectores $u,v \in \mathbb{R}^2$ son perpendiculares (ortogonales) si $u \cdot v=0$.

Proposición. Sea $u \in \mathbb{R}^2$ \ ${ 0\}$. Entonces

$\{x \in \mathbb{R}^2 : x \cdot u =0\}=L_{u_{\perp}}:=\{ru^{\perp}: r \in \mathbb{R}\}$

Demostración

Como queremos comprobar una igualdad de conjuntos, hay que probar la doble contención. Comencemos con la contención $\supseteq$.

$\supseteq$ En esta contención, queremos demostrar que cualquier vector de la forma $ru^{\perp}$ es tal que

$(ru^{\perp}) \cdot u=0$

Tomemos un vector de la forma $ru^{\perp}$ con $r \in \mathbb{R}$ y notemos que gracias a la segunda propiedad del producto interior se cumple que

$(ru^{\perp}) \cdot u = r(u^{\perp} \cdot u)= r(0)=0 $

Esto es suficiente para la demostración de la primera contención, pues hemos probado que el producto interior de cualquier vector de la forma $ru^{\perp}$ con $u$ es cero.

$\subseteq$ Para esta contención, queremos demostrar que los vectores $x$ que cumplen $x \cdot u =0$, son de la forma $x=r u^{\perp}$. Para esto, tomemos un vector $x=(r,s)$ que cumpla la primera condición y expresemos al vector $u$ con sus coordenadas $u=(u_1,u_2)$. Al realizar el producto interior obtenemos

$x \cdot u=(r,s) \cdot (u_1,u_2)=ru_1+su_2=0 $

$\Rightarrow ru_1= -su_2 \cdots (a) $

Dado que $u \neq (0,0)$, al menos una de sus entradas es distinta de cero. Supongamos que $u_1 \neq 0$, entonces podemos despejar $r$

$r=\frac{-su_2}{u_1}$

Podemos sustituir este valor en $x$ y desarrollar para obtener

\begin{align*}
x=(r,s)&=\left( \frac{-su_2}{u_1},s \right)=s\left( \frac{-u_2}{u_1}, 1 \right) \\
&=s \left( \frac{-u_2}{u_1}, \frac{u_1}{u_1} \right) \\
&=\frac{s}{u_1} \left( -u_2, u_1 \right)
\end{align*}

Y ya está el primer caso, pues sabemos que $u^{\perp}=( -u_2, u_1)$.

Así, $x \in \mathbb{R}^2$ tal que $x \cdot u=0$, es de la forma $ru^{\perp}$, con r un escalar.

En el caso en el que $u_2 \neq 0$, tenemos algo análogo. A partir de $(a)$ podemos despejar $s$

$ ru_1= -su_2$

$s=\frac{-ru_1}{u_2}$

Al sustituir en $x$ y desarrollar obtendremos que

$x=\frac{r}{-u_2}(-u_2,u_1)$

$\square$

Aplicaciones del producto punto

Para cerrar esta entrada, usemos el producto interior para describir algunas características de las rectas y vectores.

Definición. Diremos que dos líneas $l_1$ y $l_2$ son perpendiculares si al escribirlas en forma paramétrica

$l_1=\{ p_1+rq_1 : r \in \mathbb{R} \}$

$l_2=\{ p_2+rq_2 : r \in \mathbb{R} \}$

se tiene que $q_1 \cdot q_2 =0$, esto es si sus vectores dirección son ortogonales.

Proposición. Dos vectores $u$ y $v$ son paralelos si y sólo si $u$ y $v^{\perp}$ son ortogonales, es decir si $u \cdot v^{\perp}=0$.

Demostración

Ida ($\Rightarrow$). Si $u$ y $v$ son paralelos, por definición $u=cv$ con $c \in \mathbb{R}$. Como queremos que $u$ y $v^{\perp}$ sean ortogonales, realicemos su producto interior y utilicemos las propiedades de este para desarrollar

\begin{align*}
u \cdot v^{\perp}&=(cv) \cdot v^{\perp} \\
&=c(v \cdot v^{\perp}) \\
&=c(0)=0
\end{align*}

Por lo que $u$ y $v^{\perp}$ son ortogonales.

Regreso ($\Leftarrow$). Si ahora suponemos que $u$ y $v^{\perp}$ son ortogonales, pasa que

$u \cdot v^{\perp}=0$

Pero por lo visto en la proposición de la sección anterior, esto sólo pasa cuando $u=c(v^{\perp})^{\perp}$ para algún $c \in \mathbb{R}$. Si $v=(v_1,v_2)$ esto se desarrolla como

\begin{align*}
u&=c(v^{\perp})^{\perp}=c(-v_2,v_1)^{\perp}\\
&=c(-v_1,-v_2)\\
&= -cv
\end{align*}

$\therefore$ por definición de paralelismo, $u$ y $v$ son paralelos.

$\square$

Otra cosa útil del producto punto, es que cualquier recta se puede escribir en términos de este. Precisemos esto en la siguiente proposición.

Proposición. Sea la recta $l$ en su forma paramétrica

$l=\{p+rq : r \in \mathbb{R}\}$

La recta $l$ se puede escribir usando el producto punto de la siguiente manera

$l=\{x \in \mathbb{R} ^2 : q^{\perp} \cdot x=q^{\perp} \cdot p \}$

Antes de adentrarnos en la demostración, hablemos un poco de qué significa esta proposición con ayuda del siguiente interactivo aclarando que $qT$ es el vector $q{^\perp}$.

Al definir $qT$ como el vector perpendicular a la recta, tenemos que $q$ es el vector director de esta; $p$ es el punto por el que pasa la recta y $x$ representa a los puntos en ella. Como $p$ y $qt$ son fijos, entonces $qT \cdot p$ es un número constante. Si tú mueves $x$ a lo largo de la recta, veras que el producto punto $qT \cdot x$ al cual denominamos como $a$ en GeoGebra, no varia.

Es así como expresamos la recta por medio del producto punto; el conjunto de todas los $x \in \mathbb{R}^2$ tal que el producto punto con $q^{\perp}$ ($qT$ en el interactivo) es igual a $q^{\perp} \cdot p$.

Con esto claro, procedamos a la demostración.

Demostración

Como queremos demostrar que $l$ en su forma paramétrica es el mismo conjunto que el descrito por el producto punto, tenemos que explorar las dos contenciones de los conjuntos.

$\supseteq$ Tomemos $x \in \mathbb{R}^2$ tal que $q^{\perp}\cdot x =q^{\perp}\cdot p$. De esta igualdad se tiene que

\begin{align*}
0 &= q^{\perp}\cdot x – q^{\perp}\cdot p\\
&=q^{\perp}\cdot (x-p)\\
& \Rightarrow q^{\perp}\cdot (x-p) =0
\end{align*}

Dada la última igualdad, sabemos (por la primera proposición de esta entrada) que $x-p$ debe ser un múltiplo de $(q^{\perp})^{\perp}=-q$ y por lo tanto un múltiplo de $q$; por lo que para algún $s \in \mathbb{R}$ se tiene que

\begin{align*}
x-p&=sq\\
\Rightarrow x&=p+sq
\end{align*}

$\subseteq$ Ahora partamos de un punto $x=p+rq \in$ $l$ y desarrollemos su producto punto con $q^{\perp}$ para finalizar esta demostración

\begin{align*}
q^{\perp} \cdot x &= q^{\perp} \cdot (p+rq)\\
&=(q^{\perp} \cdot p) + (q^{\perp} \cdot (rq)) \\
&= q^{\perp} \cdot p
\end{align*}

Donde la última igualdad se da gracias a que $q^{\perp} \cdot (rq)=r(q^{\perp} \cdot q)=0$.

$\therefore$ Partiendo la expresión paramétrica de la recta está contenida en la expresión con producto punto y viceversa y por lo tanto son el mismo conjunto (la misma recta).

$\square$

Más adelante…

El producto interior fungirá como herramienta para establecer las nociones de distancia y ángulo en las siguientes entradas y particularmente para definir la forma normal de la recta en la siguiente entrada.

Tarea moral

  • Completa los pocos pasos que omitimos en cada demostración o ejemplo.
  • Demuestra el teorema de las propiedades del producto interior para $n=3$.
  • Calcula el producto interior de los siguientes vectores:
    • $(4,-1)$ y $(7,2)$
    • $(-2,3,0)$ y $(4,-6,0)$
    • $(-2,3,0)$ y $(-2)(-2,3,0)$
    • $(5,0,-3,0,0)$ y $(0,4,0,-2,1)$
  • Usando la definición del producto interior, demuestra que dado $ u \in \mathbb{R}^2$ se tiene que

$u \cdot x =0$, $\forall x\in \mathbb{R}^2$

si y sólo si $u=(0,0)$.

  • Demuestra que para todos los vectores $ u \text{, }v \in \mathbb{R}^2$ y $\forall t \in \mathbb{R}$, se cumple que
    1. $(u+v)^{\perp}=u^{\perp}+v^{\perp}$
    2. $(tu^{\perp})=t(u^{\perp})$
    3. $u^{\perp} \cdot v^{\perp}=u \cdot v$
    4. $u^{\perp} \cdot v = -(u \cdot v^{\perp})$