Nota 40. Determinantes.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

El determinante de una matriz es un valor numérico que se puede calcular a partir de los elementos de la matriz y que tiene muchas aplicaciones en álgebra lineal y otras áreas de las matemáticas y la física. Una forma de calcular el determinante es mediante la definición en términos de permutaciones.

En esta definición, se considera una matriz cuadrada y se toman todas las posibles permutaciones de las filas o columnas de la matriz. Para cada permutación, se calcula un producto de elementos de la matriz, donde cada elemento proviene de una fila o columna diferente, y se suman todos estos productos. El resultado de esta suma es el determinante de la matriz.

Esta definición puede parecer complicada al principio, pero es muy poderosa y se puede utilizar para calcular determinantes de matrices de cualquier tamaño. Además, tiene muchas propiedades útiles, como la linealidad en las filas o columnas de la matriz, que permiten simplificar muchos cálculos.

En el siguiente video de 3Blue1Brown se da una aproximación geométrica e intuitiva de lo que es el determinante.

Ve el siguiente video de la clase.

Antes de llegar a la definición de lo que es un determinante analicemos lo que es una permutación.

Definición

Las permutaciones de $n$ elementos son:

$S_n=\set{\sigma:\set{1,\dotsc,n}\to\set{1,\dotsc,n}\mid \sigma\,\,es\,\,biyectiva }$

Una permutación $\sigma \in S_n$ se llama una transposición si intercambia dos números y deja fijos a los demás.

Nota

Toda permutación es composición de transposiciones. Puede que haya varias composiciones que den la misma permutación, pero todos son la composición de un número par de transposiciones o todas son la composición de un número impar de transposiciones.

Definición

Sea $\sigma \in S_n$. Decimos que $\sigma$ es par si es la composición de un número par de transposiciones, e impar en caso contrario.

El signo de $\sigma$ es $+1$ en el primer caso y $-1$ en el segundo caso y se denota por $sgn\,\sigma.$

Ejemplo

Considera el conjunto

$S_3=\set{\sigma:\set{1,2,3}\to\set{1,2,3}\mid \sigma\,\,es\,\,biyectiva }.$

Podemos dar todos elementos del conjunto, es decir todas las funciones biyectivas :

$\sigma_1=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 1 & 2 & 3 \end{array}\right) \end{equation*}$, $\sigma_2=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 1 & 3 \end{array}\right) \end{equation*}$, $\sigma_3=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 1 & 3 & 2 \end{array}\right) \end{equation*}$, $\sigma_4=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 2 & 1 \end{array}\right) \end{equation*}$, $\sigma_5=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 3 & 1 \end{array}\right) \end{equation*}$, $\sigma_6=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 1 & 2 \end{array}\right) \end{equation*}.$

¿Cuál es el signo de $\sigma_2$?

$\sigma_2=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 1 & 3 \end{array}\right) \end{equation*}$ es un transposición ya que intercambia el $1$ con el $2$ y deja fijo al $3$, entonces $\sigma_2$ es impar y $sgn\,\sigma_2=-1$.

Observa que $\sigma_3=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 1 & 3 & 2 \end{array}\right) \end{equation*}$ y $\sigma_4=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 2 & 1 \end{array}\right) \end{equation*}$ también son transposiciones y por lo tanto también su signo es $-1$.

¿Cuál es el signo de $\sigma_1$?

Observa que la composición de $\sigma_2\circ \sigma_2=\sigma_1$.

Como $\sigma_2\circ \sigma_2=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 1 & 2 & 3 \end{array}\right) \end{equation*}$ $=\sigma_1$, siendo $\sigma_2$ una transposición, entonces $\sigma_1$ es par pues la composición de $\sigma_2$ con si misma. Su signo por lo tanto es $1$, $sgn\,\sigma_1=+1$.

¿Cuál es el signo de $\sigma_5$?

Observa que la composición de $\sigma_2=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 1 & 3 \end{array}\right) \end{equation*}$ con $\sigma_4=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 2 & 1 \end{array}\right) \end{equation*}$ nos da $\sigma_5=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 3 & 1 \end{array}\right) \end{equation*}.$

Así, $\sigma_4\circ \sigma_2=\sigma_5$, con $\sigma_4$ y $\sigma_2$ transposiciones.

Concluimos que $\sigma_5$ es par y por tanto $sgn\,\sigma_5$=+1.$

¿Cuál es el signo de $\sigma_6$?

La composición de $\sigma_4=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 2 & 1 \end{array}\right) \end{equation*}$ con $\sigma_2=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 1 & 3 \end{array}\right) \end{equation*}$ nos da $\sigma_6=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 1 & 2 \end{array}\right) \end{equation*}.$

Así, $\sigma_2\circ \sigma_4=\sigma_6$, con $\sigma_2$ y $\sigma_4$ transposiciones.

Concluimos que $\sigma_6$ es par y por tanto su signo es $+1$.

Observemos que $\sigma_6=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 3 & 1 & 2 \end{array}\right) \end{equation*}$ es la inversa de $\sigma_5=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 2 & 3 & 1 \end{array}\right) \end{equation*}$, por eso es la composición de las mismas transposiciones que $\sigma_5$ pero en orden inverso.

Los que acabamos de ver es que:

$\sigma_1,\sigma_5,\sigma_6$ son pares y $\sigma_2,\sigma_3,\sigma_4$ son impares.

Con estos elementos vamos a dar la definición de lo que es el determinante de una matriz.

Ve el siguiente video

Definición

Sea $A\in \mathscr M_{n\times n}(\mathbb R)$. El determinante de $A$ es:

$\det\,A=\displaystyle\sum_{\sigma\in S_n}sgn\,\sigma\,a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}$

Observación Sea $A=\begin{equation*} \left(\begin{array}{rr} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{array}\right) \end{equation*}$, entonces

$\det\,A=a_{11}a_{22}-a_{12}a_{21}.$

Esto se debe a que las únicas permutaciones de $\{1,2\}$ son $\sigma_1=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 1 & 2 \end{array}\right) \end{equation*}$, que es la identidad y tiene signo $+1$, y la transposición $\sigma_2=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right) \end{equation*}$ que tiene signo $-1.$ Así,

$\det\,A=sgn\,\sigma_1\,a_{1\sigma_1(1)}a_{2\sigma_1(2)}+sgn\,\sigma_2\,a_{1\sigma_2(1)}a_{2\sigma_2(2)}=(+1)\,a_{11}a_{22}+(-1)\,a_{12}a_{21}=a_{11}a_{22}-a_{12}a_{21}.$

Ejemplos.

En estos ejemplos veremos lo que sucede con el determinante, cuando aplicamos las distintas operaciones elementales a una matriz.

$1.$ Considera las matrices $A=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 3 & 4 \\ \end{array}\right) \end{equation*}$, $A’=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ -1 &5 \\ \end{array}\right) \end{equation*}$, $A^{\prime\prime}=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 2 & 9 \\ \end{array}\right) \end{equation*}.$

Si obtenemos sus determinantes tenemos que:

$det\,A’=4-6=-2,\,\,det\,A^{\prime\prime}=5-(-2)=7\,\,,det\,A=9-4=5$

Observa que en este ejemplo, el segundo renglón de $A^{\prime\prime}$ se obtiene de la suma de los segundos renglones de $A$ y $A^{\prime\prime}$, y su primer renglón coincide con los de $A$ y $A^{\prime}$,

Y lo que estamos observando es que:

$det\,A^{\prime\prime}=det\,A+det\,A^{\prime}$.

$2.$ Sean $A’=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 3 & 4 \\ \end{array}\right) \end{equation*}$ y $A=\begin{equation*} \left(\begin{array}{rr} 3 & 6 \\ 3 & 4 \\ \end{array}\right) \end{equation*}.$

El primer renglón de $A$ se obtiene multiplicando por $3$ el primer renglón de $A’$

Los determinantes de estas matrices son:

$det\,A’=4-6=-2,\,\,det\,A=12-18=-6$

y lo que estamos observando es que:

$det\,A=3det\,A’.$

$3.$ Veamos qué sucede con el determinante cuando intercambiamos renglones en una matriz. Considera las matrices:

$A’=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 3 & 4 \\ \end{array}\right) \end{equation*}$ y $A=\begin{equation*} \left(\begin{array}{rr} 3 & 4 \\ 1 & 2 \\ \end{array}\right) \end{equation*},$

$det\,A’=4-6=-2,\,\,det\,A=6-4=2.$

En este caso tenemos que:

$det\,A=-det\,A’.$

$4.$ Veamos qué pasa cuando en una matriz hay dos renglones iguales.

Sea $A=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 1 & 2 \\ \end{array}\right) \end{equation*},$ entonces

$det\,A=2-2=0$, es decir el determinante vale cero.

$5.$ Veamos qué pasa cuando le sumamos a un renglón un múltiplo de otro.

Sea $A’=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 3 & 4 \\ \end{array}\right) \end{equation*}$ y considera su matriz equivalente $A=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 1 & 0 \\ \end{array}\right) \end{equation*}$, que se obtiene de $A’$, sumando al renglón dos de $A’$ menos dos veces el primero.

Entonces $det\,A’=4-6=-2,\,\,det\,A=0-2=-2.$ En este caso

$det\,A=det\,A’.$

es decir el determinante coincide.

$6.$ Consideremos una matriz con un renglón de ceros, por ejemplo

$A=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 0 & 0 \\ \end{array}\right) \end{equation*}.$ Notamos que su determinante es $det\,A=0-0=0$.

$7.$ Por último veamos qué pasa con el determinante al transponer una matriz.

Sean $A=\begin{equation*} \left(\begin{array}{rr} 1 & 2 \\ 3 & 4 \\ \end{array}\right) \end{equation*}$ y considera su transpuesta $A^t=\begin{equation*} \left(\begin{array}{rr} 1 & 3 \\ 2 & 4 \\ \end{array}\right) \end{equation*}$

Si calculamos sus determinantes tenemos que:

$det\,A=4-6=-2,\,\,det\,A=4-6=-2.$

En este caso:

$det\,A=det\,A^t.$

Tarea Moral

$1.$ Encuentra todas las permutaciones de $\set{1,2,3,4}$ y su signo. ¿Cuántas hay en total?, ¿Cuántas son pares?

$2.$ Sea $A=\begin{equation*} \left(\begin{array}{rr} -3& 1 \\ 7 & 9 \\ \end{array}\right) \end{equation*}$ y calcula:

$i)$ Su determinante.

$ii)$ El $det\,B$, donde $B$ se obtiene de $A$ multiplicando su segundo renglón por $4.$

$iii)$ El $det\,C$, donde $C$ se obtiene de $A$ intercambiando sus renglones entre sí.

$iv)$ El $det\,D$, donde $D$ se obtiene de $A$ sumando al segundo renglón dos veces el primero.

Más adelante

En la siguiente nota veremos que las propiedades observadas en los ejemplos se cumplen en general, para ello usaremos la definición que dimos de determinante.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 39. Ejemplos de sistemas de ecuaciones.

Enlace a la nota siguiente. Nota 41. Propiedades de los determinantes.

Álgebra Superior I: Reducción de Gauss-Jordan

Por Eduardo García Caballero

Introducción

En la entrada anterior vimos que los sistemas de ecuaciones se encuentran íntimamente relacionados con los vectores y las matrices. Teniendo esto en cuenta, en esta entrada abordaremos una estrategia que nos permitirá encontrar soluciones de los sistemas de ecuaciones lineales.

Operaciones elementales por filas

Antes de pasar a describir el algoritmo con el cual podremos resolver un sistema de ecuaciones lineales, deberemos definir algunas operaciones y conceptos que nos ayudaran a efectuarlo. Empecemos con una lista de operaciones que se pueden aplicar a las matrices, las cuales son con conocidas como operaciones elementales por filas.

Para esto, consideremos una matriz
\[
A=
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix},
\]
y veamos cómo la afecta cada una de estas operaciones.

La primera de estas operaciones es el reescalamiento. Esta operación consiste en seleccionar una fila de una matriz, y multiplicar cada una de las entradas de esta fila por un mismo número real distinto de cero. Por ejemplo, si reescalamos la tercera fila de $A$ por el número $-3$, obtendremos la matriz
\[
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
(-3)(-1/3) & (-3)(4) & (-3)(0) \\
9 & -3 & 2/3
\end{pmatrix}
=
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
1& -12 & 0 \\
9 & -3 & 2/3
\end{pmatrix}.
\]

Otra operación que podemos aplicar a las matrices es la trasposición, la cual consiste en intercambiar el contenido de dos filas distintas. Por ejemplo, si transponemos las filas 2 y 4 de $A$, el resultado será la matriz
\[
\begin{pmatrix}
5 & \pi & 3 \\
9 & -3 & 2/3 \\
-1/3 & 4 & 0 \\
\sqrt{2} & -1 & 2
\end{pmatrix}.
\]

La última de las operaciones que nos interesa es la transvección. Esta consiste en sumar el múltiplo de una fila (el resultado de multiplicar cada entrada de una fila por un mismo escalar) a otra fila (la suma se realiza entrada por entrada). Por ejemplo, si en $A$ realizamos la transvección que corresponde a “sumar 3/2 de la cuarta fila a la primera fila”, obtendremos la matriz
\[
\begin{pmatrix}
5 + (3/2)(9) & \pi+(3/2)(-3) & 3+(3/2)(2/3) \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix}
=
\begin{pmatrix}
37/2 & -9/2+\pi & 4 \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix}.
\]

Si recuerdas, todos los sistemas de ecuaciones se pueden escribir como $Ax=b$. Las operaciones elementales son muy importantes por las siguientes dos razones:

  • Si aplicamos la misma operación elemental a $A$ y $b$ para obtener la matriz $A’$ y el vector $b’$, entonces $Ax=b$ y $A’x=b’$ tienen exactamente el mismo conjunto solución. Decimos que «las operaciones elementales no cambian las soluciones del sistema».
  • Usando operaciones elementales se puede llevar el sistema $Ax=b$ a un sistema mucho más sencillo $A_{red}x=b_{red}$ (que discutiremos más abajo). Entonces «las operaciones ayudan a simplificar un sistema de ecuaciones».

Juntando ambas observaciones, con operaciones elementales podemos llevar cualquier sistema de ecuaciones a uno mucho más sencillo y con el mismo conjunto solución.

Puedes intentar convencerte de la primera afirmación pensando en lo siguiente. En un reescalamiento de filas corresponde a multiplicar por una constante no nula ambos lados de una ecuación; la transposición corresponde a cambiar el orden en el que aparecen dos ecuaciones diferentes; mientras que la transvección corresponde a sumar un múltiplo de una ecuación a otra ecuación, y el sistema tiene las mismas soluciones pues, si un conjunto de valores es solución para dos ecuaciones, entonces es solución para cualquier combinación lineal de estas. En un curso de Álgebra Lineal I puedes encontrar las justificaciones con mucho más detalle.

En las siguientes secciones hablamos un poco más de la segunda afirmación.

Forma escalonada y escalonada reducida para una matriz

Además de las operaciones elementales por filas, es importante definir algunos conceptos.

Comencemos con el concepto de pivote: diremos que una entrada de una matriz es un pivote si es el primer elemento distinto de cero en una fila.

Diremos que una matriz se encuentra en forma escalonada si se cumple: 1. Todas las filas nulas se encuentran hasta abajo; 2. Todos los pivotes de filas no-nulas tienen valor 1; 3. El pivote de cada fila se encuentra la derecha del pivote de una fila superior. Es fácil identificar las matrices en forma escalonada porque parecen “estar en escalerita”. Por ejemplo, la matriz
\[
\begin{pmatrix}
1 & 9 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 1
\end{pmatrix}
\]
se encuentra en forma escalonada, mientras que las matrices
\[
\begin{pmatrix}
1 & 0 & 2 & 4 \\
0 & 0 & 9 & 2 \\
0 & 3 & 0 & 0
\end{pmatrix}
\qquad
\text{y}
\qquad
\begin{pmatrix}
0 & 6 & 8 & -5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 9 & 2
\end{pmatrix}
\]
no lo están. ¿Puedes justificar por qué?

Por su parte, diremos que una matriz se encuentra en forma escalonada reducida si está en forma escalonada y, además, si hay un pivote en alguna fila, todas las entradas que no sean pivote en la misma columna del pivote son iguales a $0$ (Ojo. Siempre hablamos de pivotes de renglones).

Por ejemplo, la matriz
\[
\begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
está en forma escalonada reducida.

Como recordarás de la entrada anterior, un sistema de ecuaciones lineales
\[
\begin{cases}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n & = b_1 \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n & = b_2 \\
& \vdotswithin{\mspace{15mu}} \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m
\end{cases}
\]
se puede codificar como
\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{pmatrix}.
\]

Como podemos cambiar el nombre de las variables, pero el vector de soluciones sigue siendo el mismo, es común codificar el sistema como una única matriz aumentada
\[
\left(
\begin{matrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{matrix}
\
\middle|
\
\begin{matrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{matrix}
\right).
\]

Aquí pusimos una línea vertical, pero sólo es por ayuda visual. Esa matriz la puedes tratar como cualquier matriz que hemos platicado.

Teniendo esto en cuenta, las matrices en forma escalonada reducida nos son de gran utilidad al resolver sistemas de ecuaciones lineales. Por ejemplo, consideremos el sistema
\[
\begin{cases}
x + 3y + 2w &= 8 \\
z + w &= 9,
\end{cases}
\]
el cual tiene como matriz aumentada a
\[
\left(
\begin{matrix}
1 & 3 & 0 & 2 \\
0 & 0 & 1 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
8 \\
9
\end{matrix}
\right),
\]
la cual se encuentra en forma escalonada.

Gracias a que la matriz está en forma escalonada, podemos elegir en orden inverso $w$, $z$, $y$, $x$ a las variables libres y pivote como en la entrada anterior. En este caso, podemos elegir como queramos el valor de $w$ ($w$ es variable libre). Usando la segunda ecuación, podemos despejar $z$ en términos de $w$ ($z$ es variable pivote). Estos dos valores los sustituimos en la primera ecuación y notamos que $y$ puede ser lo que queramos ($y$ es variable libre). Finalmente, $x$ queda totalmente determinado por las demás variables ($x$ es pivote). Las variables pivote justo corresponden a columnas de la matriz que tengan pivote de alguna fila.

La ventaja de la forma escalonada es que podremos ir obteniendo fácilmente el valor de cada variable “de abajo hacia arriba”. En el caso de un sistema cuya matriz se encuentre en forma escalonada reducida, será aún más sencillo pues ya no tendremos que sustituir valores y obtenemos el despeje directamente.

Teorema de reducción de Gauss-Jordan

El siguiente teorema relaciona las operaciones elementales por filas con la forma escalonada reducida de una matriz.

Teorema (de reducción de Gauss-Jordan o reducción gaussiana). Cualquier matriz con entradas reales se puede a una forma escalonada reducida aplicando una cantidad finita de pasos.

A continuación presentamos un algoritmo con el cual podemos pasar de una matriz arbitraria a una matriz en su forma escalonada reducida. Para hacer más sencilla su aplicación, nos enfocaremos en comprender la estrategia que sigue el algoritmo. La descripción formal del algoritmo y demostración de que en efecto funciona como esperamos es un tema que abordarás en el curso de Álgebra Lineal I (puedes echarle un ojo a esta entrada).

Primeramente, describiremos los pasos del algoritmo, al que se le conoce como reducción de Gauss-Jordan o reducción gaussiana.

Estrategia: Iremos arreglando la matriz de izquierda a derecha. Para ello, haremos los siguientes pasos repetidamente.

  1. Buscamos la primera columna de la matriz (de izquierda a derecha) que no tenga puros ceros.
  2. Una vez encontrada dicha columna, buscamos la primera entrada (de arriba hacia abajo) que no sea cero.
  3. Pasamos la fila que contiene a dicha entrada hasta arriba mediante la operación de transposición.
  4. Multiplicamos cada entrada de la fila que acabamos de mover hasta arriba por el inverso multiplicativo de su primera entrada (aquí usamos la operación de reescalamiento). La primera entrada de esta fila ahora será 1.
  5. Mediante la operación de transvección, sustraemos múltiplos de la primera fila al resto de renglones de la matriz, de modo que el resto de los valores en la columna correspondiente a la primera entrada de la fila en la que estamos trabajando pasen a ser 0 (como puedes observar, la entrada primera entrada no-nula de la fila en la que estamos trabajando ahora será un pivote).
  6. Ignorando la primera fila, buscamos la primera columna (de izquierda a derecha) que no tenga puros ceros.
  7. Repetimos los pasos anteriores (2 a 6), pero ahora, en vez de mover la fila con la que estamos trabajando “hasta arriba”, la moveremos inmediatamente después de la última fila con la que trabajamos.
  8. Hacemos esto hasta haber arreglado todas las columnas.

Ejemplo de reducción de Gauss-Jordan

Ahora, como ejemplo, veamos cómo podemos implementar este algoritmo en la matriz
\[
\begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
-1 & 0 & 1 & 2 & 3 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix},
\]
la cual, si la consideramos como la matriz aumentada
\[
\left(
\begin{matrix}
0 & 1 & 2 & 3 \\
-1 & 0 & 1 & 2 \\
3 & 1 & -1 & 0 \\
0 & 1 & 1 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
4 \\
3 \\
2 \\
1
\end{matrix}
\right),
\]
corresponde al sistema de ecuaciones
\[
\begin{cases}
y + 2z + 3w &= 4 \\
-x + z + 2w &= 2 \\
3x + y -z &= 0 \\
y + z + w &= 1.
\end{cases}
\]

Buscamos la primera la primera columna no nula, la cual resulta ser la primera columna de la matriz. En esta columna, vemos que la segunda entrada es la primera entrada distinta de cero. Entonces, mediante trasposicón, intercambiamos las filas 1 y 2 (“movemos la segunda columna hasta arriba”):
\[
\begin{pmatrix}
-1 & 0 & 1 & 2 & 3 \\
0 & 1 & 2 & 3& 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}.
\]

Ahora, nos fijamos en la primera entrada no nula de la primera fila, que es $-1$, y reescalamos la fila por su inverso multiplicativo, que es $-1$:
\[
\begin{pmatrix}
(-1)(-1) & (-1)(0) & (-1)(1) & (-1)(2) & (-1)(3) \\
0 & 1 & 2 & 3 & 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}.
\]

Ahora, observamos el valor de la primera entrada de la tercera fila, el cual es $3$. Entonces, mediante transvección, sumamos $-3$ veces la fila 1 a la fila 3:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
3+(-3)(1) & 1+(-3)(0) & -1+(-3)(-1) & 0+(-3)(-2) & 2+(-3)(-3) \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix},
\]
y realizamos lo mismo, pero ahora considerando la fila 4.
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0+(0)(1) & 1+(0)(0) & 1+(0)(-1) & 1+(0)(-2) & 1+(0)(-3)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
Como puedes observar, ninguna de las transvecciones influye en la otra, de manera que las podemos enlistar en un único paso. Además, al hacer una transvección con escalar $0$ no cambia nada de la fila, así que estas no se necesita hacerlas.

Ahora, ignorando la última fila con la que trabajamos (que es la primera), buscamos la primera columna no-nula, que en este caso será la segunda, posteriormente buscamos el primer elemento no nulo de la columna, el cual se encuentra en la segunda fila, y la “movemos enseguida de la última fila con la que trabajamos” (en este caso no tendríamos que realizar ninguna transposición, o bien, la transposición sería la de la segunda fila consigo misma, ya que ya se encuentra en seguida de la última fila con la que trabajamos). Después, reescalamos por el inverso multiplicativo del primer elemento no nulo de la fila, que es $1$:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
(1)(0) & (1)(1) & (1)(2) & (1)(3) & (1)(4) \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
(observa que reescalar por $1$ deja todas las entradas iguales) y posteriormente realizamos las transvecciones necesarias para que el resto de entradas de la segunda columna sean cero.
\[
\begin{pmatrix}
1 & 0+(0)(1) & -1+(0)(2) & -2+(0)(3) & -3+(0)(4) \\
0 & 1 & 2 & 3 & 4 \\
0 & 1+(-1)(1) & 2+(-1)(2) & 6+(-1)(3) & 11+(-1)(4) \\
0 & 1+(-1)(1) & 1+(-1)(2) & 1+(-1)(3) & 1+(-1)(4)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 3 & 7 \\
0 & 0 & -1 & -2 & -3
\end{pmatrix}
\]

De manera similar, ignorando ahora las primeras dos filas, buscamos la primera columna no-nula, la cual corresponde ahora a la tercera, y buscamos el primer elemento no-nulo de esta columna, el cual se encuentra en la cuarta fila. Entonces, transponemos las filas 3 y 4 para que el primer elemento no-nulo quede inmediatamente después de la última fila con la que trabajamos:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}.
\]

Seguidamente, reescalamos la tercera fila,
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
(-1)(0) & (-1)(0) & (-1)(-1) & (-1)(-2) & (-1)(-3) \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
\]
y relizamos las transvecciones necesarias:
\[
\begin{pmatrix}
1+(1)(0) & 0+(1)(0) & -1+(1)(1) & -2+(1)(2) & -3+(1)(3) \\
0+(-2)(0) & 1+(-2)(0) & 2+(-2)(1) & 3+(-2)(2) & 4+(-2)(3) \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}.
\]

Finalmente, como nuestra última columna no cero es la cuarta y la primera fila no cero (ignorando las filas que ya tienen pivote) tiene un $3$, reescalamos de la siguiente manera:
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
(1/3)(0) & (1/3)(0) & (1/3)(0) & (1/3)(3) & (1/3)(7)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix},
\]

Y hacemos las transvecciones necesarias:
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0+(1)(0) & 1+(1)(0) & 0+(1)(0) & -1+(1)(1) & -2+(1)(7/3) \\
0+(-2)(0) & 0+(-2)(0) & 1+(-2)(0) & 2+(-2)(1) & 3+(-2)(7/3) \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1/3 \\
0 & 0 & 1 & 0 & -5/3 \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix}.
\]

Notemos que si consideramos esta matriz como la matriz aumentada
\[
\left(
\begin{matrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
0 \\
1/3 \\
-5/3 \\
7/3
\end{matrix}
\right),
\]
este corresponde al sistema
\[
\begin{cases}
x = 0 \\
y = 1/3 \\
z = -5/3 \\
w = 7/3,
\end{cases}
\]
del cual sabemos inmediatamente su solución. Como mencionamos anteriormente, los sistemas de ecuaciones asociados a la matriz original y la matriz escalonada reducida resultante de aplicar operaciones elementales por filas, consideradas como matrices aumentadas, tienen las mismas soluciones. Entonces, ¡este último sistema es la solución para nuestro sistema de ecuaciones original!

Como podemos ver, los sistemas de ecuaciones asociados a una matriz en su forma escalonada reducida son fáciles de resolver por que vamos escogiendo valores arbitrarios para las variables en posición que no es pivote, mientras que podemos obtener el valor de las variables que son pivote mediante despejes sencillos.

Recuerda que este algoritmo funciona para cualquier matriz con entradas reales. ¿Podrías proponer otro sistema de ecuaciones e implementar la misma estrategia para resolverlo?

Más adelante…

Ahora vimos una estrategia para resolver sistemas de ecuaciones lineales de distintos tamaños. En las siguientes entradas conoceremos más propiedades sobre las matrices. Estas nuevas propiedades también juegan un rol fundamental en poder determinar de manera más rápida cuándo un sistema de ecuaciones lineales tiene solución, y tener otras alternativas para resolverlo bajo ciertas condiciones.

Tarea moral

  1. Aplica reducción gaussiana a las siguientes matrices:
    $$\begin{pmatrix} 5 & 2 \\ 13 & 5 \end{pmatrix},\quad \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$
  2. Resuelve el siguiente sistema de ecuaciones llevándolo a forma escalonada reducida, y luego aplicando a técnica de variables libres y pivote:
    $$\begin{cases} a + b + c + d + e &= -5\\2a+2b-3c-3d+e&=5 \\ a – b + c – d + e &= 0. \end{cases}$$
  3. Sea $I$ la matriz identidad de $n\times n$ y $A$ otra matriz de $n\times n$. Sea $E$ la matriz obtenida de aplicar una transvección a $I$. Sea $B$ la matriz de aplicar esa misma transvección a $A$. Demuestra que $EA=B$.
  4. Demuestra que una matriz $A$ de $2\times 2$ es invertible si y sólo si al aplicar reducción de Gauss-Jordan al final se obtiene la matriz identidad $I$. ¿Puedes hacerlo para matrices de $3\times 3$? ¿De $n\times n$?
  5. Sea $A$ una matriz de $2\times 2$ invertible. A $A$ le «pegamos» una identidad del mismo tamaño a la derecha para llegar a $(A|I)$, por ejemplo $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ se convertiría en $\begin{pmatrix} a & b & 1 & 0 \\ c & d & 0 & 1 \end{pmatrix}$. Muestra que si aplicamos reducción de Gauss-Jordan a $(A|I)$, se llega a $(I|A^{-1})$. Intenta extender tu demostración a matrices de $3\times 3$ ó $n\times n$.

Entradas relacionadas

Geometría Moderna II: Los Diez Problemas de Apolonio

Por Armando Arzola Pérez

3.5 Los Diez Problemas de Apolonio

Un problema clásico de la geometría es el «Problema de Apolonio» el cual enuncia:

Encontrar una circunferencia dado tres condiciones, las cuales pueden surgir de lo siguiente:

  1. La circunferencia pasa por uno o más puntos «P»
  2. La circunferencia es tangente a una o más líneas «L»
  3. La circunferencia debe de ser tangente a uno o más círculos «C»

De lo anterior nacen los 10 Problemas de Apolonio. (Las soluciones se darán a partir de construcciones)

Problema 1.

Construir una circunferencia que pase por tres puntos dados (PPP).

Construcción

Dados tres puntos $A$, $B$ y $C$, de los cuales podemos formar un triángulo $\triangle ABC$. Trazando las mediatrices de cada lado encontraremos el circuncentro «$O$», que resulta ser el centro de la circunferencia circunscrita al triángulo $\triangle ABC$. De esta forma podemos dibujar la circunferencia $C(O,r)$

Problema 2.

Construir una circunferencia que pase por dos puntos dados y tangente a una recta dada (PPL).

Construcción

Sean $A$ y $B$ dos puntos dados y $r$ una recta tangente a la circunferencia buscada.

El centro de la circunferencia buscada $C$ debe estar ubicada en la mediatriz del segmento $AB$, por ello dibujemos la mediatriz a través del arco de dos circunferencias con centro $A$ y centro $B$ las cuales se intersecan y se puede trazar la mediatriz.

Ahora tomamos un punto «$D$» de la mediatriz, del cual lo tomamos como centro de una circunferencia $C_1$ que pase por $A$ y $B$. También trazamos el segmento $AB$ que corte $r$ en $C$.

Debemos de encontrar una recta tangente a $C_1$ y que pase por el punto $C$. Por ello unimos $DC$ y sacamos la mediatriz con centro $E$, trazamos la circunferencia $C_2$ que interseca a $C_1$ en dos puntos del cual solo nos interesa uno que es $F$ y al unirlo con $C$ este forma una recta tangente a $C_1$.
Por ahora tenemos por potencia $CA * CB = CF^2$.

Ahora trazamos el arco de circunferencia con centro $C$ y radio $CF$ que corta a la recta $r$ en dos puntos $T_1$ y $T_2$ cumplen $CA * CB =CF^2 =CT_1^2 = CT_2^2$ perpendiculares por $T_1$ y otra por $T_2$, y cortan a la mediatriz $AB$.
Y en esas intersecciones van a estar los centros de las circunferencias que pasan por $A$, $B$ y tangentes a $r$. $_\blacksquare$

Problema 3.

Construir una circunferencia tangente a dos líneas dadas y que pasa por un punto (PLL).

Construcción

Sean $l_1$ y $l_2$ dos rectas dadas y $P$ un punto dado, notemos que el centro de la circunferencia buscada es un punto de la bisectriz; Por otro lado, la circunferencia buscada debe contener a $P$ y $P’$ punto simétrico respecto a la bisectriz.
Si observamos tenemos el caso del problema 2 PPL, ya que tenemos dos puntos $P$ y $P’$ por los cuales pasara la circunferencia buscada, además de que es tangente a una recta $l_1$. Por tal motivo se puede seguir la misma construcción anterior para llegar a la solución.

Problema 4.

Construir un círculo tangente a tres líneas dadas (LLL).

Construcción

Sean tres rectas dadas $l_1$, $l_2$ y $l_3$, las cuales forman un triángulo $\triangle ABC$. Trazando las bisectrices de los ángulos internos del triángulo $\triangle ABC$ se intersecan en un único punto $O$.
El punto $O$ es el centro de la circunferencia inscrita del triángulo $\triangle ABC$ , ahora trazamos las perpendiculares por $O$ a cada lado y encontraremos el radio $OS$ el cual nos da la circunferencia tangente a $l_1$, $l_2$ y $l_3$.

Problema 5.

Construye una circunferencia pasando por dos puntos dados y tangente a un círculo dado (PPC).

Construcción

Existen varios casos para este problema, en este caso tomaremos a los puntos $A$ y $B$ fuera de la circunferencia dada $C(O,r)$.
Trazamos la mediatriz de $A$ y $B$, después tomamos un punto cuál sea $x$ en la mediatriz y generamos una circunferencia con centro en $x$ y radio $A$ o $B$ y que corta a la circunferencia $C(O,r)$. Los dos puntos de intersección los llamaremos $D$ y $E$ los uniremos y prolongaremos hasta que corte a la recta $AB$, el punto de intersección será $F$.

Unimos $F$ con $O$ y sacamos su mediatriz, denotamos a $G$ al punto de intersección de $FO$ con la mediatriz. Ahora trazamos la circunferencia con centro $G$ y radio $O$ la cual corta a $C(O,r)$ en $H$ y $I$.

Si unimos $I$ con $O$ corta a la mediatriz $AB$ en $O_1$, el cual será el centro de la circunferencia buscada con radio $O_1I$ y por lo cual pasa por $A$, $B$ y tangente $C(O,r)$. Ocurre lo mismo si unimos $H$ con $O$, corta a la mediatriz de $AB$ en $O_2$, este sería el centro $O_2$ y radio $O_2A$, el cual genera la otra circunferencia tangente a $C(O,r)$ y pasa por $A$ y $B$.

Problema 6.

Construir una circunferencia que pase por un punto dado, tangente a una recta dada y tangente a un círculo dado (PLC).

Construcción

Para este problema 6 podemos encontrar cuatro soluciones, pero por ahora solo se dara una parte de la construcción, ya que lo demás ya se ha venido trabajando en las construcciones anteriores.
Tenemos la circunferencia $C$, el punto $P$ y la recta $r$. Trazamos una perpendicular a $r$ que pase por $C$, ahora sea $O$ el punto de corte que será el centro de inversión que convierte la circunferencia $C$ en la recta $r$, entonces los puntos $x$ y $x’$ son inversos.
Ahora debemos encontrar el punto inverso de $P$, por ello trazamos la mediatriz de $xx’$ y trazamos la mediatriz de $xP$, estas dos rectas cortan en $Y$ el cual es el centro de circunferencia que corto a $x$, $x’$ y $P$, y el punto de intersección de esta circunferencia con la recta $OP$ tendremos $P’$.

Nos daremos cuenta de que tenemos el mismo problema 2 PPL, por lo cual solo se debe seguir la misma construcción para hallar las circunferencias buscadas.

De aquí en adelante se enunciarán únicamente los problemas faltantes.

Problema 7.

Construir una circunferencia que pase por un punto $P$ dado y dos círculos tangentes a esta circunferencia buscada (PCC) (4 soluciones).

Problema 8.

Construir una circunferencia tangente a dos rectas dadas y a un círculo dado (LLC) (8 soluciones).

Problema 9.

Construir una circunferencia tangente a una línea dada y a dos círculos dados (LCC) (8 soluciones).

Problema 10. Problema de Apollonius

Construir una circunferencia tangente a tres círculos dados (CCC).

Más adelante…

Una vez visto el tema de Polos y Polares, es hora de realizar unos ejercicios que se dejaran, todo con el objetivo de fortalecer los temas vistos.

Entradas relacionadas

El Espacio Euclideo $\mathbb{R}^{n}$

Por Ruben Hurtado

Introducción

En este sección estudiamos el espacio euclideo n-dimensional, espacio que sería la base de todo el desarrollo posterior.

Definición. Como conjunto, $\mathbb{R}^{n}$ es la colección de todas las n-adas ordenadas de números reales. Es decir $$\mathbb{R}^{n}={(x_{1},x_{2},…,x_{n})|x_{i}\in \mathbb{R},~i=1,2,…,n}$

Notación
Denotamos a un elemento de $\mathbb{R}^{n}$ por $\overline{x}=(x_{1},x_{2},…,x_{n})$\Dados dos elementos $\overline{x},\overline{y}\in \mathbb{R}^{n}$ decimos que $\overline{x}=\overline{y}\Leftrightarrow x_{i}=y_{i}$ $\forall i=1,2,…,n$.
Frecuentemente a los elementos de $\mathbb{R}^{n}$ se les denomina vectores, y con las operaciones usuales (suma y producto por un escalar), definidas como
Definición. La suma $+:\mathbb{R}^{n}\times \mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ para dos elementos $\overline{x},\overline{y}\in\mathbb{R}^{n}$ se define asi:
$$\overline{x}+\overline{y}=(x_{1},x_{2},…,x_{n})+(y_{1},y_{2},…,y_{n})=(x_{1}+y_{1},x_{2}+y_{2},…,x_{n}+y_{n})$$
El producto $\overline{x}\in\mathbb{R}^{n}$ por un escalar $a\in\mathbb{R}$ como
$$\alpha(x_{1},x_{2},…,x_{n})=(\alpha x_{1},\alpha x_{2},…,\alpha x_{n})$$
$\mathbb{R}^{n}$ es un espacio vectorial.
La base canónica de dicho espacio vectorial son los vectores:$$e_{1}=(1,0,0,…,0)$$$$e_{2}=(0,1,0,…,0)$$$$.$$$$.$$$$.$$$$e_{n}=(0,0,0,…,1)$$
ya que si $\overline{x}=(x_{1},x_{2},…,x_{n})$, se tiene que $\overline{x}=x_{1}e_{1}+x_{2}e_{2}+…+x_{n}e_{n}$

Estructura Geométrica


Para dotar de una estructura geométrica al espacio $\mathbb{R}^{n}$ (que incluya los conceptos de distancia, ángulo y ortogonalidad) debemos dotar a $\mathbb{R}^{n}$ de un producto escalar.
Definición. Sea E un espacio vectorial, un \textbf{producto escalar} en E es una función de $E\times E$ en $\mathbb{R}$ que a cada par de vectores $\overline{x},\overline{y}$ le asocia un número $$\langle \overline{x},\overline{y}\rangle$$ que satisface las siguientes propiedades:

(a) $\langle \overline{x},\overline{x}\rangle>0$ si $\overline{x}\neq 0$
(b) $\langle \overline{x},\overline{y}\rangle=\langle \overline{y},\overline{x}\rangle$
(c) $ \langle \lambda \overline{x},\overline{y}\rangle=\lambda\langle \overline{x},\overline{y}\rangle$
(d) $\langle \overline{x}+\overline{y},\overline{z}\rangle=\langle \overline{x}+\overline{z}\rangle+\langle \overline{y},\overline{z}\rangle$
Ejemplo. Sea $C[a,b]$ el espacio lineal de todas las funciones reales continuas continuas en el intervalo $[a,b]$. Definimos $\langle f,g\rangle$ mediante la fórmula $$\langle f,g\rangle=\int_{a}^{b}f(t)g(t)dt.$$
Vamos a probar que $\langle f,g\rangle$ define un producto escalar en $c([a,b])$
(a) Tenemos que
$$\langle f,g\rangle=\int_{a}^{b}f(t)\cdot f(t)~dt=\int_{a}^{b}f^{2}(t)~dt~\geq 0~$$
la última desigualdad la justificamos usando las propiedades de la integral $\displaystyle{f\geq 0~\Rightarrow~\int_{a}^{b}f~\geq 0~}$
(b) Tenemos que
$$\langle f,g\rangle=\int_{a}^{b}f(t)g(t)~dt=\int_{a}^{b}g(t)f(t)~dt=\langle g,f\rangle$$
(c) Tenemos que
$$\langle \lambda f,g\rangle=\int_{a}^{b}\lambda~f(t)~g(t)~dt=\lambda~\int_{a}^{b}f(t)~g(t)~dt=\lambda~\langle f,g\rangle$$
(d) Tenemos que
\begin{align*} \langle f+g,h\rangle & =\int_{a}^{b}[f(t)+g(t)]h(t)~dt \\ &=\int_{a}^{b}[f(t)h(t)+g(t)h(t)]~dt \\ &=\int_{a}^{b}f(t)h(t)~dt+\int_{a}^{b}g(t)h(t)~dt \\ &=\langle f,h\rangle+\langle g,h\rangle \end{align*}
en este caso $\langle f,g\rangle$ es un producto escalar para $C[a,b]$.$\blacksquare$

El espacio normado $\mathbb{R}^{n}$


Definición. Un producto escalar $\langle,\rangle$ en un espacio vectorial E da lugar a una noción de longitud de un vector $\overrightarrow{x}\in E$, llamada su norma, y definida como
$$|\overline{x}|=\sqrt{\langle \overline{x},\overline{x}\rangle}$$
En general, una norma en un espacio vectorial E es una aplicación $x\rightarrow |x|$ de E en $(0,+\infty)$ que satisface las siguientes propiedades:
(1) $|\overline{x}|\geq 0$ para toda $\overline{x}\in\mathbb{R}^{n}$ y $|\overline{x}|=0$ si y sólo si $\overline{x}=\overline{0}$
(2) $|\lambda \overline{x}|=\lambda |\overline{x}|$ para toda $\overline{x}\in\mathbb{R}^{n}$ y $\lambda\in \mathbb{R}$
(3) $|x+y|\leq |x|+|y|$ para cualesquiera $\overline{x},\overline{y}\in\mathbb{R}^{n}$ (Desigualdad Triangular)
Al par $(E,|.|)$ se le denomina espacio normado.
Ejemplo. Veamos que
$$|\overline{x}|=\sqrt{\langle \overline{x},\overline{x}\rangle}$$
define una norma.
Solucion.
(1) Tenemos que
$$|\overline{x}|=\sqrt{\langle \overline{x},\overline{x}\rangle}\geq 0$$
la última igualdad la justificamo así: $\langle \overline{x},\overline{x}\rangle>0~\Rightarrow~\sqrt{\langle \overline{x},\overline{x}\rangle}>0$
(2) Tenemos que
\begin{align*} |\lambda \overline{x}| &=\sqrt{\langle \lambda\overline{x},\lambda\overline{x}\rangle} \\ &=\sqrt{\lambda^{2}\langle \overline{x},\overline{x}\rangle} \\ &=|\lambda|\langle \overline{x},\overrightarrow{x}\rangle\\ &=|\lambda|~|\overline{x}| \end{align*}
(3) Para la desigualdad del triángulo necesitamos antes probar un resultado
$\fbox{Lema: Desigualdad de Caychy}$
Si E es un espacio vectorial entonces $\forall~\overline{x},\overline{y}\in E$ se cumple
$$|\langle\overline{x},\overline{y}\rangle|\leq |\overline{x}|~|\overline{y}|$$
Demostración. Supongamos que $\overline{x},\overline{y}\neq 0$ y definimos
$$\overline{u}=\frac{\overline{x}}{\|\overline{x}\|}~~\overline{v}=\frac{\overline{y}}{\|\overline{y}\|}$$
Tenemos entonces que
\begin{align*} \|\overline{u}\| & =\left\|\frac{\overline{x}}{|\overline{x}|}\right\|=\frac{\|\overline{x}\|}{\|\overline{x}\|}=1 \\ \|\overline{v}\| & =\left\|\frac{\overline{y}}{\|\overline{y}\|}\right\|=\frac{\|\overline{y}\|}{\|\overline{y}\|}=1 \end{align*}
Por tanto
\begin{align*} 0\leq \|\overline{u}-\overline{v}\|^{2} & =\langle\overline{u}-\overline{v},\overline{u}-\overline{v}\rangle \\ & =\langle\overline{u}-\overline{u}\rangle-2\langle\overline{u}-\overline{v}\rangle+\overline{v}-\overline{v} \\ & =\|\overline{u}\|^{2}-2\langle\overline{u}-\overline{v}\rangle+\|\overline{u}\|^{2} \\ & =1-2\langle\overline{u},\overline{v}\rangle+1 \\ & =2-2\langle\overline{u},\overline{v}\rangle \end{align*}
Por lo tanto
\begin{align*} 0\leq 2-2\langle\overline{u},\overline{v}\rangle&~\Rightarrow~2\langle\overline{u},\overline{v}\rangle\leq 2 \\ &~\Rightarrow~\langle\overline{u},\overline{v}\rangle\leq 1 \\ &~\Rightarrow~\left\langle\frac{\overline{x}}{|\overline{x}|},\frac{\overline{y}}{\|\overline{y}\|}\right\rangle\leq 1 \\ &~\Rightarrow~\frac{1}{\|\overline{x}\|~\|\overline{y}\|}\langle\overline{x},\overline{y}\rangle\leq 1 \\ &~\Rightarrow~\langle\overline{x},\overline{y}\rangle\leq\|\overline{x}\|~\|\overline{y}\| \end{align*}
Reemplazando $\overline{x}$ por $-\overline{x}$ se obtiene que
\begin{align*} \langle\overline{-x},\overline{y}\rangle\leq\|-\overline{x}\|~\|\overline{y}\| & ~\Rightarrow~-\langle\overline{x},\overline{y}\rangle\leq~|-1|~|\overline{x}|~|\overline{y}| \\ &~\Rightarrow~\langle\overline{x},\overline{y}\rangle\geq~-\|\overline{x}\|~\|\overline{y}\| \end{align*}
con lo que queda demostrada la desigualdad.$~\blacksquare$
Regresando ahora a la desigualdad triangular tenemos que
\begin{align*} \|\overline{x}+\overline{y}\|=\sqrt{\langle\overline{x}+\overline{y},\overline{x}+\overline{y}\rangle} & ~\Rightarrow~\|\overline{x}+\overline{y}\|^{2}=\langle\overline{x}+\overline{y},\overline{x}+\overline{y}\rangle \\ & ~\Rightarrow~\|\overline{x}+\overline{y}\|^{2}=\langle\overline{x},\overline{x}\rangle+2\langle\overline{x},\overline{y}\rangle+\langle\overline{y},\overline{y}\rangle \\ &~\Rightarrow~\|\overline{x}+\overline{y}\|^{2}=\|\overline{x}\|^{2}+2\langle\overline{x},\overline{y}\rangle+|\overline{y}|^{2} \\ & ~\Rightarrow~\|\overline{x}+\overline{y}\|^{2}\leq \|\overline{x}\|^{2}+2\|\overline{x}\|~\|\overline{y}\|+\|\overline{y}\|^{2} \\ & ~\Rightarrow~\|\overline{x}+\overline{y}\|^{2}\leq \left(\|\overline{x}\|+\|\overline{y}\|\right)^{2} \end{align*}
Y tomando raíces en ambos miembros de la desigualdad, obtenemos el resultado.$~\blacksquare$

Otras normas en $\mathbb{R}^n$

Ejemplo.

$\fbox{La Norma 1 $\|\overline{x}\|_{1}$}$
Definimos $\|\\,\|_1:\mathbb{R}^n \rightarrow \mathbb{R}$ por
$\|\,\|_1 = |x_1|+\ldots+|x_n|$ $\forall \, \bar{x} \in
\mathbb{R}^n$. Vamos a probar que $\|\,\|_1 $ es una norma en
$\mathbb{R}^n$
(a) Dado que $\forall \, x \in \mathbb{R}$ $|x|\geq
0$, se tiene $\|\,\|_1 = |x_1|+\ldots+|x_n|\geq 0$ $\forall \, \bar{x} \in\mathbb{R}^n$.
(b) Si $\alpha \in \mathbb{R}$ y $\bar{x}=(x_1,\ldots,x_n) \in
\mathbb{R}^n$, entonces
\[\begin{array}{ll}
|\alpha\bar{x}| & =|\alpha x_1|+ \ldots + |\alpha
x_n|\\
\, & =|\alpha||x_1|+ \ldots + |\alpha||x_n|\\
\, & = |\alpha|(|x_1|+ \ldots + |x_n|)\\
\, & = |\alpha||\bar{x}| \quad \forall \, \bar{x}\in\mathbb{R}^n\
\end{array}\]
(c) Si $\bar{x}=(x_1,\ldots,x_n)$ y $\bar{y}=(y_1,\ldots,y_n)$ son elementos de $\mathbb{R}^n$
\[\begin{array}{ll}
|\bar{x}+\bar{y}| & =|x_1+y_1|+ \ldots + |x_n+y_n|\\
\, & \leq|x_1|+|y_1|+ \ldots + |x_n|+|y_n|\\
\, & = |x_1|+ \ldots +|x_n|+ \ldots + |y_1|+ \ldots +|y_n|\\
\, & = |\bar{x}|_1 + |\bar{y}|_1
\end{array}\]
Si $|\bar{x}|_1=0~\Rightarrow~|x_1|+ \ldots+|x_n|=0$ y como cada $|x_i|\geq 0$ $i=1,\ldots,n$ entonces $|x_1|+ \ldots +|x_n|=0~\Rightarrow~|x_i|= 0$ $i=1,\ldots,n~~~\therefore~~~\bar{x}=0$.$~~\blacksquare$
Ejemplo.
$\fbox{La Norma infinito $\|\overline{x}\|_{\infty}$}$
Consideremos ahora la función $\|\,\|_\infty:\mathbb{R}^n \rightarrow \mathbb{R}$ dada por
$$\boxed{\|\overline{x}\|_\infty=\max{|x_1|+\ldots +|x_n|}~~\forall x\in\mathbb{R}^n}$$
Vamos a probar que la función $\|\,\|_\infty:\mathbb{R}^n \rightarrow \mathbb{R}$ es una norma en $\mathbb{R}^n$, que se denomina norma del máximo o norma cúbica.
(a) Puesto que $|x_i|\geq 0~~i=1,\ldots,n$\ entonces $$\max{|x_1|+\ldots +|x_n|}\geq0$$ es decir $$\|\bar{x}\|_\infty \geq 0$$
(b) Sea $\alpha\in\mathbb{R}$ y $\bar{x}\in\mathbb{R}^n$. Se tiene entonces
que $$\|\alpha \bar{x}\|=\max\{|\alpha x_1|,\ldots,|\alpha x_n|\}=\max\{|\alpha|| x_1|,\ldots,|\alpha||x_n|\}$$
Supongamos ahora que
$$|x_{i\alpha}|=\max \{ |x_1|, \ldots, |x_n| \}$$
$\therefore~~~|x_{i\alpha}|\geq |x_i|,~~~\forall~ i=1,\ldots,n~~~\therefore~~~|\alpha||x_{i\alpha}|\geq |\alpha||x_i|,~~\forall ~~ i=1,\ldots,n$ $\therefore$ $|\alpha x_{i\alpha}|\geq |\alpha x_i|$ $\forall~~i=1,\ldots,n$ por lo que
$$|\alpha||x_{i\alpha}|= |\alpha x_{i\alpha}|=\max\{|\alpha x_1|,\ldots,|\alpha x_n|\}=\max\{|\alpha|| x_1|,\ldots,|\alpha||x_n|\}$$
es decir $$|\alpha|\max \{ |x_1|, \ldots, |x_n| \} = \max\{|\alpha x_1|,\ldots,|\alpha x_n|\}=\max\{|\alpha|| x_1|,\ldots,|\alpha||x_n|\}$$
$\therefore~~~|\alpha|\|\bar{x}\|_{\infty}=\|\alpha \bar{x}\|_{\infty}$
(c) $\|\bar{x}+\bar{y}\|_{\infty}=\max\{|x_1+y_1|,\ldots,|x_n+y_n|\}$
Sea $$|x_{1\alpha}+y_{1\alpha}|=\max\{|x_1+y_1|,\ldots,|x_n+y_n|\}$$
como $$|x_{1\alpha}+y_{1\alpha}|\leq|x_{1\alpha}|+|y_{1\alpha}|$$
se tiene que $$\max\{|x_1+y_1|,\ldots,|x_n+y_n|\}\leq|x_{1\alpha}|+|y_{1\alpha}|$$
pero por definición de $$\max\{|x_1|+\ldots+|x_n|\}~~y~~ \max\{|y_1|+\ldots +|y_n|\}$$
también se tiene que $$|x_{1\alpha}|\leq \max\{|x_1|+\ldots
+|x_n|\}~~~y~~~|y_{1\alpha}|\leq \max\{|y_1|+\ldots+|y_n|\}$$
luego $$\max\{|x_1+y_1|,\ldots,|x_n+y_n|\} \leq \max\{|x_1|+\ldots
+|x_n|\} + \max\{|y_1|+\ldots+|y_n|\}$$
o sea $$\|\bar{x}+\bar{y}\|_{\infty} \leq\|\bar{x}\|_{\infty}+\|\bar{y}\|_{\infty}.~~\blacksquare$$
Ejemplo. Norma Euclidiana
Consideremos ahora la función $\|\,\|_\infty:\mathbb{R}^n \rightarrow \mathbb{R}$ dada por
$$|x|=\sqrt{\langle x,x\rangle}$$
Vamos a mostrar que es una norma en $\mathbb{R}^n$
(a) $\|\bar{x}\|=\sqrt{x_1^2+\ldots+x_n^2} \geq 0$ pues es la raíz positiva $\therefore$ $\|\bar{x}\|\geq 0$.
(b)

\[\begin{array}{ll}
\|\alpha\bar{x}\| & = \sqrt{(\alpha x_1)^2+\ldots+(\alpha
x_n)^2}\\
\, & = \sqrt{\alpha^2x_1^2+\ldots+\alpha^2x_n^2}\\
\, & = \sqrt{\alpha^2(x_1^2+\ldots+x_n^2)}\\
\, & = \sqrt{\alpha^2}\sqrt{x_1^2+\ldots+x_n^2}\\
\, & = |\alpha|\|\bar{x}\|
\end{array}\]
(c)

\[\begin{array}{ll}
\|\bar{x}+\bar{y}\|^2 & =
(x_1+y_1)^2 + \ldots +
(x_n+y_n)^2\\
\, & =x_1^2+2x_1y_1+y_1^2 +
\ldots +
x_n^2+2x_ny_n+y_n^2\\
\, & =x_1^2+\ldots+ x_n^2 +2(x_1y_1+\ldots +x_ny_n )+ y_1^2
+ \ldots +y_n^2\\
\, & = \|\bar{x}\|^2+2(x_1y_1+\ldots +x_ny_n
)+ \|\bar{y}\|^2
\end{array}\]
Aplicando la desigualdad de Cauchy-Shwarz
$$x_1y_1+\ldots+x_ny_n \leq \|\bar{x}\|~\|\bar{y}\|$$
se tiene que $$\|\bar{x}\|^2+2(x_1y_1+\ldots+x_ny_n)+\|\bar{y}\|^2
\leq \|\bar{x}\|^2+2~\|\bar{x}\|~\|\bar{y}\|+ \|\bar{y}\|^2 =\left [\|\bar{x}\|+\|\bar{y}\|\right]^2$$
$\therefore~~~\|\bar{x}+\bar{y}\|^2\leq
\left[\|\bar{x}\|+\|\bar{y}\|\right]^2$ y al
sacar raiz obtenemos $\|\bar{x}+\bar{y}\|\leq
\|\bar{x}\|+\|\bar{y}\|$
(d) Si $\|\bar{x}\|=0$ se tiene entonces $\sqrt{x_1^2+\ldots+x_n^2}=0$ es decir $x_1^2+\ldots+x_n^2=0$ pero $x^2\geq 0~~\therefore~~x_i^2=0~~\forall~ i=1,\ldots,n$ $\therefore~~\bar{x}=0$ $\blacksquare$
El concepto general de Norma en $\mathbb{R}^n$. Las propiedades de la norma euclidiana nos ayudan para definir la noción abstracta de Norma.
Definición.Una norma en $\mathbb{R}^n$ es cualquier función $\|\,\|:\mathbb{R}^n \rightarrow
\mathbb{R}$ que satisface las siguientes propiedades que denominaremos Axiomas de Norma para cualesquiera $\bar{x},\bar{y}\,\in\,\mathbb{R}^n$ y toda $\alpha\,\in\,\mathbb{R}$ se cumple:
(a) $\|\bar{x}\|\geq 0~~\|0\|=0$
(b) $\|\alpha\bar{x}\|=|\alpha|~\|\bar{x}\|$
(c) $\|\bar{x}+\bar{y}\|\leq \|\bar{x}\|+\|\bar{y}\|$
(d) $\|\bar{x}\|=0~~\Rightarrow~\bar{x}=0$
Proposición.
Para toda norma $|\,|:\mathbb{R}^n \rightarrow\mathbb{R}$ se cumple:
(a) $\|-\bar{x}\|=\|\bar{x}\|~~\forall \, x \in \mathbb{R}^n$
(b) $|\|\bar{x}\|-\|\bar{y}\||\leq \|\bar{x}-\bar{y}\|~~\forall \, \bar{x},\bar{y} \in \mathbb{R}^n$
Proposición.
(a) $\|-\bar{x}\|=|-1|~\|\bar{x}\|=\|\bar{x}\|$
(b) $0\leq \|\bar{x}\|=\|\bar{x}-\bar{y}+\bar{y}\|\leq\|\bar{x}-\bar{y}\|+\|\bar{y}\|$
$\therefore$ $\|\bar{x}\|-\|\bar{y}\|\leq\|\bar{x}-\bar{y}\|$ Intercambiando $\bar{x}$ por $\bar{y}$ obtenemos $\|\bar{y}\|-\|\bar{x}\|\leq\|\bar{y}-\bar{x}\|=\|\bar{x}-\bar{y}\|$ $\therefore$ $|\|\bar{y}\|-\|\bar{x}\||\leq \|\bar{x}-\bar{y}\|.~~\blacksquare$


Ejemplo. Sea $I=[0,1]$. Demsotrar que $\|f\|=\sup {|f(x)|}$. Es una norma
de $C[0,1]$
Solución.
(a) Recordar que toda función real continua definida en un intervalo cerrado es acotada, por tanto $\|f\|$ está bien definida.
(b) Puesto que $|f(x)|\geq 0~\forall~x\in I$ entonces $\|f\|\geq 0$ y además, $\|f\|= 0$ sii $|f(x)|= 0~\forall~x\in I$, i.e. sii $f=0$.
(c) Recordemos un resultado: Sean $a$ y $b$ números reales tales que $a\leq b+\varepsilon$.
Demostrar que $a \leq b$
Supongase que $a>b$ entonces $a=b+\delta,~~\delta >0$ tomamos $$\displaystyle\frac{\delta}{2}=\varepsilon$$
entonces $$a > b+\delta > b +\displaystyle\frac{\delta}{2}=b+\varepsilon~ \underset{\circ}{\bigtriangledown}$$
$\therefore~a\leq b$ ahora sea $\varepsilon > 0$. Entonces existe $x_0\in I$ tal que
\[\begin{array}{ll}
|f+g|& = \sup{|f(x)+g(x)|}\\
\, & \leq |f(x_0)+g(x_0)|+\varepsilon\\
\, & \leq |f(x_0)|+|g(x_0)|+\varepsilon\\
\, & \leq \sup{|f(x)|} +\sup{|g(x)|}+\varepsilon\\
\, & = |f|+|g| +\varepsilon
\end{array}\]
$\therefore~~\|f+g\| \leq \|f\|+\|g\|$
(d) Sea $k\in \mathbb{R}$ entonces
\[\begin{array}{ll}
\|kf\| & = \sup{|kf(x)|}\\
\, & = \sup{|k||f(x)|}\\
\, & = |k|\sup{|f(x)|}\\
\, & = |k|\|f(x)\|.~~\blacksquare\\
\end{array}\]
Ejemplo. Demostrar que $\|f\|=\displaystyle\int_0^1|f(x)|dx$ es una norma de $C[0,1]$ (funciones continuas en el intervalo $[0,1]$).
Solución
(a) $\|f\|=\displaystyle\int_0^1|f(x)|dx\geq 0$ puesto que $$|f(x)|\geq 0\Rightarrow \displaystyle\int_0^1|f(x)|dx \geq 0$$
(b) Tenemos que
\[\begin{array}{ll}
\|kf\|& =\displaystyle\int_0^1|kf(x)|dx\\
\, & =\displaystyle\int_0^1|k||f(x)|dx\\
\, & =|k|\displaystyle\int_0^1|f(x)|dx\\
\, & = |k|\|f\|
\end{array}\]
(c) Tenemos que
\[\begin{array}{ll}
\|f+g\|& =\displaystyle\int_0^1|f(x)+g(x)|dx\\
\, & \leq \displaystyle\int_0^1[|f(x)|+|g(x)|]dx\\
\, & =\displaystyle\int_0^1|f(x)|dx + \displaystyle\int_0^1|g(x)|dx\
\, & = \|f\|+ \|g\|.~~\blacksquare
\end{array}\]
Ejemplo.
Definición. Sea $\|\,\|_{p}:\mathbb{R}^n \rightarrow \mathbb{R}$ dada asi: $$\|x\|_{p}=\left(\sum_{i=1}^{n}|x_{i}|^{p}\right)^{\frac{1}{p}}$$
Vamos a demostrar que $|x|_{p}$ es una norma
Solución.
(a) Puesto que $|x_i|\geq 0,~~i=1,\ldots,n$ entonces $$\sum_{1}^{n}|x_i|^{p} \geq 0~~ \therefore \left( \sum_{1}^{n}|x_i|^{p}\right)^{\frac{1}{p}}\geq 0~~ \therefore \|x\|_{p}\geq 0$$
(b) Sea $\alpha\in\mathbb{R}$ y $\bar{x}\in\mathbb{R}^n$. Se tiene entonces
que $$\|\alpha \bar{x}\|_{p}=\left(\sum_{1}^{n}|\alpha x_i|^{p}\right)^{\frac{1}{p}}=\left(|\alpha|^{p}\sum_{1}^{n}| x_i|^{p}\right)^{\frac{1}{p}}=|\alpha|\left(\sum_{1}^{n}| x_i|^{p}\right)^{\frac{1}{p}}=|\alpha|~\|x\|_{p}$$
(c) Tenemos que $$\|\overline{x}\|_{p}=\left[|x_{1}|^{p}+…+|x_{n}|^{p}\right]^{\frac{1}{p}}$$ Ahora procederemos a demostrar que cumple con la propiedad de la desigualdad del triángulo, es decir que para $\overline{x},\overline{y}\in \mathbb{R}^{n}$ $$\|\overline{x}+\overline{y}\|_{p}\leq \|\overline{x}\|_{p}+\|\overline{y}\|_{p}$$ Para ello primero procederemos a demostrar lo siguiente
Proposición. Sean p,q números reales tales que $p,q>1$ y $\displaystyle{\frac{1}{p}+\frac{1}{q}=1}$ entonces $$|ab|\leq \frac{|a|^{p}}{p}+\frac{|b|^{q}}{q}$$
Demostración. Consideremos la función $\varphi:[0,\infty)\rightarrow
\mathbb{R}$ dada por $\varphi(t)=t^{m}-mt$ con $m=\frac{1}{p}$
se tiene que $\varphi^{\prime}(t)=mt^{m-1}-m=m\left(t^{m-1}-1\right)$ por lo
que $\varphi^{\prime}(t)=0\Leftrightarrow m\left(t^{m-1}-1\right)=0\Leftrightarrow
t=1$ por lo tanto $t=1$ es un punto crítico de la función, ahora volvemos a derivar $\varphi^{\prime\prime}(t)=m(m-1)t^{m-2}$ que en $t=1$ es $<0$ por lo tanto en $t=1$, $\varphi$ alcanza un punto máximo $\therefore$ $\varphi(t)\leq \varphi(1)\Rightarrow t^{m}-mt\leq mt-m\Rightarrow t^{m}-1\leq m(t-1)$ Ahora hacemos $\displaystyle{t=\frac{|a|^{p}}{|b|^{q}}}$ y sustituimos
$$\displaystyle{\left(\frac{|a|^{p}}{|b|^{q}}\right)^{\frac{1}{p}}-1\leq
\frac{1}{p}\left(\frac{|a|^{p}}{|b|^{q}}-1\right)}$$
multiplicando ambos miembros de la desigualdad por $|b|^{q}$ se
tiene que $$\left(|b|^{q}\right)\left(\left(\frac{|a|^{p}}{|b|^{q}}\right)^{\frac{1}{p}}-1\right)\leq
\left(|b|^{q}\right)\left(\frac{1}{p}\left(\frac{|a|^{p}}{|b|^{q}}-1\right)\right)$$ lo que nos queda $$|a||b|^{q-\frac{q}{p}}-|b|^{q}\leq \frac{|a|^{p}}{p}-|b|^{q}\Rightarrow |a||b|^{q-\frac{q}{p}}\leq \frac{|a|^{p}}{p}-\frac{|b|^{q}}{p}+|b|^{q}$$
como $\displaystyle{q-\frac{q}{p}=1}$ y $\displaystyle{-\frac{|b|^{q}}{p}+|b|^{q}=\frac{|b|^{q}}{q}}$ tenemos entonces
$$|ab|\leq \frac{|a|^{p}}{p}+\frac{|b|^{q}}{q}.~~\square$$
Probaremos la desigualdad de Holder
$$\boxed{\sum_{k=1}^{n}|a_{k}b_{k}|\leq \left[\sum_{k=1}^{n}|a_{k}|^{p}\right]^{\frac{1}{p}}\left[\sum_{k=1}^{n}|b_{k}|^{q}\right]^{\frac{1}{q}}}$$
Demostración. Sea $\displaystyle{A=\left(\sum_{k=1}^{n}|a_{k}|^{p}\right)^{\frac{1}{p}}}$ y $\displaystyle{B=\left(\sum_{k=1}^{n}|b_{k}|^{q}\right)^{\frac{1}{q}}}$ y
definimos $\displaystyle{a^{\prime}_{k}=\frac{a_{k}}{A}}$ y $\displaystyle{b^{\prime}_{k}=\frac{b_{k}}{B}}$ usando la desigualdad probada anteriormente se tiene
\begin{align*}|a^{\prime}_{k}~b^{\prime}_{k}|&\leq \frac{|a^{\prime}_{k}|^{p}}{p}+\frac{|b^{\prime}_{k}|^{q}}{q}\\&\Rightarrow \sum_{k=1}^{n}|a^{\prime}_{k}b^{\prime}_{k}|\leq \sum_{k=1}^{n}\frac{|a^{\prime}_{k}|^{p}}{p}+\frac{|b^{\prime}_{k}|^{q}}{q}\\&=\sum_{k=1}^{n}\frac{|a^{\prime}_{k}|^{p}}{p}+\sum_{k=1}^{n}\frac{|b^{\prime}_{k}|^{q}}{q}\\&=\frac{1}{p}\sum_{k=1}^{n}|a^{\prime}_{k}|^{p}+\frac{1}{q}\sum_{k=1}^{n}|b^{\prime}_{k}|^{q}\\&=\frac{1}{p}\sum_{k=1}^{n}\left[\frac{a_{k}}{A}\right]^{p}+\frac{1}{q}\sum_{k=1}^{n}\left[\frac{b_{k}}{B}\right]^{q}\\&=\frac{1}{p}\frac{1}{A^{p}}\sum_{k=1}^{n}|a_{k}|^{p}+\frac{1}{q}\frac{1}{B^{q}}\sum_{k=1}^{n}|b_{k}|^{q}\end{align*}
como $$A^{p}=\left(\left(\sum_{k=1}^{n}|a_{k}|^{p}\right)^{\frac{1}{p}}\right)^{p}=\left(\sum_{k=1}^{n}|a_{k}|^{p}\right)~~~y~~~
B^{q}=\left(\left(\sum_{k=1}^{n}|b_{k}|^{q}\right)^{\frac{1}{q}}\right)^{q}=\left(\sum_{k=1}^{n}|b_{k}|^{q}\right)$$
se tiene que
\begin{align*}\frac{1}{p}\frac{1}{A^{p}}\sum_{k=1}^{n}|a_{k}|^{p}+\frac{1}{q}\frac{1}{B^{q}}\sum_{k=1}^{n}|b_{k}|^{q}&=\frac{1}{p}\frac{1} {\left(\sum_{k=1}^{n}|a_{k}|^{p}\right)}\sum_{k=1}^{n}|a_{k}|^{p}+\frac{1}{q}\frac{1}{\left(\sum_{k=1}^{n}|b_{k}|^{q}\right)}\sum_{k=1}^{n}|b_{k}|^{q}\\&=\frac{1}{p}+\frac{1}{q}=1\end{align*}
Por lo tanto
\begin{align*}\sum_{k=1}^{n}|a^{\prime}{k}b^{\prime}{k}|\leq 1 &\Rightarrow \sum_{k=1}^{n}|\frac{a_{k}}{A}\frac{b_{k}}{B}|\leq1\\&\Rightarrow \sum_{k=1}^{n}|a_{k}b_{k}|\leq AB\\ &\Rightarrow \sum_{k=1}^{n}|a_{k}b_{k}|\leq \left(\sum_{k=1}^{n}|a_{k}|^{p}\right)^{\frac{1}{p}}\left(\sum_{k=1}^{n}|b_{k}|^{q}\right)^{\frac{1}{q}}\end{align*}
Ahora probaremos la desigualdad de Minkowski
$$\left[\sum_{k=1}^{n}|a_{k}+b_{k}|^{p}\right]^{\frac{1}{p}}\leq \left[\sum_{k=1}^{n}|a_{k}|^{p}\right]^{\frac{1}{p}}+\left[\sum_{k=1}^{n}|b_{k}|^{q}\right]^{\frac{1}{q}}$$
Tenemos que
\begin{align*}\sum_{k=1}^{n}|a_{k}+b_{k}|^{p}=\sum_{k=1}^{n}|a_{k}+b_{k}|^{p-1}|a_{k}+b_{k}|&\leq \sum_{k=1}^{n}|a_{k}+b_{k}|^{p-1}\left(|a_{k}|+|b_{k}|\right)\\&=\left( \sum_{k=1}^{n}|a_{k}+b_{k}|^{p-1}\right)\left(|a_{k}|\right)+\left(
\sum_{k=1}^{n}|a_{k}+b_{k}|^{p-1}\right)\left(|b_{k}|\right)\end{align*}
Aplicando la desigualdad de Holder a cada sumando tenemos que
\begin{align*}\left(\sum_{k=1}^{n}|a_{k}+b_{k}|^{p-1}\right)\left(|a_{k}|\right)&\leq \left[\sum_{k=1}^{n}a_{k}^{p}\right]^{\frac{1}{p}}\left[\sum_{k=1}^{n}|a_{k}+b_{k}|^{q(p-1)}\right]^{\frac{1}{q}}\\&=\left[\sum_{k=1}^{n}a_{k}^{p}\right]^{\frac{1}{p}}\left[\sum_{k=1}^{n}|a_{k}+b_{k}|^{p}\right]^{\frac{1}{q}}\end{align*}
\begin{align*}\left(\sum_{k=1}^{n}|a_{k}+b_{k}|^{p-1}\right)\left(|b_{k}|\right)&\leq \left[\sum_{k=1}^{n}b_{k}^{p}\right]^{\frac{1}{p}}\left[\sum_{k=1}^{n}|a_{k}+b_{k}|^{q(p-1)}\right]^{\frac{1}{q}}\\&=\left[\sum_{k=1}^{n}b_{k}^{p}\right]^{\frac{1}{p}}\left[\sum_{k=1}^{n}|a_{k}+b_{k}|^{p}\right]^{\frac{1}{q}}\end{align*}
Por lo tanto
$$\sum_{k=1}^{n}|a_{k}+b_{k}|^{p}\leq \left[\sum_{k=1}^{n}a_{k}^{p}\right]^{\frac{1}{p}}\left[\sum_{k=1}^{n}|a_{k}+b_{k}|^{p}\right]^{\frac{1}{q}}+\left[\sum_{k=1}^{n}b_{k}^{p}\right]^{\frac{1}{p}}\left[\sum_{k=1}^{n}|a_{k}+b_{k}|^{p}\right]^{\frac{1}{q}}$$
Multiplicando ambos miembros de la desigualdad por
$$\left[\sum_{k=1}^{n}|a_{k}+b_{k}|^{p}\right]^{-\frac{1}{q}}$$
obtenemos
\begin{align*}\left(\sum_{k=1}^{n}|a_{k}+b_{k}|^{p}\right)\left[\sum_{k=1}^{n}|a_{k}+b_{k}|^{p}\right]^{-\frac{1}{q}}&=\left(\sum_{k=1}^{n}|a_{k}+b_{k}|^{p}\right)^{1-\frac{1}{q}}\\&=\left(\sum_{k=1}^{n}|a_{k}+b_{k}|^{p}\right)^{\frac{1}{p}}\end{align*}
$$\left[\sum_{k=1}^{n}a_{k}^{p}\right]^{\frac{1}{p}}\left[\sum_{k=1}^{n}|a_{k}+b_{k}|^{p}\right]^{\frac{1}{q}}\left(\left[\sum_{k=1}^{n}|a_{k}+b_{k}|^{p}\right]^{-\frac{1}{q}}\right)=\left[\sum_{k=1}^{n}a_{k}^{p}\right]^{\frac{1}{p}}$$
$$\left[\sum_{k=1}^{n}b_{k}^{p}\right]^{\frac{1}{p}}\left[\sum_{k=1}^{n}|a_{k}+b_{k}|^{p}\right]^{\frac{1}{q}}\left(\left[\sum_{k=1}^{n}|a_{k}+b_{k}|^{p}\right]^{-\frac{1}{q}}\right)=\left[\sum_{k=1}^{n}b_{k}^{p}\right]^{\frac{1}{p}}$$
Por lo tanto $$\left(\sum_{k=1}^{n}|a_{k}+b_{k}|^{p}\right)^{\frac{1}{p}}\leq
\left[\sum_{k=1}^{n}a_{k}^{p}\right]^{\frac{1}{p}}+\left[\sum_{k=1}^{n}b_{k}^{p}\right]^{\frac{1}{p}}$$
Por lo tanto $$\|\overline{x}+\overline{y}\|_{p}\leq \|\overline{x}\|_{p}+\|\overline{y}\|_{p}~\blacksquare$$

Ejemplo. Espacios $\ell_{p}$

Definición. Dado $\bar{x}\in\mathbb{R}^{n}$ definimos
$$\|\bar{x}\|_{p}=\left(\sum_{k=1}^{n}|x_{k}|^{p}\right)^{\frac{1}{p}}~~si~~p\in[1,\infty)$$
Proposición. Dada $p\in[1,\infty)$, consideramos el conjunto $\ell_{p}$ de todas las sucesiones $(x_{k})$ de números reales tales que la serie
$$\sum_{k=1}^{\infty}|x_{k}|^{p}$$converge. Entonces la función
$$\|(x_{k})\|_{p}=\left(\sum_{k=1}^{\infty}|x_{k}|^{p}\right)^{\frac{1}{p}}$$es una norma en $\ell_{p}$
Demostración.
(a) Tenemos
$$\|x_{k}\|_{p}\geq0\Leftrightarrow\left(\sum_{k=1}^{\infty}|x_{k}|^{p}\right)^{\frac{1}{p}}\geq0\Leftrightarrow\sum_{k=1}^{\infty}|x_{k}|^{p}\geq0\Leftrightarrow|x_{k}|^{p}\geq0\Leftrightarrow |x_{k}|\geq0\Leftrightarrow x_{k}\geq0$$
(b) $$\|\lambda x_{k}\|_{p}=\left(\sum_{k=1}^{\infty}|\lambda x_{k}|^{p}\right)^{\frac{1}{p}}=\left(\sum_{k=1}^{\infty}|\lambda|^{p} |x_{k}|^{p}\right)^{\frac{1}{p}}=\left(|\lambda|^{p}\sum_{k=1}^{\infty} |x_{k}|^{p}\right)^{\frac{1}{p}}=|\lambda|\left(\sum_{k=1}^{\infty}|x_{k}|^{p}\right)^{\frac{1}{p}}=|\lambda|~\|x_{k}\|_{p}$$
(c) Como la $\|\|_{p}$ satisface la desigualdad del triángulo, se tiene que
$$\left(\sum_{k=1}^{n} |x_{k}+y_{k}|^{p}\right)^{\frac{1}{p}}\leq \left(\sum_{k=1}^{\infty} |x_{k}|^{p}\right)^{\frac{1}{p}}+\left(\sum_{k=1}^{\infty} |y_{k}|^{p}\right)^{\frac{1}{p}}\leq\|x_{k}\|_{p}+\|y_{k}\|_{p}$$
para todo $n\in \mathbb{N}$. En consecuencia, la serie
$$\sum_{k=1}^{\infty} |x_{k}+y_{k}|^{p}$$
converge y se cumple que
$$\|x_{k}+y_{k}\|_{p}=\left(\sum_{k=1}^{\infty} |x_{k}+y_{k}|^{p}\right)^{\frac{1}{p}}\leq\|x_{k}\|_{p}+\|y_{k}\|_{p}.~~\textcolor{orange}{\blacksquare}$$
Proposición. Sea $\bar{x}\in\mathbb{R}^{n}$, entonces
$$\|\bar{x}\|_{\infty}\leq\|\bar{x}\|\leq\|\bar{x}\|_{1}\leq n\|\bar{x}\|$$

Demostración. Sea $|x_{k}|=\max{|x_{1},…,|x_{n}||}$
Se tiene entonces
$$|x_{k}|=\sqrt{x_{k}^{2}}\leq \sqrt{x_{1}^{2}+…+x_{n}^{2}}=\|\bar{x}\|$$
$\therefore~~\|\bar{x}\|_{\infty}\leq\|\bar{x}\|$
Ahora bien
$$\left(\|\bar{x}\|\right)^{2}=\left(|x_{1}|^{2}+…+|x_{n}|^{2}\right)\leq \sum_{i=1}^{n}|x_{i}|^{2}+2\sum_{i\leq i\leq j\leq n}|x_{i}||x_{j}|=\left(|x_{1}|+…+|x_{n}|\right)^{2}=\left(\|\bar{x}\|_{1}\right)^{2}$$
$$~\Rightarrow~\left(\|\bar{x}\|\right)^{2}\leq\left(\|\bar{x}\|_{1}\right)^{2}$$
$$~\Rightarrow~\|\bar{x}\|\leq \|\bar{x}\|_{1}$$
También si suponemos que $|x_{j}|=\max{|x_{1}|,…,|x_{n}|}$ entonces
$$\|\bar{x}\|_{1}=|x_{j}|\leq |x_{j}|+…+|x_{j}|=n|x_{j}|=n\max{|x_{1}|,…,|x_{j}|}=n\|\bar{x}\|_{\infty}$$
por lo que
$$\|\bar{x}\|_{1}\leq n\|\bar{x}\|_{\infty}.~~ \blacksquare$$


Proposición. Sea $\bar{x}\in\mathbb{R}^{n}$ entonces
$$\|\bar{x}\|_{\infty}\leq\|\bar{x}\|\leq\sqrt{n}\|\bar{x}\|_{\infty}$$
Demostración. Suponemos que $|x_{j}|=\max{|x_{1}|,…,|x_{n}|}$. Se tiene entonces
$$|x_{j}|=\sqrt{x_{j}^{2}}\leq \sqrt{x_{1}^{2}+…+x_{j}^{2}+…+x_{n}^{2}}=\|\bar{x}\|$$
Por tanto
$$\|\bar{x}\|_{\infty}\leq\|\bar{x}\|$$
Por otro lado suponemos que $|x_{j}|=\max{|x_{1}|,…,|x_{n}|}$ y tenemos
$$\|\bar{x}\|=\sqrt{x_{1}^{2}+…+x_{j}^{2}+…+x_{n}^{2}}\leq \sqrt{x_{j}^{2}+…+x_{j}^{2}+…+x_{j}^{2}}=\sqrt{n(x_{j}^{2})}=\sqrt{n}\|\bar{x}\|_{\infty}$$
por lo tanto
$$\|\bar{x}\|\leq\sqrt{n}\|\bar{x}\|_{\infty}.~~\blacksquare$$


Proposición. Sea $\bar{x}\in\mathbb{R}^{n}$ entonces
$$\|\bar{x}\|_{1}\leq\sqrt{n}\|\bar{x}\|$$
Demostración.
$$\|\bar{x}\|_{1}=|x_{1}|+…+|x_{n}|=\left(1,…,1\right)\cdot (|x_{1}|,…,|x_{1}|)\leq \|(1,…,1)\|~\|\bar{x}\|=\sqrt{n}\|\bar{x}\|$$
por lo tanto
$$\|\bar{x}\|_{1}\leq\sqrt{n}\|\bar{x}\|.~~\blacksquare$$

Ortogonalidad de vectores


Generalizando el concepto de perpendicularidad en $\mathbb{R}^{3}$, damos la siguiente definición.
Definición. Sea E un espacio vectorial dotado de un producto escalar $\langle,\rangle$, se dice que dos vectores $\overline{x},\overline{y}\in E$ son \textbf{ortogonales} si $$\langle \overline{x},\overline{y}\rangle=0$$
Tenemos que si $\langle \overline{x},\overline{y}\rangle=0$ entonces $$\|\overline{x}-\overline{y}\|^{2}=\langle \overline{x}+\overline{y},\overline{x}+\overline{y}\rangle=\langle \overline{x},\overline{x}\rangle-2\langle \overline{x},\overline{y}\rangle+\langle \overline{y},\overline{y}\rangle=\langle \overline{x},\overline{x}\rangle+\langle \overline{y},\overline{y}\rangle=\|\overline{x}\|^{2}+\|\overline{y}\|^{2}$$
es decir se cumple el teorema de pitagoras.

Sean ahora $\overline{x},\overline{y}\in \mathbb{R}^{2}$ y sea $\theta$ el ángulo entre ellos. Según la ley de los cosenos
\begin{align*} \|\overline{x}-\overline{y}\|^{2}&=\|\overline{x}\|^{2}+\|\overline{y}\|^{2}-2\|\overline{x}\|\|\overline{y}\|\cos(\theta) \\ &~\Rightarrow~\|\overline{x}\|^{2}-2\langle \overline{x},\overline{y}\rangle+\|\overline{y}\|^{2}=\|\overline{x}\|^{2}+\|\overline{y}\|^{2}-2\|\overline{x}\|\|\overline{y}\|\cos(\theta) \\ &~\Rightarrow~\langle \overline{x},\overline{y}\rangle=\|\overline{x}\|\|\overline{y}\|\cos(\theta) \end{align*}
Esta fórmula motiva la siguiente definición de ángulo $\theta$ entre dos vectores no nulos $\overline{x},\overline{y}\in E$, por medio de $$\boxed{\theta=\arccos\left(\frac{\langle \overline{x},\overline{y}\rangle}{|\overline{x}||\overline{y}|}\right)}$$

.






Fórmulas de Frenet-Serret

Por Ruben Hurtado

Introducción

Dada una curva $f:[a,b]\rightarrow\mathbb{R}^{n}$, el Vector Unitario Tangente $T$ es otra
función vectorial asociada a la curva, y está definida por:
$$\boxed{T(t)=\frac{f^{\prime}(t)}{\|f^{\prime}(t)\|}\ \ \ \ \text{siempre
que $|f^{\prime}(t)| \neq 0$.}}$$
De acuerdo a la definición anterior tenemos
$$\|T(t)\|=\left\|\frac{f^{\prime}(t)}{\|f^{\prime}(t)\|}\right\|=\frac{\|f'(t)\|}{\|f'(t)\|}=1$$
y de acuerdo a lo anterior
\begin{align*} \|T(t)\|=1 &~\Rightarrow~T(t)\cdot T(t)=1 \\ &~\Rightarrow~\frac{d}{dt}(T(t)\cdot T(t))=0 \\ &~\Rightarrow~T'(t)\cdot T(t)+T(t)\cdot T'(t)=0 \\ &~\Rightarrow~2(T'(t)\cdot T(t))=0 \\ &~\Rightarrow~T'(t)\cdot T(t)=0 \end{align*}
lo que implica que $T'(t)$ es ortogonal $T(t)$. Si $T^{\prime}\neq 0$ el vector unitario que tiene la misma dirección que $T^{\prime}$ se llama Vector Normal Principal a la
curva y se designa por $N(t)$. Asi pues $N(t)$ es una nueva función vectorial asociada a la curva y esta dada por la ecuación:
$$\boxed{N(t)=\frac{T^{\prime}(t)}{\|T^{\prime}(t)\|}\ \ \ \ \text{si}\ \ \ \ \ \|T^{\prime}(t)\| \neq 0}$$
de acuerdo a lo visto con el vector tangente, se tiene que $T(t)$ y $N(t)$ son ortogonales.
Un tercer vector definido mediante
$$\boxed{B(t)=T(t)\times N(t)}$$
recibe el nombre de Vector Binormal. Notese que $$\|B(t)\|=\|T(t)\times
N(t)\|=\|T(t)\|\|N(t)\|\sin\left(\frac{\pi}{2}\right)=1$$
de acuerdo a lo anterior
\begin{align*} \|B(t)\|=1&~\Rightarrow~B(t)\cdot B(t)=1 \\ &~\Rightarrow~\frac{d}{dt}(B(t)\cdot B(t))=0 \\ &~\Rightarrow~B'(t)\cdot B(t)+B(t)\cdot B'(t)=0\\ &~\Rightarrow~ 2(B'(t)\cdot B(t))=0\\ &~\Rightarrow~B'(t)\cdot B(t)=0 \end{align*}
por tanto $B'(t)$ es ortogonal a $B(t)$. Es decir $\boxed{B'(t)\cdot B(t)=0}$


Ejemplo. Pruebe que $\displaystyle{B'(t)\cdot T(t)=0}$
Solución. Si $B(t)=T(t)\times N(t)$ entonces $B(t)$ es ortogonal a $T(t)$ y $B(T)$ es ortogonal a $N(t)$ y por lo tanto $B(t)\cdot T(t)=0$
Por otro lado
$$N(t)=\frac{T(t)}{\|T'(t)\|}~\Rightarrow~\|T'(t)\|~N(T)=T'(t)$$
Si $B(t)$ es ortogonal a $N(t)$ entonces $B(t)$ es ortogonal a $\|T'(t)\|~N(T)$. Por lo tanto
$$B(t)\cdot T'(t)=B(t)\cdot \|T'(t)\|~N(T)=0$$
Tenemos entonces que
\begin{align*} \frac{d}{dt}(B(t)\cdot T(t))=0&~\Rightarrow~B'(t)\cdot T(t)+B(t)\cdot T'(t)=0 \\ &~\Rightarrow~B'(t)\cdot T(t)+0=0 \\ &~\Rightarrow~B'(t)\cdot T(t)=0 \end{align*}
Por lo tanto $\boxed{B'(t)\cdot T(t)=0}$.$~~\blacksquare$
Según los resultados anteriores $B'(t)\cdot B(t)=0$ y $B'(t)\cdot T(t)=0$. Pero también $N(t)\cdot B(t)=0$ y $N(t)\cdot T(t)=0$. Por lo tanto $N(t)$ y $B'(t)$ deben ser paralelos, es decir existe $\alpha$ tal que $\boxed{B'(t)=\alpha N(t)}$.
Si la curva está parametrizada por longitud de arco, considerando que $\|\overline{f}'(s)\|=1$, se tiene
\begin{align*} T(s) & =\overline{f}'(s) \\ N(s) & =\frac{\overline{f}»(s)}{|\overline{f}»(s)|} \\ B(s) & =T(s)\times N(s) \end{align*}
$\fbox{Fórmulas de Frenet-Serret}$
El sistema de vectores ${T(t),N(t),B(t)}$ forman un triedro en el cual
$$\boxed{B(t)=T(t)\times N(t)}$$
de acuerdo a la definición anterior
\begin{align*} B(t)=T(t)\times N(t)&~\Rightarrow~N(t)\times B(t)=N(t)\times (T(t)\times N(t)) \\ &~\Rightarrow~N(t)\times B(t)=(N(t)\cdot N(t))T(t)-(N(t)\cdot T(t))N(t) \\ &~\Rightarrow~N(t)\times B(t)=T(t)-0\cdot N(t) \\ &~\Rightarrow~N(t)\times B(t)=T(t) \end{align*}
por tanto
$$\boxed{N(t)\times B(t)=T(t)}$$
Análogamente de acuerdo a la definición anterior
\begin{align*} B(t)=T(t)\times N(t)&~\Rightarrow~B(t)\times T(t)=(T(t)\times N(t))\times T(t) \\ &~\Rightarrow~B(t)\times T(t)=(T(t)\cdot T(t))N(t)-(N(t)\cdot T(t))T(t) \\ &~\Rightarrow~B(t)\times T(t)=N(t)-0\cdot T(t) \\ &~\Rightarrow~B(t)\times T(t)=N(t) \end{align*}
por tanto
$$\boxed{B(t)\times T(t)=N(t)}$$
Por que dicho sistema de vectores, es un conjunto ortonormal. Las fórmulas que dan las derivadas del triedro móvil, en términos del mismo triedro móvil, se llaman las fórmulas de Frenet-Serret.
Teorema
(a) $\displaystyle{\frac{dT}{ds}=\kappa N}$
(b) $\displaystyle{\frac{dB}{ds}=-\tau N(s)}$
(c) $\displaystyle{\frac{dN}{ds}=\tau B-\kappa T}$
$\fbox{Demostración}$
(a) Por definición $\displaystyle{N(s)=\frac{T'(s)}{\|T'(s)\|}}$ y $\displaystyle{\kappa(s)=\left\|\frac{dT}{ds}\right\|=\|f»(s)\|}$. Luego
$$T'(s)=\|T'(s)\|~N(s)=\kappa(s)~N(s).$$
(b) $\displaystyle{\frac{dB}{ds}=-\tau N(s)}$ es fórmula de definición de torsión.
(c) \begin{align*} N'(s)&=B'(s)\times T(s)+B(s)\times T'(s) \\ &=-\tau N(s)\times T(s)+B(s)\times \kappa N(s) \\ &=\tau T(s)\times N(s)-\kappa N(s)\times B(s) \\ &=\tau B(s)-\kappa T(s).~~\blacksquare \end{align*}

Más adelante

Tarea Moral

Enlaces