Álgebra Superior II: La relación de orden en los naturales

Por Roberto Manríquez Castillo

Introducción

Seguramente desde que construimos de forma intuitiva el conjunto de números naturales, te diste cuenta de que nuestra forma de generar nuevos números a través de la función sucesor, nos daba una jerarquía de qué número natural iba primero, y quien era el que inmediatamente le seguía. Así, el primer natural debería de ser el $0$, el cual debería ser menor a todos los demás. Después, seguiría $\sigma(0)=1$ el cual debería ser menor al sucesor de cualquier otro número. Este razonamiento podría seguir de forma inductiva para los demás números.

En esta entrada abordaremos el problema de cómo organizar el conjunto de naturales. Hay varias formas de definir esta relación. Pero el trabajo que realizamos en las dos entradas pasadas nos permitirá atacar dos problemas de manera sencilla: el de definir el orden en $\mathbb{N}$ y el de demostrar sus propiedades.

El orden parcial en $\mathbb{N}$

Recordemos que si $n$ es un número natural distinto de cero, entonces $n=\{0,1,…,n-1\}$. Entonces de forma intuitiva podemos afirmar que cada número natural tienen por elementos a todos los naturales «menores» a él. Usando esta idea, podemos dar las siguientes dos definiciones.

Definición. Si $n,m\in \mathbb{N}$, decimos que $n$ es menor que $m$, en símbolos, $n<m$ si $n\in m$.

Definición. Si $n,m\in \mathbb{N}$, decimos que $n$ es menor o igual que $m$, en símbolos $n\leq m$ si $n\in m$ o $n=m$.

Antes de lanzarnos a probar propiedades de estas relaciones, comenzaremos con verificar la segunda de ellas define un orden parcial.

Teorema. La relación $\leq$ es un orden parcial en $\mathbb{N}$.

Demostración. Recordemos que según la definición de orden parcial, debemos probar que $\leq$ es reflexiva, transitiva y antisimétrica, hagamos esto por pasos.

$\leq$ es reflexiva: Si $m$ es un natural, tenemos que $m=m$, por lo que por nuestra definición, podemos escribir que $m\leq m$.

$\leq$ es transitiva: Sean $n,m,l$ naturales tales que $n\leq m$ y $m\leq l$. Debemos demostrar que $n\leq l$. Si $n=m$ o $m=l$ la conclusión es inmediata de las hipótesis. En otro caso, tenemos que que $n\in m$ y $m\in l$. Como $l$ es un número natural, es un conjunto transitivo, entonces $n\in l$, por lo que $n\leq l$.

$\leq$ es antisimétrica: Si $n,m$ son naturales tales que $n\leq m$ y $m\leq n$, debemos demostrar que $n=m$. Para ver esto, procedamos por contradicción. Supongamos que no son iguales, entonces $n\in m$ y $m\in n$. Pero como ya hemos mencionado anteriormente, el hecho de que dos conjuntos pertenezcan mutuamente al otro es contradictorio con el axioma de regularidad. Entonces debe suceder que $n=m$ como queríamos.

$\square$

Propiedades del orden en los naturales

Ya mostramos que $\leq$ es un orden parcial en $\mathbb{N}$. Probemos otras propiedades que esperamos que satisfaga. Empezamos con la que mencionamos en la introducción de la entrada.

Teorema. $0\leq n$ para todo natural $n$

Demostración. Si $n=0$, el resultado se sigue de manera automática. Si $n\neq 0$, el resultado se sigue de que ya demostramos que $0$ está en cada natural distinto de $0$.

$\square$

La siguiente propiedad que probaremos es que la función sucesor sí preserva el orden que definimos.

Teorema. Si $n,m\in\mathbb{N}$ y $n<m$, entonces $\sigma(n)<\sigma(m)$

Demostración. Procedamos por inducción sobre $m$. Para el caso base debemos probar que la afirmación $n<0\Rightarrow\sigma(n)<0$, es verdadera. Sin embargo, el antecedente siempre es falso, ya que $n<0$ quiere decir que $n\in\emptyset$ lo cual es absurdo. Como el antecedente siempre es falso, entonces la base de inducción es verdadera.

Supongamos que para alguna $m$ se tiene que si $n<m$, entonces $\sigma(n)< \sigma(m)$. Debemos probar que el resultado es cierto para $\sigma(m)$. Supongamos entonces que $n<\sigma(m)$. Debemos probar que $\sigma(n)<\sigma( \sigma(m))$.

Como $n<\sigma(m)$, tenemos que $n\in \sigma(m)=m\cup \{m\}$, así que tenemos dos casos: $n\in m$ o $n\in\{m\}$.

Si $n\in m$, por hipótesis inductiva $\sigma(n)\in \sigma(m)$. Como $\sigma(m)\in \sigma(\sigma(m))$ y los naturales son transitivos, tenemos $\sigma(n)\in \sigma(\sigma(m))$, es decir, $\sigma(n)< \sigma(\sigma(m))$, como queríamos.

Finalmente, si $n\in \{m\}$, entonces $n=m$, pero así $\sigma(n)=\sigma(n)\in \sigma(\sigma(m))$, de modo que $\sigma(n)<\sigma(\sigma(m))$, como queríamos.

$\square$

El orden en los naturales es total

De entre los órdenes parciales hay un tipo de órdenes especiales: aquellos en los que cualesquiera dos elementos se pueden comparar. A estos se les conoce como órdenes totales. Los resultados de esta sección muestran que la relación $\leq$ en $\mathbb{N}$ es un orden total.

Un paso intermedio para demostrar esto es ver que si un número natural es menor que otro, entonces la función sucesor «no nos puede llevar muy lejos».

Teorema. Si $n,m$ son naturales tales que $m<n$, entonces se tiene que $\sigma(m)\leq n$.

Demostración. La hipótesis es imposible cuando $n=0$, pues no hay ningún natural menor a cero. Así, $n$ debe ser sucesor de algún otro natural, digamos $n=\sigma(k)$.

De $m<\sigma(k)$ tenemos que $m\in k\cup \{k\}$, así que $m\in k$, o $m=k$. Si $m\in k$, entonces $m<k$ y por el teorema anterior tenemos que $\sigma(m)<\sigma(k)=n$. Si $m=k$, entonces $\sigma(m)=\sigma(k)=n$. En cualquier caso tenemos $\sigma(m)\leq n$.

$\square$

El anterior teorema es equivalente a la afirmación siguiente.

Corolario. Si $n,m\in\mathbb{N}$, son tales que $m<n$ pero es falso que $\sigma(m)< n$, entonces $\sigma(m)=n$.

En estos momentos es conveniente regresar a leer las dos pruebas de los teoremas anteriores, y notar que en las demostraciones, cuando suponíamos que era falso que $n<m$ nunca supusimos que $n\geq m$. Sólo apelábamos directamente a la negación de la definición. Haber usado $n\geq m$ hubiera sido un error. En primer lugar, porque aún no hemos definido el símbolo $\geq$. Y en segundo lugar, porque aún no hemos descartado una cuarta posibilidad: que $n$ y $m$ no sean comparables. En realidad esto es imposible, pero hay que demostrarlo. En $\mathbb{N}$ el orden es total y de hecho satisface la propiedad de tricotomía que enunciamos a continuación.

Teorema. Para cualesquiera $n$ y $m$ naturales se cumple una y sólo una de las siguientes afirmaciones

  • $n=m$
  • $n< m$
  • $m< n$

Demostración. Ya hemos demostrado mediante el axioma de regularidad que estas proposiciones son mutuamente excluyentes. Sólo queda demostrar que siempre sucede por lo menos una de ellas. Demostraremos esto por inducción sobre $n$.

El caso base se reduce a probar que para cualquier $m$, se tiene que $0=m$, $0\in m$ o $m\in 0$. El primer teorema que probamos muestra que siempre se da la primera o la segunda opción.

Supongamos ahora que el resultado es cierto para alguna $n$. Debemos probarlo para $\sigma(n)$. Entonces sea $m\in\mathbb{N}$ arbitrario. Por hipótesis de inducción, $m$ es comparable con $n$, entonces podemos considerar tres casos:

$m=n$. Este caso es trivial porque entonces $m\in\sigma(n)$.

$m< n$. De nuevo tenemos que $m\in n\in \sigma(n)$, y por transitividad (del orden o de los conjuntos), tenemos que $m\in\sigma(n)$.

$n< m$. Por el teorema anterior, tenemos que en este caso, $\sigma(n)<m$ ó $\sigma(n)=m$.

De cualquier forma $\sigma(n)$ y $m$ son comparables. Esto termina la demostración.

$\square$

Para finalizar, hacemos la observación de que definir los símbolos $>$ y $\geq$ en $\mathbb{N}$ es sencillo. Simplemente, diremos que $n\geq m$ cuando $m\leq n$. Así mismo, diremos que $n>m$ cuando $m<n$.

Más adelante…

Ya empezamos a probar las propiedades del orden en $\mathbb{N}$. Sin embargo, falta ver una de las más importantes: el principio del buen orden. Esta lo veremos en la entrada siguiente. También veremos que, en cierto sentido, es equivalente al principio de inducción.

Otra cosa más que falta es ver que el orden que definimos «se comporta bien» con las operaciones de suma y producto en $\mathbb{N}$. Esto resultará de suma importancia para entradas posteriores.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que si $n\leq m$, entonces $n<\sigma(m)$.
  2. Prueba que $n\leq m$ si y sólo si $n\subseteq m$.
  3. Generaliza el teorema de que $\in$ define un orden en $\mathbb{N}$, a que $\in$ define un orden en cualquier conjunto transitivo.
  4. Demuestra que $\leq$, restringido a $n \times n$ es un orden total en el conjunto $n$.
  5. Encuentra un conjunto $A$ con tantos elementos como números naturales y una forma de ordenarlo linealmente, tal que $A$ tiene elemento máximo.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.