Si $\phi$ es contracción entonces la sucesión $(\phi^n(x_0))_{n \in \mathbb{N}} \,$ es de Cauchy

Por Lizbeth Fernández Villegas

Introducción

En esta entrada continuaremos con la demostración del teorema de punto fijo de Banach, enunciado en la sección anterior. Vimos dos ejemplos de contracciones donde generamos una sucesión a partir de cualquier punto del espacio, evaluando la contracción recursivamente. En nuestros ejemplos observamos que la sucesión creada es convergente. ¿Lo será con cualquier contracción? Por lo pronto mostraremos que una sucesión así definida es de Cauchy.

Los puntos de la sucesión $(\phi^n(x_0))_{n \in \mathbb{N}}$ se acercan cada vez más entre sí.

Comencemos comprobándolo para el siguiente caso. Es más general que la primera función vista en Contracciones.

Ejemplo. $f(x)= \alpha x.$

En el espacio euclidiano $\mathbb{R}$ considera $f:\mathbb{R} \to \mathbb{R}$ definida como $f(x)= \alpha x,$ con $\alpha \in (0,1)$ constante. Entonces:
$$d(f(x),f(y))=d(\alpha \, x, \alpha \, y)=|\alpha \, x- \alpha \, y|= \alpha|x-y|=\alpha \, d(x,y)$$
Lo cual prueba que $f$ es contracción.

Veamos ahora que la sucesión generada al evaluar $f,$ partiendo de $x_0 \in \mathbb{R}$ es de Cauchy. Dado $x_0 \in \mathbb{R}$ tenemos:

$x_1:=f(x_0) = \alpha x_0$
$x_2:=f(x_1) = \alpha x_1 = \alpha^2 x_0$
$x_3:=f(x_2) = \alpha x_2 = \alpha^3 x_0$
.
.
.
$x_k:=f(x_{k-1}) = \alpha x_{k-1}= \alpha^k x_0$

Entonces la sucesión está dada por $(\alpha^n x_0)_{n \in \mathbb{N}}.$

A continuación, $ln(x)$ hace referencia al logaritmo natural de $x.$

Sea $\large{\varepsilon} >0$ y sea $N \in \mathbb{N}$ tal que $N > \dfrac{ln \left(\frac{\large{\varepsilon}}{|x_0|} \right)}{ln(\alpha)}.$

Como $\alpha \in (0,1), \, ln(\alpha)< 0.$ Se sigue que:

\begin{align*}
& &N \, ln(\alpha) &< ln \left(\frac{\varepsilon}{|x_0|} \right) \\
&\Rightarrow \, &exp \left(ln \left(\alpha^N \right) \right) &< exp \left( ln \left( \frac{\varepsilon}{|x_0|} \right) \right) \\
&\Rightarrow \, &\alpha^N&< \frac{\varepsilon}{|x_0|}
\end{align*}

La última desigualdad se usará en las siguientes líneas.

Sean $n,m \geq N.$ Supón sin pérdida de generalidad que $n \leq m$ entonces $\alpha^n \geq \alpha^m \geq 0 .$ Tenemos:

\begin{align*}
d(x_n,x_m) &= |x_n-x_m|\\
&=|\alpha^n x_0 \, – \, \alpha ^m x_0|\\
&= |\alpha ^n – \alpha^m||x_0|\\
&\leq \alpha ^n|x_0| \\
&\leq\alpha ^N |x_0| \\
&\leq \frac{\varepsilon}{|x_0|}|x_0| \\
&= \varepsilon
\end{align*}

Por lo tanto la sucesión $(\alpha^n x_0)_{n \in \mathbb{N}} \,$ es de Cauchy.

Pasemos a demostrar el caso general:

Proposición: Sea $(X,d)$ un espacio métrico, $\phi : X \to X$ una contracción con constante $\alpha \in (0,1)$ y sea $x_0 \in X.$ Entonces la sucesión $(\phi^n(x_0))_{n \in \mathbb{N}} \,$ es de Cauchy en $X.$

Demostración:
Comencemos con un análisis entre distancias de los primeros pares de puntos de la sucesión.

\begin{align*}
&d(x_1,x_2) = d(\phi(x_0),\phi(x_1)) &\leq \alpha d(x_0,x_1) \\
&d(x_2,x_3)=d(\phi(x_1),\phi(x_2)) \leq \alpha d(x_1,x_2) \leq \alpha (\alpha d(x_0,x_1)) &= \alpha^2 d(x_0,x_1)\\
&d(x_3,x_4) =d(\phi(x_2), \phi(x_3)) \leq \alpha d(x_2,x_3) \leq \alpha(\alpha^2d(x_0,x_1)) &= \alpha^3d(x_0,x_1)
\end{align*}

Por inducción sobre $n$ podemos concluir que la distancia entre cualquier punto de la sucesión y el siguiente está limitada por

\begin{equation}
d(x_n,x_{n+1})=d(x_n, \phi(x_n)) \leq \alpha^n d(x_0,x_1)
\end{equation}

Pasemos a probar que $(\phi^n(x_0))_{n \in \mathbb{N}} \,$ es de Cauchy en $X.$

Sea $\varepsilon>0$ y $N \in \mathbb{N}$ tal que $N \geq \, \dfrac{ln \left(\dfrac{\varepsilon(1- \alpha)}{d(x_0,x_1)}\right)}{ln (\alpha)}.$ Entonces si $n > N:$

\begin{align*}
& &n &> \dfrac{ln \left(\dfrac{\varepsilon(1- \alpha)}{d(x_0,x_1)}\right)}{ln (\alpha)} \\
&\Rightarrow & n \, ln (\alpha) &< ln \left(\dfrac{\varepsilon(1- \alpha)}{d(x_0,x_1)}\right) \\
&\Rightarrow & ln (\alpha^n) &< ln \left(\dfrac{\varepsilon(1- \alpha)}{d(x_0,x_1)}\right) \\
&\Rightarrow & exp(ln (\alpha^n)) &< exp \left(ln \left(\dfrac{\varepsilon(1- \alpha)}{d(x_0,x_1)}\right) \right) \\
&\Rightarrow & \alpha^n &< \dfrac{\varepsilon(1- \alpha)}{d(x_0,x_1)}
\end{align*}


\begin{equation}
\Rightarrow \, \dfrac{\alpha^n}{1- \alpha} d(x_0,x_1) < \large{\varepsilon}
\end{equation}

Sean $n,m \in \mathbb{N} \,$ tales que $n,m > N.$ Sin pérdida de generalidad supón que $m \geq n.$ Entonces $m \, = \, n+p$ para algún $p \in \mathbb{N}.$ A partir de la desigualdad del triángulo sabemos que la distancia entre el punto $x_n$ y el punto $x_m=x_{n+p}$ es menor igual que la suma de las distancias de todos los puntos de la sucesión que están entre ellos dos.

La distancia entre $x_n$ y $x_m$ es menor igual que la suma de todas las demás.

Se sigue:

\begin{align*}
d(x_n,x_m) &= d(x_n,x_{n+p})\\
&\leq d(x_n,x_{n+1}) +d(x_{n+1},x_{n+2}) …+ d(x_{n+p-2},x_{n+p-1})+d(x_{n+p-1},x_{n+p})\\
&\leq \alpha^n d(x_0,x_1) +\alpha^{n+1} d(x_0,x_1)+…+ \alpha^{n+p-2} d(x_0,x_1)+\alpha^{n+p-1} d(x_0,x_1) \text{ por ec. $(1)$}\\
&= (\alpha^n +\alpha^{n+1} +…+ \alpha^{n+p-2} +\alpha^{n+p-1} ) \, d(x_0,x_1) \\
&=\alpha^n \, (1+\alpha +…+\alpha^{p-2}+\alpha^{p-1}) \, d(x_0,x_1)
\end{align*}

Nota que $1+\alpha +…+\alpha^{p-2}+\alpha^{p-1}$ es la suma de los primeros términos de la serie $\sum_{k=0}^{\infty}\, \alpha^k.$ Probablemente has visto en otros cursos que ésta es una serie convergente y que $\sum_{k=0}^{\infty}\, \alpha^k \, = \dfrac{1}{1-\alpha}$, pues $|\alpha|<1$. Puedes consultarlo en la sección Cálculo Diferencial e Integral II: Series Geométricas. Entonces:

$$1+\alpha +…+\alpha^{p-2}+\alpha^{p-1} \leq \sum_{k=0}^{\infty}\, \alpha^k \, = \dfrac{1}{1-\alpha}$$

De modo que

\begin{align*}
\alpha^n \, (1+\alpha +…+\alpha^{p-2}+\alpha^{p-1}) \, d(x_0,x_1) &\leq \alpha^n \, \sum_{k=0}^{\infty}\, \alpha^k \, d(x_0,x_1) \\
&\leq \alpha^n \frac{1}{1- \alpha} \, d(x_0,x_1)\\
&< \varepsilon \text{ por ec. (2)}
\end{align*}

Por lo tanto $d(x_n,x_m) < \varepsilon \, $ lo cual demuestra que $(\phi^n(x_0))_{n \in \mathbb{N}} \,$ es una sucesión de Cauchy.

Más adelante

Terminaremos con la prueba del teorema de punto fijo de Banach. Mostraremos condiciones bajo las cuales esta sucesión de Cauchy es convergente y cómo aproximar la sucesión al punto de convergencia.

Tarea moral

  1. Da un ejemplo de un espacio métrico completo y una función $\phi: X \to X$ que satisface que para cada $x,y \in X$ con $x \neq y, \, d(\phi(x), \phi(y)) < d(x,y)$ y que no tiene ningún punto fijo.
  2. Prueba que si $X$ es un espacio métrico compacto y $\phi: X \to X$ satisface que para cada $x,y \in X$ con $x \neq y, \, d(\phi(x), \phi(y)) < d(x,y)$ entonces $\phi$ tiene un único punto fijo.

Enlaces

Geometría Moderna II: Teorema de Pascal, Brianchon y Pappus

Por Armando Arzola Pérez

Introducción

Tres teoremas importantes en la razón cruzada son el Teorema de Pascal, Brianchon y Pappus. Con estos se muestran propiedades de colinealidad y concurrencia.

Teorema de Pascal

Teorema. Sea un hexágono inscrito en una circunferencia, los puntos de intersección de sus lados opuestos son colineales.

Demostración. Sea el hexágono inscrito $ABCDEF$ en la circunferencia $O$, donde sus lados opuestos $AB,DE$, $BC,EF$ y $CD,FA$ se intersecan en los puntos $P,Q$ y $R$ son colineales. Ahora $FA$ interseca a $DE$ en $H$ y $EF$ interseca a $CD$ en $K$.

Pascal 1

Por propiedades de razón cruzada en la circunferencia se tiene $A\{EDBF\}=C\{EDBF\}$ y por lo cual $\{EDPH\}=\{EKQF\}$, como se observa en la siguiente imagen.

Pascal 2


Así mismo se tiene que al unir $R$ con estos puntos se cumple la propiedad $R\{EDPH\}=R\{EKQF\}$. Donde $RE$ coincide con $RE$, $RD$ coincide con $RK$ y $RH$ coincide con $RF$, por ende estos dos haces coinciden en la primera, segunda y cuarta recta, y al tener 3 rectas y una constante distinta de -1, es posible construir una única cuarta recta tal que la razón cruzada sea la constante elegida por ello $RP$ coincide con $RQ$. Y, por lo tanto, $PQR$ son colineales y a esta es la línea de Pascal del hexágono.

Pascal 3

$\square$

Teorema de Brianchon

Este es un teorema dual al de Pascal, el cual es aplicable a hexágonos circunscritos a cualquier sección cónica. En nuestro caso se mostrará para una circunferencia.

Teorema. Sea un hexágono circunscrito a una circunferencia, entonces las líneas que unen sus vértices opuestos son concurrentes.

Demostración. Sea el hexágono $ABCDEF$ circunscrito a la circunferencia $O$, ahora los puntos de tangencia de los lados del hexágono $ABCDEF$ son los vértices del hexágono $A’B’C’D’E’F’$.

Brianchon 1

Si observamos los lados opuestos del hexágono $A’B’C’D’E’F’$ estos se intersecan de la siguiente forma:

  • $A’B’$ y $D’E’$ en $P$
  • $B’C’$ y $E’F’$ en $Q$
  • $C’D’$ y $F’A’$ en $R$
Brianchon 2

Por propiedad de los Polos y Polares, las polares de $A$ y $D$ pasan por $P$ y la polar de $P$ es $AD$. De igual forma, la polar de $Q$ es $BE$ y la polar de $R$ es $CF$, y por el Teorema de Pascal el hexágono inscrito $A’B’C’D’E’F’$ los puntos de intersección de sus lados opuestos $P$, $Q$ y $R$ son colineales, y por lo cual sus polares $AD$, $BE$ y $CF$ son concurrentes y a este es el punto de Brianchon.

Brianchon 3

$\square$

Teorema de Pappus

Teorema. Si los vértices de un hexágono están alternativamente en dos líneas rectas, entonces la intersección de los pares de lados opuestos genera puntos los cuales son colineales.

Demostración. Este es un caso especial del Teorema de Pascal para un hexágono inscrito en una sección cónica. Sea el hexágono $ABCDEF$, donde la intersección de los lados opuestos son:

  • $AB$ y $DE$ en $P$
  • $BC$ y $EF$ en $Q$
  • $CD$ y $FA$ en $R$

Se tiene que $AF$ interseca a $ED$ en $H$, y $EF$ interseca a $CD$ en $K$.

Pappus 1

Por lo cual $A\{EBDF\}$ es igual a $C\{EBDF\}$, entonces $\{EPDH\}=\{EQKF\}$.

Pappus 2

Uniendo $RQ$ los cuatro puntos de las líneas $ED$ y $EF$, se tiene que $R\{EPDH\}=R\{EQKF\}$.
Ahora como $RE$ coincide con $RE$, $RD$ coincide con $RK$ y $RH$ coincide con $RF$, entonces $RP$ y $RQ$ coinciden, por lo tanto, $P$, $Q$ y $R$ son colineales.

Pappus 3

$\square$

Más adelante…

Otro tema interesante por abordar es la involución tanto en Hileras de puntos como Haces de líneas.

Entradas relacionadas

Mutiplicadores de Lagrange

Por Angélica Amellali Mercado Aguilar

$\textcolor{Red}{\textbf{Extremos Restringidos (Multiplicadores de Lagrange)}}$

Supongase que se quieren hallar los valores extremos (máximo ó mínimo) de una función $f(x,y)$ sujeta a la restircción $x^2+y^2=1$; esto es, que $(x,y)$ está en el circulo unitario. Con mayor generalidad, podemos necesitar maximizar o minimizar $f(x,y)$ sujeta a la condición adicional de que $(x,y)$ también satisfaga una ecuación $g(x,y)=c$ donde $g$ es alguna función y $c$ es una constante. En el ejemplo $g(x,y)=x^2+y^2$ y $c=1$]. El conjunto de dichas $(x,y)$ es un conjunto de nivel de $g$.

En general, sean $f:u\subset \mathbb{R}^n\rightarrow \mathbb{R}$ y $g: u\subset \mathbb{R}^n\rightarrow \mathbb{R}$ funciones $C^1$ dadas, y sea $S$ el conjunto de nivel de $g$ con valor $c$. Recordar que el conjunto de nivel son los puntos $x\in
\mathbb{R}^n$ con $g(x)=c$] Cuando $f$ se restringe a $S$, de nuevo tenemos el concepto de máximos locales o mínimos locales de $f$ (extremos locales), y un máximo (valor mayor) o un minimo absoluto (valor menor) debe ser un extremo local.

$\textbf{Teorema.- Método de los multiplicadores de lagrange.}$ Sean $f:u\subset \mathbb{R}^n\rightarrow \mathbb{R}$ y $g: u\subset \mathbb{R}^n\rightarrow \mathbb{R}$ funciones $C^1$ con valores reales dados. Sean $x_0 \in u$ y $g(x_0)=c$, y sea $S$ el conjunto de nivel de $g$ con valor $c$. Suponer $\nabla g(x_0)\neq 0$.
Si $f|_s$ (f restringida a s) tiene un máximo o un mínimo local en $S$, en $x_0$, entonces existe un número real $\lambda$ tal que $\nabla f(x_0)=\lambda\nabla g(x_0)$.

$Demostrción$ Para $n=3$ el espacio tangente o plano tangente de $S$ en $x_0$ es el
espacio ortogonal a $\nabla g(x_0)$ y para $n$ arbitraria podemos dar la misma definición de espacio tangente de $S$ en $x_0$. Esta definición se puede motivar al considerar tangentes a trayectorias $c(t)$ que estan en $s$, como sigue: si $c(t)$ es una trayectoria en $S$ y $c(0)=x_0$, entonces $c'(0)$ es un vector tangente a $S$ en $x_0$, pero $$\frac{dg(c(t))}{dt}=\frac{d}{dt}(c)=0$$
Por otro lado usando regla de la cadena
$$\left.\frac{d}{dt}g(c(t))\right|_{t=0}=\nabla g(x_0)\cdot c'(0)$$
de manera que $\nabla g(x_0)\cdot c'(0)=0$, esto es, $c'(0)$ es ortogonal a $\nabla g(x_0)$.

Si $f|s$ tiene un máximo en $x_0$, entonces $f(c(t))$ tiene un máximo en $t=0$. Por cálculo de una variable, $\displaystyle\left.\frac{df(c(t))}{dt}\right|{t=0}=0$. Entonces por regla de la cadena $$0=\displaystyle\left.\frac{df(c(t))}{dt}\right|_{t=0}=\nabla f(x_0)\cdot c'(0)$$
Asi, $\nabla f(x_0)$ es perpendicular a la tangente de toda curva en $S$ y entonces tambien es perpendicular al espacio tangente completo de $S$ en $x_0$. Como el espacio perpendicular a este espacio tangente es una recta, $\nabla f(x_0)$ y $\nabla
g(x_0)$ son paralelos. Como $\nabla g(x_0)\neq 0$, se deduce que $\nabla f(x_0)$ es multiplo de $\nabla g(x_0)$.

$\textbf{Corolario.}$ Si $f$ al restringirse a una superficie $S$, tiene un máximo o un mínimo local en $x_0$, entonces $\nabla f(x_0)$ es perpendicular a $S$ en $x_0$.La geometria de los valores extremos restringidos.

$\textbf{Ejemplo.}$ Sea $S\subset\mathbb{R}^2$ la recta que pasa por $(-1,0)$ inclinada a $45^{o}$, y sea $f:\mathbb{R}^2 \rightarrow \mathbb{R}$ daa asi $f(x,y)=x^2+y^2$. Hallar los extremos de $f|_s$.

$Solución.$ Aqui $S=\left\{(x,y) | y-x-1=0 \right\}$ y por lo tanto hacemos $g(x,y)=-y-x-1$ y $c=0$. Tenemos $\nabla g(x,y)=-i+j \neq 0$. Los extremos relativos de $f|_s$ deben hallarse entre los puntos en que $\nabla f$ es ortogonal a $S$, esto es, inclinada a $-45^{o}$. Pero $\nabla f (x,y)=(2x.2y)$, que tiene la pendiente deseada sólo cuando $x=-y$, o cuando $(x,y)$ está sobre la recta L, que pasa por el origen inlinada a $-45^{o}$. Esto puede suceder en el conjunto $S$ sólo para el unico punto en
el que se intersecan L y S. Al referirnos a las curvas de nivel de $f$ se indica que este punto $(-\frac{1}{1},\frac{1}{2})$ es un mínimo relativo de $f|_s$ (Pero no de $f$).

$\textbf{Ejemplo.}$ Sea $f:\mathbb{R}^2\rightarrow \mathbb{R}$ dada asi $f(x,y)=x^2-y^2$ y sea $S$ el círculo de radio 1 alrededor del origen. Hallar los extremos de $f|_s$.

$Solución.$ El conjunto $S$ es la curva de nivel para $g$ con valor $t$. Donde $g:\mathbb{R}^2\rightarrow \mathbb{R}$, $(x,y) \rightarrow x^2+y^2$. La condición de que $\nabla f=\lambda \nabla g$ en $x_0$, es decir que $\nabla f$ y $\nabla g$ son pararlelos en $x_0$, es la misma que las curvas de nivel sean tangentes en $x_0$. Asi los puntos extremos de $f |_s$ son $(0,\pm 1)$ y $(\pm1,0)$. Evaluando $f$ hallamos que $(0,\pm 1)$ son mínimos y $(\pm1,0)$ son máximos. Usando Multiplicadores de
lagrange $\nabla f(x,y)=(2x,2y)$ y $\nabla g(x,y)=(2x,2y)$\ $\therefore$ \quad $(2x,-2y)=\lambda(2x,2y)$ cuya solución es $(0,\pm 1)$, $(\pm1,0)$.

$\textbf{Ejemplo.}$ Maximizar la función $f(x,y,z)=x+z$ sujeta a la restricción $x^2+y^2+z^2=1$

$Solución.$ Buscamos $\lambda$ y $(x,y,z)$ tales que $1=2x\lambda$, $0=2y\lambda$ y $1=2z\lambda$ $x^2+y^2+z^2=1$ la solución es $(\frac{1}{\sqrt{2}},0,\frac{1} {\sqrt{2}})$, $(-\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}})$ comprobando los valores de $f$ en estos puntos podemos ver que el primer punto produce el máximo de $f$ y el segundo el mínimo.

$\textbf{Ejemplo.}$ Hallar los puntos extremos de $f(x,y,z)=x+y+z$ sujeto a las dos condiciones $x^2+y^2=2$ y $x+z=1$

$Solución.$ Aquí hay dos restricciones $g_1=(x,y,z)=x^2+y^2-2=0$ $g_2(x,y,z)=x+z-1=0$ asi, debemos encontrar $x,y,z,\lambda_1$ y $\lambda_2$ tales que $$\nabla f(x,y,z)=\lambda_1 \nabla g (x,y,z)+ \lambda_2 \nabla g_2(x,y,z)$$
$$g_1(x,y,z)=0 \quad y \quad g_2(x,y,z)=0$$
Calculando gradientes e igualando componentes, obtenemos


$\begin{eqnarray}
1=\lambda_1\cdot 2x+\lambda_2\cdot 1\\
1=\lambda_1 2y+\lambda_2\cdot 0\\
1=\lambda_1\cdot 0 + \lambda_2\cdot 1\\
x^2+y^2=2\\
x+z=1
\end{eqnarray}$


De (3) $\lambda_2=1$ y asi $2x\lambda_1=0$, $2y\lambda_1=1$.

Como la segunda implica $\lambda_1\neq 0$ $x=0$. Asi $y=\pm\sqrt{2}$ y $z=1$. Entonces los extremos deseados son $(0,\pm\sqrt{2},1)$.

Por inspección $(0,\sqrt{2},1)$ da un máximo relativo y $(0,-\sqrt{2},1)$ un mínimo relativo.

La condición $x+z=1$ implica que $z$ tambien está acotada. Se deduce que el conjunto de restricciones $S$ es cerrada y acotada,

Por lo tanto $f$ tiene un máximo y un mínimo en $S$ que se deben alcanzar en $(0,\sqrt{2},1)$ y $(0,-\sqrt{2},1)$ respectivamente.

Extremos Locales (parte 2)

Por Angélica Amellali Mercado Aguilar

Extremos Locales parte 2 pequeño

Para el caso de funciones $f:\mathbb{R}^{3}\rightarrow\mathbb{R}$ tenemos que recordando un poco de la expresión de taylor
$$f(x,y)=f(x_{0},y_{0})+\left(\frac{\partial f}{\partial x}\right){p}(x-x_{0})+\left(\frac{\partial f}{\partial y}\right){p}(y-y_{0})+\left(\frac{\partial f}{\partial z}\right){p}(z-z_{0})+$$

$$\textcolor{Red}{\frac{1}{2!}\left(\frac{\partial^{2}f}{\partial
x^{2}}{p}(x-x_{0})^{2}+2\frac{\partial^{2}f}{\partial x \partial
y}{p}(x-x_{0})(y-y_{0})+\frac{\partial^{2}f}{\partial
y^{2}}{p}(y-y_{0})^{2}+2\frac{\partial^{2}f}{\partial
x\partial z}{p}(z-z_{0})(x-x_{0})+2\frac{\partial^{2}f}{\partial
y\partial z}{p}(z-z_{0})(y-y_{0})\right)}$$
$$\textcolor{Red}{+\frac{\partial^{2}f}{\partial
z^{2}}{p}(z-z_{0})}$$

Haciendo $x-x_{0}=h_{1},y-y_{0}=h_{2},z-z_{0}=h_{3}$ podemos escribir el término rojo de la siguiente manera
$$\frac{1}{2!}\left(\frac{\partial^{2}f}{\partial x^{2}}h_{1}^{2}+2\frac{\partial^{2}f}{\partial x\partial y}h_{1}h_{2}+\frac{\partial^{2}f}{\partial y^{2}}h_{2}^{2}+2\frac{\partial^{2}f}{\partial x\partial z}h_{3}h_{1}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}\right)$$

y también se puede ver como producto de matrices
$$\frac{1}{2!}(h_{1}~h_{2}~h_{3})\left(\begin{matrix}\frac{\partial^{2}f}{\partial
x^{2}}&\frac{\partial^{2}f}{\partial y\partial x}&\frac{\partial^{2}f}{\partial z\partial x}\\\frac{\partial^{2}f}{\partial x\partial y}&\frac{\partial^{2}f}{\partial
y^{2}}&\frac{\partial^{2}f}{\partial z\partial y}\\\frac{\partial^{2}f}{\partial
x\partial z}&\frac{\partial^{2}f}{\partial y\partial z}&\frac{\partial^{2}f}{\partial z^{2}}\end{matrix}\right){p}\left(\begin{matrix}h{1}\\h_{2}\\h_{3}\end{matrix}\right)$$

Si $(x_{0},y_{0},z_{0})$ es un punto critico de la función entonces en la expresión de Taylor
$$f(x,y)=f(x_{0},y_{0})+\left(\frac{\partial f}{\partial
x}\right){p}(x-x_{0})+\left(\frac{\partial f}{\partial
y}\right){p}(y-y_{0})+\left(\frac{\partial f}{\partial
z}\right){p}(z-z_{0})$$
$$\textcolor{Red}{\frac{1}{2!}\left(\frac{\partial^{2}f}{\partial
x^{2}}{p}(x-x_{0})^{2}+2\frac{\partial^{2}f}{\partial x \partial
y}{p}(x-x_{0})(y-y_{0})+\frac{\partial^{2}f}{\partial
y^{2}}{p}(y-y{0})^{2}+2\frac{\partial^{2}f}{\partial
x\partial z}{p}(z-z{0})(x-x_{0})+2\frac{\partial^{2}f}{\partial
y\partial z}{p}(z-z_{0})(y-y_{0})\right)}$$
$$\textcolor{Red}{+\frac{\partial^{2}f}{\partial
z^{2}}{p}(z-z_{0})(x-x_{0})}$$

El término
$$\frac{\partial f}{\partial x}{p}(x-x_{0})+\frac{\partial f}{\partial y}{p}(y-y_{0})+\frac{\partial f}{\partial z}{p}(z-z_{0})=0$$
y por lo tanto
$$f(x,y)-f(x_{0},y_{0})=\frac{1}{2!}(h_{1}~h_{2}~h_{3})\left(\begin{matrix}\frac{\partial^{2}f}{\partial
x^{2}}&\frac{\partial^{2}f}{\partial
y\partial x}&\frac{\partial^{2}f}{\partial
z\partial x}\\\frac{\partial^{2}f}{\partial
x\partial y}&\frac{\partial^{2}f}{\partial
y^{2}}&\frac{\partial^{2}f}{\partial
z\partial y}\\\frac{\partial^{2}f}{\partial
x\partial z}&\frac{\partial^{2}f}{\partial
y\partial z}&\frac{\partial^{2}f}{\partial
z^{2}}\end{matrix}\right){p}\left(\begin{matrix}h{1}\\h_{2}\\h_{3}\end{matrix}\right)$$
vamos a determinar el signo de la forma
$$Q(h)=\frac{1}{2!}(h_{1}~h_{2}~h_{3})\left(\begin{matrix}\frac{\partial^{2}f}{\partial
x^{2}}&\frac{\partial^{2}f}{\partial
y\partial x}&\frac{\partial^{2}f}{\partial
z\partial x}\\\frac{\partial^{2}f}{\partial
x\partial y}&\frac{\partial^{2}f}{\partial
y^{2}}&\frac{\partial^{2}f}{\partial
z\partial y}\\\frac{\partial^{2}f}{\partial
x\partial z}&\frac{\partial^{2}f}{\partial
y\partial z}&\frac{\partial^{2}f}{\partial
z^{2}}\end{matrix}\right){p}\left(\begin{matrix}h{1}\\h_{2}\\h_{3}\end{matrix}\right)$$

vamos a trabajar sin el término $\displaystyle{\frac{1}{2!}}$ que no afectara al signo de la expresión, tenemos entonces

$$Q(h)=(h_{1}~h_{2}~h_{3})\left(\begin{matrix}\frac{\partial^{2}f}{\partial
x^{2}}&\frac{\partial^{2}f}{\partial
y\partial x}&\frac{\partial^{2}f}{\partial
z\partial x}\\\frac{\partial^{2}f}{\partial
x\partial y}&\frac{\partial^{2}f}{\partial
y^{2}}&\frac{\partial^{2}f}{\partial
z\partial y}\\\frac{\partial^{2}f}{\partial
x\partial z}&\frac{\partial^{2}f}{\partial
y\partial z}&\frac{\partial^{2}f}{\partial
z^{2}}\end{matrix}\right){p}\left(\begin{matrix}h{1}\\h_{2}\\h_{3}\end{matrix}\right)=\textcolor{Red}{\frac{\partial^{2}f}{\partial x^{2}}h_{1}^{2}+2\frac{\partial^{2}f}{\partial x\partial y}h_{1}h_{2}+\frac{\partial^{2}f}{\partial y^{2}}h_{2}^{2}}+2\frac{\partial^{2}f}{\partial x\partial z}h_{3}h_{1}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$


$$=\textcolor{Red}{\frac{\partial^{2}f}{\partial x^{2}}\left(h_{1}+\frac{\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}h_{2}\right)^{2}+\left(\frac{\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}}\right)h_{2}^{2}}+2\frac{\partial^{2}f}{\partial x\partial z}h_{3}h_{1}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$

$$=\textcolor{Red}{\frac{\partial^{2}f}{\partial x^{2}}\left(h_{1}+\frac{\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}h_{2}\right)^{2}+\left(\frac{\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}}\right)h_{2}^{2}}+2\frac{\partial^{2}f}{\partial x\partial z}h_{3}h_{1}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$

hacemos $\displaystyle{b_{1}=\frac{\partial^{2}f}{\partial x^{2}},h_{1}’=\left(h_{1}+\frac{\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}h_{2}\right),b_{2}=\frac{\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}},~~h_{2}’=h_{2}}$ y obtenemos
$$=b_{1}h_{1}’^{2}+b_{2}h_{2}’^{2}+2\frac{\partial^{2}f}{\partial x\partial z}h_{3}h_{1}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$
que podemos escribir

$$=b_{1}h_{1}’^{2}+b_{2}h_{2}’^{2}+2\frac{\partial^{2}f}{\partial x\partial z}\left(h_{1}+\frac{\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}h_{2}-\frac{\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}h_{2}\right)h_{3}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$
$$=b_{1}h_{1}’^{2}+b_{2}h_{2}’^{2}+2\frac{\partial^{2}f}{\partial x\partial z}\left(h_{1}’-\frac{\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}h_{2}’\right)h_{3}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$
$$=b_{1}h_{1}’^{2}+b_{2}h_{2}’^{2}+2\frac{\partial^{2}f}{\partial x\partial z}h_{1}’h_{3}+\left(2\frac{\partial^{2}f}{\partial y\partial z}-\frac{2\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}\right)h_{2}’h_{3}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$
hacemos

$$2b_{23}=2\frac{\partial^{2}f}{\partial y\partial z}-\frac{2\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}$$y obtenemos
$$=b_{1}h_{1}’^{2}+b_{2}h_{2}’^{2}+2\frac{\partial^{2}f}{\partial x\partial z}h_{1}’h_{3}+2b_{23}h_{2}’h_{3}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$
que se puede escribir

$$=b_{1}\left(h_{1}’^{2}+2\frac{\frac{\partial^{2}f}{\partial x\partial z}}{b_{1}}h_{1}’h_{3}+\left(\frac{\frac{\partial^{2}f}{\partial x\partial z}h_{3}}{b_{1}}\right)^{2}\right)+b_{2}\left(h_{2}’^{2}+2\frac{b_{23}}{b_{2}}h_{2}’h_{3}+\left(\frac{b_{23}}{b_{2}}h_{3}\right)^{2}\right)+\left(\frac{\partial^{2}f}{\partial z^{2}}-\frac{\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{b_{1}}-\frac{b_{23}^{2}}{b_{2}}\right)h_{3}^{2}$$
hacemos
$$b_{3}=\frac{\partial^{2}f}{\partial z^{2}}-\frac{\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{b_{1}}-\frac{b_{23}^{2}}{b_{2}}$$
y obtenemos

$$=b_{1}\left(h_{1}’^{2}+2\frac{\frac{\partial^{2}f}{\partial x\partial z}}{b_{1}}h_{1}’h_{3}+\left(\frac{\frac{\partial^{2}f}{\partial x\partial z}h_{3}}{b_{1}}\right)^{2}\right)+b_{2}\left(h_{2}’^{2}+2\frac{b_{23}}{b_{2}}h_{2}’h_{3}+\left(\frac{b_{23}}{b_{2}}h_{3}\right)^{2}\right)+b_{3}h_{3}^{2}$$
$$=b_{1}\left(h_{1}’+\frac{\frac{\partial^{2}f}{\partial x\partial z}}{b_{1}}h_{3}\right)^{2}+b_{2}\left(h_{2}’+\frac{b_{23}}{b_{2}}h_{3}\right)^{2}+b_{3}h_{3}^{2}$$
esta última expresión será positiva si y solo si $b_{1}>0~~b_{2}>0$ y $b_{3}>0$ en clases pasadas vimos los dos primeros, veamos ahora que $$b_{3}=\frac{\partial^{2}f}{\partial z^{2}}-\frac{\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{b_{1}}-\frac{b_{23}^{2}}{b_{2}}>0$$
tenemos entonces que

$$\frac{\partial^{2}f}{\partial z^{2}}-\frac{\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{b_{1}}-\frac{b_{23}^{2}}{b_{2}}=\frac{\partial^{2}f}{\partial z^{2}}-\frac{\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{\frac{\partial^{2}f}{\partial z^{2}}}-\frac{\left(\frac{\partial^{2}f}{\partial y\partial z}-\frac{2\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}\right)^{2}}{\frac{\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}}}$$

$$=\frac{\frac{\partial^{2}f}{\partial z^{2}}\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}}-\frac{\frac{\left(\frac{\partial^{2}f}{\partial y\partial z}\frac{\partial^{2}f}{\partial x^{2}}-\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\left(\frac{\partial^{2}f}{\partial x^{2}}\right)^{2}}}{\frac{\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}}}=\frac{\frac{\partial^{2}f}{\partial z^{2}}\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}}-\frac{\left(\frac{\partial^{2}f}{\partial y\partial z}\frac{\partial^{2}f}{\partial x^{2}}-\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\left(\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}\right)\frac{\partial^{2}f}{\partial x^{2}}}$$

$$=\frac{\left(\frac{\partial^{2}f}{\partial z^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}\right)\left(\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}\right)-\left(\frac{\partial^{2}f}{\partial y\partial z}\frac{\partial^{2}f}{\partial x^{2}}-\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}\right)}$$

$$=\frac{\frac{\partial^{2}f}{\partial z^{2}}\frac{\partial^{2}f}{\partial x^{2}}\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\frac{\partial^{2}f}{\partial z^{2}}\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}-\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}+\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}-\left(\frac{\partial^{2}f}{\partial y\partial z}\right)^{2}\left(\frac{\partial^{2}f}{\partial x^{2}}\right)^{2}-}{\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}\right)}$$

$$\frac{2\left(\frac{\partial^{2}f}{\partial x^{2}}\frac{\partial^{2}f}{\partial y\partial z}\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}\right)-\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}\right)}$$
$$=\frac{\frac{\partial^{2}f}{\partial z^{2}}\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\frac{\partial^{2}f}{\partial z^{2}}\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}-\frac{\partial^{2}f}{\partial y^{2}}\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}-\left(\frac{\partial^{2}f}{\partial y\partial z}\right)^{2}\frac{\partial^{2}f}{\partial x^{2}}+2\frac{\partial^{2}f}{\partial y\partial z}\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}$$
$$=\frac{\left|\begin{matrix}\frac{\partial^{2}f}{\partial x^{2}}&\frac{\partial^{2}f}{\partial y\partial x}&\frac{\partial^{2}f}{\partial z\partial x}\\\frac{\partial^{2}f}{\partial x\partial y}&\frac{\partial^{2}f}{\partial y^{2}}&\frac{\partial^{2}f}{\partial z\partial y}\\\frac{\partial^{2}f}{\partial x\partial z}&\frac{\partial^{2}f}{\partial y\partial z}&\frac{\partial^{2}f}{\partial z^{2}}\end{matrix}\right|}{\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}$$

por lo tanto
$$b_{3}>0~\Leftrightarrow~\left|\begin{matrix}\frac{\partial^{2}f}{\partial x^{2}}&\frac{\partial^{2}f}{\partial y\partial x}&\frac{\partial^{2}f}{\partial z\partial x}\\\frac{\partial^{2}f}{\partial x\partial y}&\frac{\partial^{2}f}{\partial y^{2}}&\frac{\partial^{2}f}{\partial z\partial y}\\\frac{\partial^{2}f}{\partial x\partial z}&\frac{\partial^{2}f}{\partial y\partial z}&\frac{\partial^{2}f}{\partial z^{2}}\end{matrix}\right|>0$$

Definición 1. La forma $Q(x)=xAx^{t}$, que tiene asociada la matriz A (respecto a la base canónica de $\mathbb{R}^{n}$) se dice:
$\textcolor{Red}{\textbf{Definida positiva}}$, si $Q(x)>0~\forall x \in~\mathbb{R}^{n}$
La forma $Q(x)=xAx^{t}$, que tiene asociada la matriz A (respecto a la base canónica de $\mathbb{R}^{n}$) se dice:
$\textcolor{Red}{\textbf{Definida negativa}}$, si $Q(x)<0~ \forall x \in~\mathbb{R}^{n}$

Definición 2. Si la forma $Q(x)=xAx^{t}$ es definida positiva, entonces f tiene un mínimo local en en x.
Si la forma $Q(x)=xAx^{t}$ es definida negativa, entonces f tiene un máximo local en en x.

Hay criterios similares para una matriz simetrica $A$ de $n\times n$ y consideramos las $n$ submatrices cuadradas a lo largo de la diagonal, $A$ es definida positiva si y solo si los determinantes de estas submatrices diagonales son todos mayores que cero. Para $A$ definida negativa los signos deberan alternarse $<0$ y $>0$. En casi de que los determinantes de las submatrices diagonales sean todos diferentes de cero pero que la matrix no sea definida positiva o negativa, el punto crítico es tipo silla. Y por lo tanto el punto no es máximo ni mínimo. Asi tenemos el siguiente resultado.

Definición 3. Dada una matriz cuadrada $A=a_{ij}j=1,…,ni=1,…,n$ se consideran las submatrices angulares $A_{k}k=1,…,n$ definidas como $$A_{1} (a_{11})~A_{2}=\left(\begin{matrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{matrix}\right)~~A_{3}=\left(\begin{matrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{matrix}\right),\cdots,A_{n}=A$$
se define $\det A_{k}=\triangle_{k}$

Definición 4. Se tiene entonces que que la forma $Q(x)=xAX^{t}$ es definida positiva si y solo si todos los dterminantes $\triangle_{k}~~k=1,…,n$ son números positivos.

Definición 5. La forma $Q(x)=xAX^{t}$ es definida negativa si y solo si los dterminantes $\triangle_{k}k=1,…,n$ tienen signos alternados comenzando por $\triangle_{1}<0,\triangle_{2}>0,…$ respectivamente.

Ejemplo. Consideremos la función $f:\mathbb{R}^3\rightarrow
\mathbb{R}$ $f(x,y,z)=\sin x +\sin y + \sin z -\sin(x+y+z)$, el punto $P=\left(\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2}\right)$ es
un punto crítico de $f$ y en ese punto la matriz hessiana de

$f$ es $$H(p)=\left[
\begin{array}{ccc}
-2 & -1 & -1 \\
-1 & -2 & -1 \\
-1 & -1 & -2 \
\end{array}
\right]
$$
los determinantes de las submatrices angulares son
$$\Delta_1=det(-2)\qquad \quad $$ $$\Delta_2=det \left[
\begin{array}{cc}
-2 & -1 \\
-1 & -2 \
\end{array}
\right]$$

$$\Delta_3=det H(p)=-4$$ puesto que son signos alternantes con $\Delta t< 0$ concluimos que la funcion $f$ tiene en $\left(\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2}\right)$ un máximo local. Este máximo local vale $f\left(\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2}\right)=4$

Extremos Locales

Por Angélica Amellali Mercado Aguilar

Introducción

Entre las caracteristicas geometricas básicas de la gráficas de una función estan sus puntos extremos, en los cuales la función alcanza sus valores mayor y menor.

Definición 1. Si $f:u\subset \mathbb{R}^n \rightarrow \mathbb{R}$ es una función escalar, dado un punto $x_0 \in u$ se llama mínimo local de $f$ si existe una vecindad $v$ de $x_0$ tal que $\forall x \in v$, $f(x)> f(x_0)$. De manera análoga, $x_0 \in u$ es un máximo local si existe una vecindad $v$ de $x_0$ tal que $f(x)< f(x_0)$ $\forall \quad x \in v$. El punto $x_0 \in u$ es un extremo local o relativo, si es un mínimo local o máximo local.

Un punto $x_0$ es un punto crítico de $f$ si $Df(x_0)=0$.

Un punto crítico que no es un extremo local se llama punto silla.

Teorema 1. $\textcolor{Red}{\textbf{Criterio de la primera derivada}}$ Si $u \in \mathbb{R}$ es abierto, la función $f:u\subset \mathbb{R}^n \rightarrow \mathbb{R}$ es diferenciable y $x_0 \in u$ es un extremo local entonces $\nabla f(x_0)=0$, esto es $x_0$ es un punto crítico de $f$.

Demostración. Supongamos que $t$ alcanza su máximo local en $x_0$. Entonces para cualquier $h \in \mathbb{R}^n$ la función $g(t)=f(x_0+th)$ tiene un máximo local en $t=0$. Asi, del cálculo de una variable $g'(0)=0$ ya que como $g(0)$ es máximo local, $g(t)\leq g(0)$ para $t > 0$ pequeño
$$\therefore \quad g'(0)=\displaystyle\lim_{t \rightarrow t_0^+}\frac{g(t)-g(0)}{t}=0$$
Análogamente para $t< 0$ pequeño tomamos
$$g'(0)=\displaystyle\lim_{t \rightarrow t_0^-}\frac{g(t)-g(0)}{t}=0$$
Ahora por regla de la cadena $$g'(0)=\frac{\partial f}{\partial x_{1}}(x_{0})h_{1}+\frac{\partial f}{\partial x_{2}}(x_{0})h_{2}+\cdots+\frac{\partial f}{\partial x_{n}}(x_{0})h_{0}=\nabla f(x_{0})\cdot h$$
Así $\nabla f(x_{0})\cdot h=0 \quad \forall \: h$ de modo que $\nabla f(x_{0})=0$. En resumen si $x_0$ es un extremo local, entonces $\displaystyle\frac{\partial f}{\partial x_i}(x_0)=0 \quad \forall~i=1,\ldots,n$. En otras palabras $\nabla f(x_0)=0$. $\square$

Ejemplo. Hallar los máximos y mínimos de la función $f:\mathbb{R}^2 \rightarrow \mathbb{R}$, definida por $$f(x,y)=x^2+y^2-2x-6y+14$$

Solución. Debemos identificar los puntos críticos de $f$ resolviendo $\displaystyle{\frac{\partial f}{\partial x}=0}$, $\displaystyle{\frac{\partial f}{\partial y}=0}$ para $x,y$, $$2x-2=0~~~2y-6=0$$ De modo que el punto crítico es $(1,3)$. Como $$f(x,y)=\left(x^{2}-2x+1\right)+\left(y^{2}-6y+9\right)+4=\left(x-1\right)^{2}+\left(y-3\right)^{2}+4$$ tenemos que $f(x,y)\geq 4$ por lo tanto en $(1,3)$ $f$ alcanza un mínimo relativo.

Ejemplo. Considerar la función $f:\mathbb{R}^2 \rightarrow \mathbb{R}$,
$f(x,y)=4-x^2-y^2$ entonces $\displaystyle{\frac{\partial f}{\partial x}=-2x}$, $\displaystyle{\frac{\partial f}{\partial y}=-2y}$. $f$ solo tiene un punto crítico en el origen, donde el valor de $f$ es 4. Como $$f(x,y)=4-(x^{2}+y^{2})$$
tenemos que $f(x,y)\leq 4$ por lo tanto en $(0,0)$ $f$ alcanza un máximo relativo.

Ejemplo. En el siguiente ejemplo mostramos que no todo punto critico es un valor extremo\Sea $f(x,y)=x^{2}y+y^{2}x$ tenemos que sus puntos criticos son
$$\frac{\partial f}{\partial x}=2xy+y^{2}~\frac{\partial f}{\partial y}=2xy+x^{2}=0$$ por lo tanto $$\left(\begin{matrix}2xy+y^{2}=0\\2xy+x^{2}=0\end{matrix}\right)\Leftrightarrow\left(\begin{matrix}x=y\\x=-y\end{matrix}\right)$$ tomando $x=-y$ tenemos que $$2xy+y^{2}=0~\Rightarrow~-2y^{2}+y^{2}=0~\Rightarrow~y^{2}=0\Rightarrow~y=0~\Rightarrow~x=0$$ tomando $x=y$ tenemos que $$2xy+y^{2}=0~\Rightarrow~2y^{2}+y^{2}=0~\Rightarrow~-3y^{2}=0\Rightarrow~y=0~\Rightarrow~x=0$$ por lo tanto $(0,0)$ es el único punto critico.\Ahora bien para $f(x,y)$ tomamos $x=y$ $$f(x,x)=2x^{3}$$ la cual es ($<0$ si $x<0$) y ($>0$ si $x>0$) por lo tanto el punto critico $(0,0)$ no es ni máximo ni mínimo local de f \Ahora bien para $f(x,y)$ tomamos $x=-y$ $$f(x,-x)=0~\forall x$$
por lo tanto el punto critico $(0,0)$ no es ni máximo ni mínimo local de $f$

Requerimos un criterio que dependa de la segunda derivada para que un punto sea extremo relativo. En el caso particular $n=1$ el criterio es $f»(x)>0$ y $f»(x)<0$ para máximo o mínimo respectivamente para el contexto de varias variables usaremos el hessiano el cual esta definido por

$$Hf(x_0)h=\frac{1}{2}\sum_{i,j=1}^{n}\frac{\partial^2t}{\partial x_i\partial
x_j}(x_0|_{x_ix_j}).$$

Recordando un poco de la expresión de taylor$$f(x,y)=f(x_{0},y_{0})+\left(\frac{\partial f}{\partial x}\right){p}(x-x{0})+\left(\frac{\partial f}{\partial y}\right){p}(y-y{0})+\textcolor{Red}{\frac{1}{2!}\left(\frac{\partial^{2}f}{\partial x^{2}}{p}(x-x{0})^{2}+2\frac{\partial^{2}f}{\partial y \partial x}{p}(x-x{0})(y-y_{0})+\frac{\partial^{2}f}{\partial y^{2}}{p}(y-y{0})^{2}\right)}$$

Teorema 2. Sea $B=\left[
\begin{array}{cc}
a & b \\
b & c \
\end{array}
\right]
$ y $H(h)=\frac{1}{2}[h_1,h_2]\left[
\begin{array}{cc}
a & b \\
b & c \
\end{array}
\right]\left(
\begin{array}{c}
h_1 \\
h_2 \
\end{array}
\right)
$ entonces $H(h)$ es definida positiva si y solo si $a>0$ y $ac-b^2>0$.

Demostración. Tenemos $$H(h)=\frac{1}{2}[h_1,h_2]\left[
\begin{array}{cc}
a h_1& bh_2 \\
b h_1& ch_2 \
\end{array}
\right]=\frac{1}{2}(ah_1^2+2bh_1h_2+ch_1^2)$$
si completamos el cuadrado
$$H(h)=\frac{1}{2}a\left(h_1+\frac{b}{a}h_2\right)^2+\frac{1}{2}\left(c-\frac{b^2}{a}\right)h_2^2$$
supongamos que $h$ es definida positiva. Haciendo $h_2=0$ vemos que $a>0$. Haciendo $h_1=-\frac{b}{a}h_2$ $c-\frac{b^2}{a}>0$ ó $ac-b^2>0$ De manera analoga $H(h)$ es definida negativa si y solo si $a<0$ y $ac-b^2>0$. $\square$

Criterio del máximo y del mínimo para funciones de dos variables Sea $f(x,y)$ de clase
$C^3$ en un conjunto abierto $u$ de $\mathbb{R}^2$. Un punto $x_0,y_0$ es un mínimo local (Estricto) de $f$ si se cumple las siguientes tres condiciones:


I) $\frac{\partial f}{\partial x}(x_0,y_0)=\frac{\partial f}{\partial y}(x_0,y_0)$


II) $\frac{\partial^2 f}{\partial x^2}(x_0,y_0)> 0$


III ) $\left(\frac{\partial^2 f}{\partial x^2}\right)\left(\frac{\partial^2 f}{\partial y^2}\right)-\left(\frac{\partial^2 f}{\partial x \partial y}\right)^2> 0$ en $(x_0,y_0)$ (Discriminante)


Si en II) tenemos $<0$ en lugar de $>0$ sin cambiar III) hay un máximo local

Ejemplo. Sea $f:\mathbb{R}^2\rightarrow\mathbb{R}$ la función dada por
$$f(x,y)=2(x-1)^2+3(y-2)^2$$ tenemos entonces que $\frac{\partial f}{\partial x}=4(x-1)$ $\frac{\partial f}{\partial y}=6(y-2)$ por lo tanto $\frac{\partial f}{\partial x}=0$ $\Rightarrow \quad x=1$

$\frac{\partial f}{\partial y}=0$ $\Rightarrow$ $y=2$

por lo tanto $x_0=(1,2)$ es un punto critico


$\displaystyle{\frac{\partial^{2} f}{\partial x^{2}}}=4$, $\displaystyle{\frac{\partial^{2} f}{\partial y^{2}}}=6$, $\displaystyle{\frac{\partial^{2} f}{\partial x\partial y}}=0$, $\displaystyle{\frac{\partial^{2} f}{\partial y\partial x}}=0$

$H(1,2)=\left|\begin{array}{cc}
4 & 0 \\
0 & 6 \
\end{array}
\right|=24> 0 \forall \:(x,y) \in
B_{\epsilon}(1,2)$
podemos decir que $f$ tiene un mínimo relativo en $(1,2)$