Intro
En México recientemente tuvimos elecciones federales. Son las más importantes del país pues se eligen Presidente, Diputados y Senadores. Además, se votó por varios puestos políticos a nivel local como alcaldías y gobernaturas. Hay miles de páginas discutiendo acerca del asunto, y la intención de esta entrada no es platicar más acerca de la parte política, sino de la precisión de una de las leyes que naturalmente se discute en esta época: la permanencia de los partidos políticos.
A grandes rasgos, muchos mexicanos saben que «si suficiente gente no vota por un partido en estas elecciones, entonces ese partido desaparece». Muchas veces basta quedarse con esa idea y confiar que en las leyes esté descrito de manera precisa qué quiere decir esto. Bueno, resulta que no es así. Actualmente hay polémica de si se le quita el registro a tres o cinco partidos.
En los siguientes párrafos explicaré por qué la ley actual, tal y como está escrita, tiene un problema de ambigüedad. Pero antes de ver exactamente lo que dice la ley, daré un par de ejemplos introductorios
La diferencia entre un mal y un terrible equipo de fútbol
En general las oraciones que usamos tienen una única interpretación lógica, o una que es más natural. Si digo «corro todas las mañanas», quiere decir que sin excepción salgo a correr todas y cada una de las mañanas. Si digo «algunos días no duermo bien», quiere decir que por lo menos hay un día en el que no duermo bien.
Sin embargo, hay algunas oraciones para las cuales no hay una forma única o convenida de interpretarlas de manera lógica. Tomemos como ejemplo:
«Mi equipo en el mundial no metió goles en alguno de sus partidos»
¿Puedes ver las dos formas de interpretarla?
Esta oración se puede entender de dos maneras: como que el equipo nunca metió goles, o como que hubo un partido en el que el equipo no metió goles. Para que sean más claras ambas interpretaciones, notemos que podemos agrupar la oración así:
«Mi equipo en el mundial no [metió goles en alguno de sus partidos]»
En este caso el «no» afecta a la cláusula «[metió goles…]», y entonces se concluye que el equipo nunca metió goles. La otra agrupación posible es:
«Mi equipo en el mundial [no metió goles] en alguno de sus partidos»
Aquí «en alguno» se vuelve un cuantificador que aplica a la cláusula anterior. Dicho de otra forma, se entiende «En alguno de los partidos, mi equipo no metió goles».
Desde el punto de vista matemático, el problema con la oración es que se puso un cuantificador al final, y entonces no es obvio si la negación afecta al cuantificador, o si el cuantificador afecta a la negación.
Hay que aclarar que esto no es un error lógico, o una paradoja, o un misterio de las matemáticas. La explicación es más sencilla: antes de poder analizar una oración de manera lógica, hay que traducirla del «idioma humano» al «idioma lógico». Esta traducción es la que no siempre es perfecta. Ya que la traducción está hecha, entonces en el mundo lógico ya se puede estudiar (ahora sí sin ambigüedades) si la oración es cierta, si implica otras oraciones, etc.
Si queremos ser totalmente claros en a lo que nos referimos, la solución es muy fácil. En vez de escribir la oración como arriba, podemos decir «En todos los partidos mi equipo no metió gol», o bien «Hubo un partido en el que mi equipo no metió gol», dependiendo de lo que queramos decir.
El profesor y el estudiante que no quiere reprobar
No estaría dedicándole toda una entrada a este fenómeno si no hubiera más al respecto. Aunque de lejos parece una simple curiosidad lingüística-matemática, hay ámbitos en los que es importante dejar muy claras las cosas. Como en reglas que se ponen. Para experimentar si esto sería un verdadero problema, puse el siguiente dilema en el grupo de Matemáticos en FB, un grupo que pensé que me daría una buena idea de si la oración era realmente ambigua, o si sólo estaba exagerando en mis formas de ver una oración.
A ver, duda de la vida real. Imagínense que una regla para reprobar a un alumno es:
«El alumno reprueba si (y sólo si) no obtiene al menos 6 puntos en alguno de los problemas»
Y que el alumno obtuvo las siguientes calificaciones:
Problema 1: 4 puntos
Problema 2: 7 puntos
Problema 3: 10 puntosLa regla es ambigua, pero de acuerdo a tu interpretación, ¿el alumno:
A. pasa, por que en el P2 y P3 se rifó, o
B. reprueba, por que en al menos el P1 la regó?
¿Tú qué piensas?
Los resultados: Se creó un caos total. Bueno, más o menos. Salió gente a defender una u otra de las interpretaciones de manera lógica. En cierto sentido, todos estaban formalmente bien. Pero sólo después de que personalmente, sin darse cuenta, habían elegido una de las interpretaciones de «no obtiene al menos 6 puntos en alguno de los problemas». La oración está bajo el mismo fenómeno que platicamos antes. Se puede leer como:
No (obtiene al menos 6 puntos en alguno de los problemas),
en cuyo caso el alumno pasa o como
(No obtiene al menos 6 puntos) en alguno de los problemas,
en cuyo caso el alumno reprueba, pues en P1 no obtuvo los puntos que necesitaba.
Me parece que no agregaré mucho más al respecto de esa discusión, pues es más provechoso leerla por uno mismo. Este es el enlace: Link a discusión en Matemáticos. Después de leer los comentarios, pensé como el Chapulín Colorado: «la confusión está clarísima».
Y La Constitución, ¿qué?
El dilema del grupo de Matemáticos parece haber salido de un reglamento chafa de un profesor descuidado. Pues no. Regresemos al tema de la introducción. Todo este rollo lo empecé a pensar pues resulta que la mismísima Constitución Mexicana comete el error de ambiguëdad que ya platicamos. Del Artículo 41:
El partido político nacional que no obtenga, al menos, el tres por ciento del total de la votación válida emitida en cualquiera de las elecciones que se celebren para la renovación del Poder Ejecutivo o de las Cámaras del Congreso de la Unión, le será cancelado el registro
¡Está fatal! La diferencia entre ambas interpretaciones de ley para el caso concreto de estas elecciones es que en una se le quita el registro a cinco partidos, mientras que en la otra se le quita a sólo dos. Es una diferencia de financiamiento y de dinámica política enorme.
Ahora, me podrían decir: «Vale, vale, Leo. Pero La Constitución está sólo para indicar la ley en espíritu, y luego esto se arregla con la redacción de leyes prácticas». Nop. Citando a la Ley General de Partidos Políticos, Artículo 94:
Son causa de pérdida de registro de un partído político: (…) No obtener en la elección ordinaria inmediata anterior, por lo menos el tres por ciento de la votación válida emitida en alguna de las elecciones para diputados, senadores o Presidente
Same thing. Una joya de nuestros legisladores.
Cabe aclarar que probablemente, quien tiene la palabra final en esto, es el INE. Lo supongo pues en muchas ocasiones son ellos quienes tienen el derecho de interpretación en caso de ambigüedad. Lo que dice el INE es que hay que tomar la versión «buena ondita» para los partidos, osea, que basta con que obtengan 3% en alguna de las elecciones.
Por otro lado, como preferencia personal, me gusta más imaginar un mundo en el que los partídos políticos, para ganarse su registro, tengan que esforzarse tanto en el ámbito ejecutivo como en el legislativo. Es decir, me gustaría que se tomara la interpretación estricta de la regla en la que, para este año, cinco de los partidos perdieran su registro.
¿Y entonces?
Bueno, la ambigüedad ahí está. La verdad, no se cómo sea la legalidad del asunto, y si la interpretación actual del INE (o interpretaciones pasadas) sienta precedente de cómo se hacen las cosas. Lo preocupante es que el precedente no se deje fijo, que permanezca la ambigüedad, y que el INE, en cada edición, interprete la Ley General de Partídos Políticos a conveniencia.
En caso de que no se siente precedente, la solución es facilísima. Basta elegir cuál es la interpretación correcta, y escribirla de manera clara. Esto nos ahorrará muchas discusiones bizantinas en seis años.