Archivo de la categoría: Sin clasificar

Nota 24. El triángulo de Pascal y el binomio de Newton.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En esta nota usaremos el concepto de combinaciones visto en la nota anterior para construir el famoso triángulo de Pascal y entender cómo elevar un binomio a la $n$-ésima potencia, mediante la conocida fórmula del binomio de Newton. Empecemos la nota con un resultado que será la clave para ambos resultados.

Teorema

Sean $n,m\in \mathbb N,m+1\leq n$. Tenemos que:

$\binom{n}{m}+ \binom{n}{m+1}= \binom{n+1}{m+1} .$

Esta fórmula se conoce como la formula del triángulo de Pascal.

Demostración

Sean $n,m\in \mathbb N,m+1\leq n$ y $A=\set{a_1,\dotsc,a_{n+1}}$, un conjunto con $n+1$ elementos. Sabemos que:

$\binom{n+1}{m+1}=\#\set{C\subseteq A\mid \#C=m+1}.$

Notemos que si $C$ es un subconjunto de $A$ con $m+1$ elementos hay dos opciones, que $a_{n+1}\in C$ o que $a_{n+1}\notin C$, así:

$ \set{C\subseteq A\mid \#C=m+1}= $

$= \set{C\subseteq A\mid \#C=m+1, a_{n+1}\in C }\cup \set{C\subseteq A\mid \#C=m+1, a_{n+1}\notin C }$

y como la unión es disjunta :

$\# \set{C\subseteq A\mid \#C=m+1}=$

$= \# \set{C\subseteq A\mid \#C=m+1, a_{n+1}\in C }+ \# \set{C\subseteq A\mid \#C=m+1, a_{n+1}\notin C }$.

Además, todo subconjunto de $A$ con $m+1$ elementos tal que $a_{n+1}\in C$, es de la forma $B\cup \set{a_{n+1}}$, donde $B$ es un subconjunto de $\set{a_1,\dotsc,a_n}$ con $m$ elementos, por lo tanto:

$ \# \set{C\subseteq A\mid \#C=m+1, a_{n+1}\in C }=\binom{n}{m}.$

Por otro lado, todo subconjunto de $A$ con $m+1$ elementos tal que $a_{n+1}\notin C$ será un subconjunto de $\set{a_1,\dotsc,a_n}$ con $m+1$ elementos, así:

$ \# \set{C\subseteq A\mid \#C=m+1, a_{n+1}\notin C }=\binom{n}{m+1}.$

Concluimos que:

$\binom{n+1}{m+1}=\#\set{C\subseteq A\mid \#C=m+1}$

$= \# \set{C\subseteq A\mid \#C=m+1, a_{n+1}\in C } + \# \set{C\subseteq A\mid \#C=m+1, a_{n+1}\notin C } $

$= \binom{n}{m} + \binom{n}{m+1} .$

Por lo tanto:

$ \binom{n+1}{m+1} = \binom{n}{m} + \binom{n}{m+1} $.

$\square$

El triángulo de Pascal

De acuerdo al autor Ignacio Larrosa Cañestro en el recurso de Geogebra https://www.geogebra.org/m/usruvfhg «El triángulo de Tartaglia-Pascal fue estudiado por Niccolò Fontana, conocido como Tartaglia (1499-1557) y popularizado por Blaise Pascal (1623-1662), aunque ya se conocía desde siglos atrás en China y Persia. En este triángulo cada fila empieza y termina en 1 y los elementos intermedios son la suma de los que están arriba a la izquierda y arriba a la derecha». En la posición $m$ de la fila $n$ del triángulo se coloca el número $\binom{n}{m}$.

Observa en los siguientes videos cómo se usa la fórmula del triángulo de Pascal que acabamos de demostrar, para construir el triángulo de Pascal.

Ve el siguiente video para conocer más sobre está maravillosa sucesión milenaria.

El binomio de Newton

Sean $a,b\in \mathbb R$, $n\in \mathbb N$, entonces se cumple que:

$(a+b)^n=\binom{n}{0}\, a^n\; b^0 + \binom{n}{1} a^{n-1} b^{1}+\dotsc+ \binom{n}{n-1} a^{1}b^{n-1}+\binom{n}{n} a^{0} b^{n} .$

Demostración

La demostración se hará por inducción sobre $n$. Sean $a,b\in \mathbb R$, $n\in \mathbb N$.

Base de inducción

Si $n=0$:

$(a+b)^0=1=\binom{0}{0} a^0 b^0$.

Paso inductivo

Supongamos que se vale para $n$.

$(a+b)^n=\binom{n}{0} a^n b^0 + \binom{n}{1} a^{n-1} b^{1}+\dotsc+ \binom{n}{n-1} a^{1} b^{n-1}+\binom{n}{n} a^{0} b^{n} $.

Ésta es nuestra hipótesis de inducción.

Demostración de que se vale para $n+1$ usando la HI

Tenemos que:

$(a+b)^{n+1}=(a+b) (a+b)^{n}$, y por la hipótesis de inducción tenemos que

$(a+b)^{n+1}=(a+b)(a+b)^{n}=(a+b)\bigg[ \binom{n}{0} a^n b^0 + \binom{n}{1} a^{n-1} b^{1}+\dotsc+ \binom{n}{n-1} a^{1} b^{n-1}+\binom{n}{n} a^{0}b^{n}\bigg].$

Desarrollando tenemos que:

$(a+b)^{n+1}=a\bigg[\binom{n}{0}a^n b^0 + \binom{n}{1}a^{n-1}b^{1}+\dotsc+ \binom{n}{n-1} a^{1} b^{n-1}+\binom{n}{n} a^{0} b^{n} \bigg ]$ $+$

$b \bigg[\binom{n}{0} a^n b^0 + \binom{n}{1} a^{n-1} b^{1}+\dotsc+ \binom{n}{n-1} a^{1}b^{n-1}+\binom{n}{n} a^{0} b^{n} \bigg ]$

Multiplicando todos los términos tenemos que:

$(a+b)^{n+1}=$$\binom{n}{0} a^{n+1}b^0+$$\binom{n}{1} a^{n} b^{1}+$$\dotsc+$$\binom{n}{n} a^{1}b^{n}+$
$+$$\binom{n}{0}a^{n} b^{1}+$$\dotsc+$$\binom{n}{n-1} a^{1} b^{n}+$$\binom{n}{n}a^0b^{n+1}$

Asociando los términos semejantes, tenemos que los coeficientes resultantes son de la forma $\binom{n}{k+1}+\binom{n}{k}$ y en virtud del teorema probado al inicio de esta nota tenemos que $\binom{n}{k+1}+ \binom{n}{k}= \binom{n+1}{k+1} $. Por lo tanto:

$(a+b)^{n+1}=\binom{n}{0} a^{n+1} + \binom{n+1}{1} a^{n} b^{1}+\dotsc+ \binom{n+1}{n} a^{1} b^{n}+\binom{n}{n} b^{n+1} $ .

Pero, dado que $\binom{n}{0}=1=\binom{n+1}{0}$ y que $\binom{n}{n}=1=\binom{n+1}{n+1} $ podemos reescribir lo anterior como

$(a+b)^{n+1}=\binom{n+1}{0} a^{n+1} + \binom{n+1}{1} a^{n} b^{1}+\dotsc+ \binom{n+1}{n} a^{1} b^{n}+\binom{n+1}{n+1} b^{n+1} $

y por lo tanto la fórmula también se cumple para $n+1$.

Concluimos por el quinto axioma de Peano que se cumple para todo $n\in \mathbb N$.

$\square$

Gracias al Teorema del Binomio de Newton, los números $\binom{n}{m}$ son llamados coeficientes binomiales.

Tarea Moral

  1. Escribe otra demostración de la fórmula de Pascal, usando la descripción que se estudió de los coeficientes binomiales en términos de factoriales.
  2. Encuentra el renglón once del triángulo de Pascal.
  3. Sean $a,b\in \mathbb R$, $n\in \mathbb N$. Desarrolla la expresión $(a+b)^{8}$ usando el binomio de Newton.
  4. Sea $n\in \mathbb N$. Encuentra a qué es igual la expresión $\sum_{k=0}^n \binom{n}{k}$ e interpreta tu respuesta en términos de subconjuntos.
  5. Sea $n\in \mathbb N$ con $n\geq 1$. Prueba que $\sum_{k=0}^n (-1)^k\binom{n}{k}=0.$

Más adelante

Con esta nota hemos terminado la unidad 2. En la siguiente unidad veremos el importante concepto de espacio vectorial.

Enlaces relacionados

Página principal del curso.

Nota anterior. Nota 23. Combinaciones.

Nota siguiente. Nota 25. Espacios vectoriales.

Nota 23. Combinaciones.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En la presente nota veremos el concepto de combinaciones, para ello consideraremos un conjunto finito y a todos sus subconjuntos con un número determinado de elementos. Este concepto es ampliamente usado en matemáticas, particularmente en probabilidad, y está relacionado también íntimamente en la forma de elevar un binomio a un exponente natural.

Definición

Sean $n,m\in \mathbb N$ con $m\leq n$, $A$ un conjunto con $n$ elementos. Las combinaciones de los elementos de $A$ tomados de $m$ en $m$ son los subconjuntos de $A$ de $m$ elementos. Denotamos por $\binom{n}{m}$ al número de combinaciones de un conjunto de $n$ elementos tomados de $m$ en $m$.

Ejemplo

Considera el conjunto $A=\set{a,b,c,d}$, con $a$, $b$, $c$ y $d$ elementos distintos. Obtengamos todas las combinaciones de $A$.

Sólo hay una combinación de los elementos de $A$ tomados de $0$ en $0$, el conjunto vacío, y sólo una combinación de los elementos de $A$ tomados de $4$ en $4$, el conjunto $A$, entonces

$\binom{4}{0}= \binom{4}{4}=1. $

Las combinaciones de los elementos de $A$ tomados de $1$ en $1$ son: $\set{a}$, $\set{b}$, $\set{c}$, $\set{d}$.

Las combinaciones de los elementos de $A$ tomados de $2$ en $2$ son $\set{a,b}$, $\set{a,c}$, $\set{a,d}$, $\set{b,c}$, $\set{b,d}$, $\set{c,d}$. Así

$\binom{4}{2}=6.$

Las combinaciones de los elementos de $A$ tomados de $3$ en $3$ son $\set{a,b,c}$, $\set{a,b,d}$, $\set{a,c,d}$, $\set{b,c,d}$, por lo que

$\binom{4}{3}=4.$

Observación 1

Para todo natural $n$ se tiene que $\binom{n}{0}= \binom{n}{n}=1.$

Demostración.

Sea $A$ un conjunto finito con $n$ elementos. El único subconjunto de $A$ con cero elementos es el vacío, entonces $\binom{n}{0}=1,$ y el único subconjunto de $A$ con $n$ elementos es $A$, entonces $\binom{n}{n}=1.$

Observación 2

Para todo natural $n\geq 1$ se tiene que $\binom{n}{1}= \binom{n}{n-1}=n.$

Demostración.

Dado $A=\{a_1,\dots ,a_n\}$ un conjunto finito con $n$ elementos los subconjuntos de $A$ con un elemento son $\{a_i\}$ con $i\in\{1,\dots ,n\}$ que son todos distintos entre sí. Entonces $\binom{n}{1}=n.$.

Considera que para obtener subconjuntos de $n-1$ elementos de $A$, debemos tomar todos los elementos de $A$ salvo uno, y como $A$ tiene $n$ elementos entonces eso se puede hacer de $n$ formas distintas, una por cada elemento de $A$ que dejemos fuera del subconjunto. Entonces los subconjuntos de $A$ con $n-1$ elementos son $A\setminus \{a_i\}$ con $i\in\{1,\dots ,n\}$ que son todos distintos entre sí. Así, $\binom{n}{n-1}=n.$.

Teorema

Sean $n,m\in \mathbb N^+$, $m\leq n$, entonces $\binom{n}{m}P_m=O_{m}^{n}$.

Demostración

Sean $A$ un conjunto con $n$ elementos, $\mathscr O$ el conjunto de ordenaciones de $A$ tomados de $m$ en $m$, $\mathscr C$ el conjunto de las combinaciones de los elementos de $A$ tomados de $m$ en $m$.

Definimos $\varphi: \mathscr O\to \mathscr C $ como:

$\varphi(f)=\varphi\bigg(\begin{pmatrix}1 & \dotsi & m\\ f(1) & \dotsi & f(m)\end{pmatrix}\bigg)=\set{f(1),\dotsc,f(m)}$.

Veamos que $\varphi$ es suprayectiva. Si $c\in \mathscr C$, entonces $c$ es un subconjunto de $A$ con $m$ elementos, es decir $c=\set{b_1,\dotsc,b_m}$, con $ b_1,\dotsc,b_m\in A$ distintos. Así:

$f=\begin{pmatrix}1 & \dotsi & m\\ b_1 & \dotsi & b_m\end{pmatrix}\in \mathscr O$.

y entonces:

$\varphi(f)=\varphi\bigg(\begin{pmatrix}1 & \dotsi & m\\ b_1 & \dotsi & b_m\end{pmatrix}\bigg)=\set{b_1,\dotsc,b_m}$.

Por lo tanto $\varphi$ es suprayectiva.

Sean $C_1,\dotsc,C_k$ los distintos subconjuntos de $A$ con $m$ elementos, donde $k=\binom{n}{m}$. Para cada $i\in\set{1,\dotsc,k}$ consideremos:

$O_i=\set{f\in \mathscr O\mid \varphi(f)=C_i}$

$\mathscr O$ es la unión disjunta de $O_1,\dotsc, O_k$ y entonces, por ser disjuntos y por el principio de la suma tenemos que:

$\#\mathscr O=\#(O_1\cup\dotsc,\cup O_k)=\#O_1+\dotsc+\#O_k.$

Pero si $f=\begin{pmatrix}1 & \dotsi & m\\ f(1) & \dotsi & f(m)\end{pmatrix}\in \mathscr O$, es tal que $\varphi(f)=C_1$, entonces las funciones de $O_1$ se obtendrán colocando en el segundo renglón del arreglo que describe la función, las distintas permutaciones de $\set{f(1),\dotsc,f(m)}$ que son $P_m$, y así:

$\#O_1=P_m.$

Y análogamente $\#O_i=P_m\,\,\, \,\,\, \forall i\in\set{1,\dotsc,k}.$

Por lo tanto:

$\#\mathscr O=\#O_1+\dotsc+\#O_k$, es decir, sumar $k$ veces el número $P_m$, en consecuencia:

$\#\mathscr O= k P_m$,

y como $k=\binom{n}{m}$, entonces:

$\#\mathscr O= \binom{n}{m} P_m.$

Observa que $O_{n}^{m}=\#\set{f:\set{1,\dotsc, m}\to \set{a_1,\dotsc ,a_n}\mid \text{$f$ es inyectiva}}=\#\mathscr O.$

Por lo tanto $\binom{n}{m}P_m=O_{m}^{n}$ que es justamente lo que queríamos probar.

$\square$

Corolario

Sean $n,m\in \mathbb N^+$, $m\leq n$, entonces $\binom{n}{m}=\frac{ n! }{m!(n-m)!}$.

Demostración

Por el teorema anterior sabemos que $\binom{n}{m}=\frac{ O_{n}^{m} }{P_m}$, y por lo que vimos en las entradas previas tenemos que:

$\frac{ O_{n}^{m} }{P_m}=\frac{n(n-1)\dotsc(n-m+1)}{m!}$,

entonces $\binom{n}{m}=\frac{n(n-1)\dotsc(n-m+1)}{m!}$

Multiplicando arriba y abajo por $(n-m)!$ tenemos que:

$\binom{n}{m}= \frac{n(n-1)\dotsc(n-m+1)(n-m)!}{m!(n-m)!}$

$\phantom{\binom{n}{m}}= \frac{n(n-1)\dotsc(n-m+1)(n-m)\dotsc2\cdot1}{m!(n-m)!} $

$\phantom{\binom{n}{m}}=\frac{n!}{m!(n-m)!}.$

$\square$

Tarea Moral

1. ¿Cuántas diagonales se pueden trazar en un polígono regular de $n$ lados?

2. Un club de voleibol tiene $12$ jugadoras, una de ellas es la capitana María. ¿Cuántos equipos diferentes de $6$ jugadoras se pueden formar, sabiendo que en todos ellos siempre estará la capitana María.

3. Revisa el siguiente video (puedes poner subtítulos en español).

Más adelante

En la siguiente nota usaremos estos resultados para obtener el triángulo de Pascal y para probar la fórmula del binomio de Newton.

Enlaces relacionados.

Página principal del curso.

Nota anterior. Nota 22. Conteo. Ordenaciones.

Nota siguiente. Nota 24. El triángulo de Pascal y el binomio de Newton.

Nota 22. Conteo. Ordenaciones.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En esta nota estudiaremos las secuencias ordenadas de $m$ entradas, llenadas con los  $n$ objetos de un determinado conjunto pero de modo que no se tengan entradas repetidas. Formalmente serán funciones inyectivas del conjunto de los primeros $m$ naturales, en el conjunto de $n$ objetos.

Definición

Sean $n,m\in \mathbb N^+$. Dado un conjunto $A=\set{a_1,\dotsc ,a_n}$ con $n$ elementos, las ordenaciones de los elementos de $A$ tomados de $m$ en $m$ son las funciones inyectivas de $\set{1,\dotsc, m}$ en $A$. Al número de ordenaciones de los elementos de un conjunto con $n$ elementos, tomados de $m$ en $m$, lo denotaremos por $O_{n}^{m}$, es decir, dado $A=\set{a_1,\dotsc ,a_n}$ un conjunto con $n$ elementos

$O_{n}^{m}=\#\set{f\mid f:\set{1,\dotsc, m}\to \set{a_1,\dotsc ,a_n}, con\\\ f \\\ inyectiva}$

Observa que, gracias a lo que estudiamos acerca de las funciones invectivas, sabemos que si $m>n$ entonces no existen funciones inyectivas de $\set{1,\dotsc, m}$ en $A$ y en consecuencia $O_{n}^{m}$ es cero.

Ejemplo

¿Cuántas banderas tricolores se pueden formar con los colores rojo, naranja, verde, azul y morado?

Consideremos la bandera tricolor de colores rojo, azul, naranja.

En el lugar $1$ asignamos el rojo, en el $2$ el azul y en el $3$ el naranja. Podemos verla como una función de $\set{1,2,3}$ en $A$, con $A$ el conjunto formado por los colores rojo, naranja, verde, azul y morado, es decir $A=\{rojo, naranja, verde, azul,morado\}$. En este caso la función sería:

$f: \set{1,2,3} \to A$ con $f(1)=rojo$, $f(2)=azul$, $f(3)=naranja.$

Veamos primero cuántas banderas tricolor hay que terminen en naranja.

Para ello debemos considerar todas las posibles maneras de iniciar una bandera que termine en naranja, lo cual corresponde a todas las formas de crear una bandera bicolor con los colores restantes. Las banderas bicolores formadas con los colores rojo, verde, azul o morado son:

Hay en total $12$ banderas bicolor que se pueden formar con estos $4$ colores. Nota que las banderas bicolores formadas con los colores rojo, verde, azul o morado corresponden a las ordenaciones de $4$ elementos tomadas de $2$ en $2$, que son en total $O_{4}^{2}=12$.

Fíjate que entonces hay $12$ banderas tricolor que terminan en naranja. De manera similar hay $12$ que terminan rojo, $12$ que terminan en verde, $12$ que terminan en azul y $12$ que terminan en morado, es decir doce por cada color.

El número de banderas tricolor es entonces:

$5\cdot 12=5\cdot O_{4}^{2}= O_{5}^{3}=60.$

Observa que $ O_{5}^{3} =5\cdot O_{4}^{2}$, probaremos que esto es válido en general y que $ O_{n+1}^{m+1} =(n+1)\cdot O_{n}^{m}$.

Lema

Sean $n,m\in \mathbb N^+$, $n\geq m$, entonces $O_{n+1}^{m+1}=(n+1)\cdot O_{n}^{m} $.

Demostración

Sean $n,m\in \mathbb N^+$, $n\geq m$ y $A=\set{a_1\dotsc,a_n,a_{n+1}}$ un conjunto con $n+1$ elementos.

$O_{n+1}^{m+1}=\#\set{f:\set{1,\dotsc, m,m+1}\to A=\set{a_1,\dotsc ,a_n,a_{n+1}}\mid f \\\ es\\\ inyectiva}$.

Para cada $i\in \set{1,\dotsc,n+1}$ consideremos el siguiente conjunto:

$B_{i}=\set{ f:\set{1,\dotsc, m,m+1}\to A=\set{a_1,\dotsc ,a_n,a_{n+1}} \mid f \\\ es \\\ inyectiva\\\ y \\\ f(m+1)=a_i }$

en el que estamos considerando, de las funciones que teníamos, sólo aquellas que mandan al último elemento del dominio, $m+1$, en $a_i\in A$.

Demostremos primero que $\#B_i=O_{n}^{m}.$

Notemos que cada una de las funciones en $B_i$ está determinada por los valores que toma en $1,\dotsc, m$, y esto da lugar a una función:

$\begin{pmatrix}1&\dotsc & m\\f(1)&\dotsc & f(m)\end{pmatrix},$

que es una función inyectiva (ya que $f$ es inyectiva) de $\set{1,\dotsc, m}$ en $A\setminus \set{a_i}$ (conjunto que tiene $n$ elementos).

Así, podemos establecer la correspondencia $\phi: B_i\to \set{ g:\set{1,\dotsc, m}\to A\setminus \set{a_i} \mid g \\\ es \\\ inyectiva }$ dada por

$\begin{pmatrix}1&\dotsc & m&m+1\\f(1)&\dotsc & f(m)&a_i\end{pmatrix} \mapsto \begin{pmatrix}1&\dotsc & m\\f(1)&\dotsc & f(m)\end{pmatrix}.$

Se deja al lector verificar que esta correspondencia es biyectiva.

Entonces,

$\#B_i=\# \set{ g:\set{1,\dotsc, m}\to A\setminus \set{a_i}\mid g \\\ es \\\ inyectiva }=O_{n}^{m}$

donde la última igualdad se debe a la notación establecida para el número de ordenaciones.

Observemos ahora que

$B_1\cup \dotsc \cup B_{n+1}= \set{ f:\set{1,\dotsc, m,m+1}\to A=\set{a_1,\dotsc ,a_n,a_{n+1}} \mid f \\\ es \\\ inyectiva}$

donde $B_i\cap B_j=\emptyset$ para toda $i\neq j$, es decir, $ \set{ f:\set{1,\dotsc, m,m+1}\to A=\set{a_1,\dotsc ,a_n,a_{n+1}} \mid f \\\ es \\\ inyectiva}$ es la unión disjunta de $B_1,\dotsc, B_{n+1}$.

Entonces,

$\#(B_1\cup \dotsc \cup B_{n+1})= \# \set{ f:\set{1,\dotsc, m,m+1}\to A=\set{a_1,\dotsc ,a_n,a_{n+1}}\mid f \\\ es \\\ inyectiva}$

y por el principio generalizado de la suma tenemos que:

$\#B_1+ \dotsc + \# B_{n+1}= \# \set{ f:\set{1,\dotsc, m,m+1}\to A=\set{a_1,\dotsc ,a_n,a_{n+1}}\mid f \\\ es \\\ inyectiva}.$

Como $\#B_i=O_{n}^{m}$, para todo $i\in\set{1,\dotsc,n+1}$, entonces

$(n+1)\cdot O_{n}^{m}= \# \set{ f:\set{1,\dotsc, m,m+1}\to A=\set{a_1,\dotsc ,a_n,a_{n+1}} \mid f \\\ es \\\ inyectiva}.$

Por lo tanto

$ O_{n+1}^{m+1} =(n+1)\cdot O_{n}^{m} .$

$\square$

Ejemplo

En la fila de un avión hay tres lugares, ¿de cuántas formas podemos llenarla eligiendo a personas de una familia de seis integrantes?

Notemos que es importante el orden en que coloquemos a las personas y que una persona no puede estar en más de un asiento a la vez por lo que cada forma de acomodar a tres personas de la familia en esos tres lugares, numerados por $1,2$ y $3$, puede ser vista como una ordenación del conjunto $\{1,2,3\}$ en el conjunto formado por los seis integrantes de la familia. Contemos entonces cuántas ordenaciones hay de un conjunto con $6$ elementos tomados de $3$ en $3$.

Sabemos que:

$O_{6}^{3}=6\cdot O_{2}^{5}= 6\cdot5 \cdot O_{4}^{1}.$

Pero si $A=\set{a_1,a_2,a_3,a_4}$ es un conjunto con cuatro elementos, habrá $4$ funciones inyectivas de $\set{1}$ en $A$ y por lo tanto $ O_{4}^{1} =4$. Así:

$O_{6}^{3}=6\cdot5 \cdot 4=120$, y por lo tanto hay $120$ maneras de llenar la fila.

Teorema

Sean $n,m\in \mathbb N^+$, $n\geq m$, entonces $O_{n}^{m}=n(n-1)\dotsc(n-m+1).$

Demostración

Sean $n,m\in \mathbb N^+$, $n\geq m$

Haremos la prueba por inducción sobre $m$

Base de inducción.

Si $m=1$ consideremos $A=\set{a_1,\dotsc,a_n}$ con $n$ elementos. Tenemos que hay $n$ funciones inyectivas de $\set{1}$ en $A$, así:

$O_{n}^{1}=n=n-1+1$ y en este caso se cumple la fórmula.

Paso inductivo.

Supongamos que resultado se cumple para $m$, es decir que $O_{t}^{m}=t(t-1)\dotsc (t-m+1)$ para toda $t\geq m$, que es nuestra hipótesis de inducción.

Demostración de que e resultado se cumple para $m+1$ usando la HI.

Sea $n\geq m+1$.

Consideremos $O_{n}^{m+1}= O_{(n-1)+1}^{m+1} $. Por el lema anterior esto es igual a

$ O_{(n-1)+1}^{m+1}=[(n-1)+1] O_{n-1}^{m} .$

Como $n\geq m+1$, tenemos que $n-1\geq m$ y usando la hipótesis de inducción tenemos que

$ O_{n-1}^{m} = (n-1)((n-1)-1)\dotsc ((n-1)-m+1)$

de donde

$ O_{n}^{m+1}=[(n-1)+1] O_{n-1}^{m}= n (n-1)(n-2)\dotsc ((n-1)-m+1).$

Así, $ O_{n}^{m+1}= n(n-1)(n-2)\dotsc (n-m)$, probando con ello que el resultado se cumple para $m+1$.

Por el principio de inducción la fórmula se cumple para toda $m\in \mathbb N^+$.

$\square$

Un caso importante de las ordenaciones se da cuando $n=m$. Recordemos que, de acuerdo a lo que estudiamos acerca de las funciones inyectivas entre conjuntos finitos de la misma cardinalidad, si $A$ es un conjunto finito con $n$ elementos, entonces toda función inyectiva de $\set{1,\dotsc, n}$ en $A$ es también suprayectiva y por lo tanto biyectiva.

Definición

Sea $n\in \mathbb N^+$. Dado un conjunto $A=\set{a_1,\dotsc ,a_n}$ con $n$ elementos, las permutaciones de los elementos de $A$ son las funciones biyectivas de $\set{1,\dotsc,n}$ en $A$. Al número de permutaciones de los elementos de un conjunto con $n$ elementos, lo denotaremos por $P_{n}$, es decir, dado $A=\set{a_1,\dotsc ,a_n}$ un conjunto con $n$ elementos

$P_{n}=\#\set{f\mid f:\set{1,\dotsc, n}\to \set{a_1,\dotsc ,a_n}, con\\\ f \\\ biyectiva}.$

Teorema

Sea $n\in \mathbb N^+$, entonces $P_{n}^{m}=n(n-1)\dotsc(1).$

Al número $n(n-1)\dotsc(1)$ se le llama el factorial de $n$ y se le denota por $n!$.

Demostración

Sea $n\in \mathbb N^+$. Dado un conjunto $A=\set{a_1,\dotsc ,a_n}$ con $n$ elementos, las permutaciones de los elementos de $A$ son las funciones biyectivas de $\set{1,\dotsc,n}$ en $A$, pero como mencionamos toda función inyectiva de $\set{1,\dotsc, n}$ en $A$ es también suprayectiva y viceversa, por lo que las permutaciones de los elementos de $A$ son las funciones inyectivas de $\set{1,\dotsc,n}$ en $A$, es decir las ordenaciones de $A$ tomadas de $n$ en $n$. Por lo tanto $P_n=O_{n}^{n}$.

De acuerdo al teorema anterior sabemos que $O_{n}^{n}=n(n-1)\dotsc(n-n+1)=n!.$

Así, $P_n=n!$.

Tarea Moral

1. Entre un grupo de siete personas se debe elegir una mesa directiva con un presidente, un secretario, un vocal y un suplente ¿de cuántas maneras se puede elegir esa mesa directiva?

2. En un concurso participan $30$ alumnos y se decidirá quién se lleva cada uno de los tres primeros lugares ¿cuántos posibles resultados se tienen como ganadores del concurso?

3. i) ¿De cuántas maneras pueden posar tres hombres y dos mujeres en línea para una fotografía de grupo?
ii) ¿De cuántas maneras pueden colocarse en línea si una mujer debe estar en cada extremo?
iii) ¿De cuántas maneras las personas del mismo sexo están juntas?

4. ¿De cuántas maneras podemos acomodar once libros en un estante?

Más adelante

En la siguiente nota continuaremos el estudio de las técnicas de conteo, daremos la definición formal de combinaciones, que son el número de subconjuntos de un conjunto dado.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 21. Conteo, ordenaciones con repetición.

Enlace a la nota siguiente. Nota 23. Combinaciones.

Nota 21. Conteo, ordenaciones con repetición.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Una vez que tenemos construidos los números naturales, su primera aplicación será el conteo, en esta nota analizaremos la situación conocida como ordenaciones con repetición de $n$ elementos tomados de $m$ en $m$, que son todas las secuencias ordenadas de $m$ entradas, llenadas con los $n$ objetos de un determinado conjunto.

Definición

Sean $n,m\in \mathbb N^+$. Dado un conjunto finito $A=\set{a_1,\dotsc ,a_n}$ con $n$ elementos, las ordenaciones con repetición de los elementos de $A$ tomados de $m$ en $m$ son las funciones de $\set{1,\dotsc, m}$ en $A$. Al número de ordenaciones con repetición de los elementos de un conjunto de $n$ elementos tomados de $m$ en $m$ lo denotaremos por $OR_{n}^{m}$.

$OR_{n}^{m}=\#\set{f\mid f:\set{1,\dotsc, m}\to A=\set{a_1,\dotsc ,a_n} }$

Ejemplo.

Sea $A=\set{a,e,i,o,u}$. Las ordenaciones con repetición de los elementos de $A$ tomados de dos en dos son las funciones de $\set{1,2}$ en $\set{a,e,i,o,u}$. Por ejemplo, una de esas ordenaciones es:

$1\longmapsto i$

$2\longmapsto a$

Recordemos que esta función se puede describir como:

\begin{pmatrix}1&2\\
i&a\end{pmatrix}

Lo que determina a esta función es la palabra $ia$ que aparece en el segundo renglón. ¿Cuántas funciones hay de $\set{1,2}$ en $A=\set{a,e,i,o,u}$ ?, o bien, ¿cuántas palabras podemos formar con dos letras usando sólo vocales?.

Hay 5 palabras que inician con $i$: $ia$, $ie$, $ii$, $io$, $iu$.

Hay 5 palabras que inician con $a$: $aa$, $ae$, $ai$, $ao$, $au$.

Hay 5 palabras que inician con $e$: $ea$, $ee$, $ei$, $eo$, $eu$.

Hay 5 palabras que inician con $o$: $oa$, $oe$, $oi$, $oo$, $ou$.

Hay 5 palabras que inician con $u$: $ua$, $ue$, $ui$, $uo$, $uu$.

Por cada vocal inicial tenemos $5$ palabras, así que en total tenemos $25$ palabras.

Podemos pensar a estas funciones o palabras como pares ordenados:

$\set{(i,a), (i,e), (i,i), (i,o), (i,u), (a,a), (a,e), (a,i), (a,o), (a,u),\dotsc }=A\times A$

Por lo que: $\#A\times A=\#A\cdot \#A=5\cdot 5=5^2=OR_{5}^{2}$

Acabamos de obtener que $ OR_{5}^{2}=5^2$, veremos en el siguiente teorema que esto es válido en general y que $OR_{n}^{m}=n^m$.

Teorema

Sean $n,m\in \mathbb N^+$, entonces $OR_{n}^{m}=n^m$.

Demostración

Sea $A=\set{a_1,\dotsc, a_n}$ con $n$ elementos.

Por definición:

$OR_{n}^{m}=\#\set{f\mid f:\set{1,\dotsc, m}\to A=\set{a_1,\dotsc ,a_n} }$ .

Veamos que $ \#\set{f\mid f:\set{1,\dotsc, m}\to A=\set{a_1,\dotsc ,a_n} }=\#A^m$ dando una biyección entre ambos conjuntos (recuerda que $A^m$es el producto cartesiano de $A$ consigo mismo $m$ veces).

Sea $\varphi: \set{f\mid f:\set{1,\dotsc, m}\to A=\set{a_1,\dotsc ,a_n} } \to A^m$ dada por:

$\varphi(f)=\varphi\bigg(\begin{pmatrix}1 & \dotsi & m\\ f(1) & \dotsi & f(m)\end{pmatrix}\bigg)=(f(1),\dotsc,f(m))$.

La función $\varphi$ es inyectiva ya que si $ f,g:\set{1,\dotsc, m}\to A$ son tales que $\varphi(f)= \varphi(g)$ , entonces $ (f(1),\dotsc,f(m))= (g(1),\dotsc,g(m)) $, y así $f(i)=g(i)\\\ \forall i\in \set{1,\dotsc, m}$, de donde $f$ y $g$ tienen la misma regla de correspondencia, y como coinciden en dominio y codominio entonces $f=g$. Por lo tanto $\varphi$ es inyectiva.

Además $\varphi$ es suprayectiva ya que si $(x_1,\dotsc,x_m)\in A^m$, podemos considerar la función:

$f=\begin{pmatrix}1 & \dotsi & m\\ x_1 & \dotsc & x_n\end{pmatrix}$ y es tal que

$\varphi(f)= \varphi\bigg(\begin{pmatrix}1 & \dotsi & m\\ x_1 & \dotsc & x_n\end{pmatrix} \bigg)= (x_1,\dotsc ,x_m) $.

Así, $\varphi$ es también suprayectiva, y por lo tanto biyectiva. Entonces:

$ \#\set{f\mid f:\set{1,\dotsc, m}\to A=\set{a_1,\dotsc ,a_n} }=\#A^m.$

Recordemos que la notación antes establecida nos dice que $ \#\set{f\mid f:\set{1,\dotsc, m}\to A=\set{a_1,\dotsc ,a_n} }=OR_{n}^{m}.$

Por otro lado, por el principio generalizado del producto el número de elementos de $A^m$ es el número de elementos de $A$ multiplicado $m$ veces. Así, $\#A^m=n^m$. Concluimos finalmente que:

$OR_{n}^{m}=n^m$.

$\square$

Tarea moral

  1. ¿Cuántos números telefónicos hay con $8$ dígitos (del $0$ al $9$) que empiecen con $5$?
  2. ¿Cuántas placas hay que inicien con $3$ números (del $0$ al $9$) y terminen con $3$ letras (contando $27$ en el alfabeto)?
  3. ¿Cuántas palabras de $5$ letras se pueden formar con el alfabeto de $27$ letras?
  4. Ve el siguiente video del profesor Luis Rincón.

Más adelante

En la siguiente nota continuaremos con el tema de conteo, esta vez para las ordenaciones sin repetición.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 20. Principio del producto, funciones entre conjuntos finitos.

Enlace a la nota siguiente. Nota 22. Conteo. Ordenaciones.

Nota 20. Principio del producto, funciones entre conjuntos finitos.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En esta nota deduciremos el resultado conocido como Principio del producto que nos garantiza que el número de elementos del producto cartesiano de dos conjuntos finitos (ver nota 6) es igual al producto del número de elementos de cada conjunto. Así mismo, probaremos que para una función entre conjuntos finitos de la misma cardinalidad, las nociones de ser inyectiva, suprayectiva o biyectiva son equivalentes.

Empecemos probando un lema que nos ayudará a probar el principio del producto.

Lema 1

Sean $A$ un conjunto finito y $\{b\}$ un conjunto unitario, entonces $A\times \set{b}$ es finito y $\# (A\times \set{b})=\#A$.

Demostración

Sean $A$ un conjunto finito y $\{b\}$ un conjunto unitario, con $n=\#A$ y $f:\set{1,\dotsc,n}\to A$ una biyección.

Sea $g:A\to A\times \set{b}$ dada por $g(a)=(a,b)$ $\forall a\in A$.

Observemos que la función $h:A\times \set{b}\to A$ dada por $h((a,b))=a\,\,\forall (a,b)\in A\times \set{b}$ es la inversa de g, pues:

$h\circ g(a)=h(g(a))=h((a,b))=a\,\,\forall a\in A$.

$g\circ h((a,b))=g(h((a,b)))=g(a)=(a,b)\,\,\forall (a,b)\in A\times \set{b}$.

Así, $g$ es invertible y por lo tanto biyectiva.

Como $f$ y $g$ son biyectivas, entonces $g\circ f:\set{1,\dotsc,n}\to A\times \set{b} $ es biyectiva.

Así, $\# (A\times \set{b})$ es un conjunto finito con $\# (A\times \set{b})=n$. Por lo tanto $\# (A\times \set{b})=\#A$.

$\square$

Teorema. Principio del producto

Sean $A,B$ conjuntos finitos, entonces $A\times B$ es finito y $\#(A\times B)=\#A\cdot \#B$.

Demostración

Sean $A,B$ conjuntos finitos con $n=\#A$, $m=\#B$.

Entonces $B=\set{b_1,\dotsc,b_m}$ con $b_i\neq b_j\,\,\forall i,j.$

Observemos que $A\times B= (A\times \set{b_1})\cup (A\times \set{b_2})\cup\dotsc\cup (A\times \set{b_m})$ donde $ (A\times \set{b_i})\cap (A\times \set{b_j})=\emptyset\,\,\forall i\neq j$.

Por el principio generalizado de la suma visto en la nota anterior

$\#(A\times B)= \#(A\times \set{b_1})+ \# (A\times \set{b_2})+\dotsc+\# (A\times \set{b_m}).$

Por el lema previo $\forall i$ $ \#(A\times \set{b_i})=\#A$, entonces tenemos que:

$\#(A\times B)=m\cdot \#A$, y como $m=\#B$ sustituyendo obtenemos que:

$\#(A\times B)=\#A\cdot \#B.$

$\square$

Nota

Este resultado se puede generalizar, si $A_1,\dotsc,A_t$ son conjuntos finitos, entonces $A_1\times\cdots\times A_t$ es finito y $\#(A_1\times\cdots\times A_t)=\#A_1\cdots \#A_t $, y se conoce como el principio generalizado del producto.

Veamos ahora qué información podemos obtener acerca de la cardinalidad de dos conjuntos finitos, a partir de las características de alguna función definida entre ellos.

Lema 2

Sean $A,B$ conjuntos finitos

i) Si existe $f:A\to B$ inyectiva, entonces $\#A= \#Im f$ y $ \#A\leq \#B$.

ii) Si existe $f:A\to B$ suprayectiva, entonces $ \#A\geq \#B$.

Demostración de i)

Sean $A$ y $B$ conjuntos finitos.

Supongamos que existe $f:A\to B$ inyectiva.

Consideremos la función $F:A\to Imf$ tal que $F(a)=f(a)\,\,\forall a\in A$.

Como $f$ es inyectiva $F$ también lo es, y por construcción $F$ es suprayectiva.

Así, $F$ es biyectiva y entonces $\#A= \#Imf$.

Como $Imf\subseteq B$ y $B$ es finito, entonces $Imf$ también es finito y $ \#Imf\leq \#B$ (ver la nota anterior), de donde $ \#A = \#Imf\leq \#B$.

Demostración de ii)

Sean $A$ y $B$ conjuntos finitos.

Supongamos que existe $f:A\to B$ suprayectiva.

Sea $B=\set{b_1,\dotsc,b_m}$ con $m=\#B$ y $b_i\neq b_j\,\,\,\forall i,j$.

Como $f$ es suprayectiva, para cada $b_i\in B$ existe un elemento de $A$ que bajo $f$ va a dar a $b_i$, elijamos uno de ellos, digamos $a_i\in A$ tal que $f(a_i)=b_i$.

Definamos la función $g:B\to A$ con $g(b_i)=a_i\,\,\,\forall i\in \set{1,\dotsc, m}.$ Veamos que $g$ es inyectiva.

Si $i,j\in \set{1,\dotsc, m}$ son tales que $g(b_i)=g(b_j)$ entonces $a_i=g(b_i)=g(b_j)=a_j$, de manera que $a_i=a_j$ y en consecuencia:

$b_i=f(a_i)=f(a_j)=b_j,$

por lo cual $b_i=b_j$, así $g$ es inyectiva.

Por el inciso $i)$ tenemos entonces que el dominio de $g$ tiene menor o igual número de elementos que su condominio, es decir $\#B\leq \#A$.

$\square$

Observaciones

  • Sea $A$ un conjunto finito. Si $A\neq \emptyset$, entonces $\#A\geq 1 $. De modo equivalente si $\#A=0$ entonces $A=\emptyset$.
  • Sean $A,B$ conjuntos finitos con $A\subseteq B$. Si $\#A=\#B$, entonces $A=B$.

Teorema

Sean $A,B$ conjuntos finitos con $\#A= \#B$, $f:A\to B$.

Las siguientes afirmaciones son equivalentes:

a) $f$ es inyectiva.

b) $f$ es suprayectiva.

c) $f$ es biyectiva.

Demostración

Sean $A,B$ conjuntos finitos con $\#A= \#B$, $f:A\to B$.

a) $\Longrightarrow$b)

Supongamos que $f$ es inyectiva.

Por demostrar que $f$ es suprayectiva.

Como $f$ es inyectiva, por el Lema 2 $\#A= \#Imf $, tenemos entonces que

$\#B= \#A= \#Imf$

Así, $Imf\subseteq B$ con $ \#Imf= \#B$, y por un ejercicio de la nota anterior sabemos que $Imf=B$. Por lo tanto $f$ es suprayectiva.

b) $\Longrightarrow$a)

Supongamos que $f$ es suprayectiva, es decir que $Imf=B$.

Por demostrar que $f$ es inyectiva.

Sea $n=\#A= \#B$, $A=\set{a_1,\dotsc,a_n}$ con $a_i\neq a_j\,\,\,\forall i\neq j$.

Como $Imf=B$, entonces $\#Imf= \#B=n$.

Supongamos por reducción al absurdo que $f$ no es inyectiva, entonces existen dos elementos de $A$ que bajo $f$ son iguales, sin pérdida de generalidad supongamos que $f(a_{n-1})=f(a_n)$, entonces:

$Imf=\set{f(a_1),\dotsc,f(a_{n-1})}$

La función $h:\set{1,\dotsc,n-1}\to Imf$ con $h(i)=f(a_i)\,\,\,\forall i$ sería entonces suprayectiva, así aplicando el lema 2 tenemos que:

$n-1=\#\set{1,\dotsc,n-1}\geq \#Imf=\#B=n$, y entonces tendriamos que $n-1\geq n$, pero eso es una contradicción y por lo tanto $f$ es inyectiva.

Hemos probado entonces que, bajo nuestras hipótesis, $f$ es inyectiva si y sólo si es suprayectiva, así que si se cumple a) se tiene también b) y entonces $f$ es biyectiva y se cumple c). Análogamente si se cumple b) se tiene también a) y entonces $f$ es biyectiva y se cumple c). Además, si se cumple c) se tiene que $f$ es biyectiva y por lo tanto es inyectiva y suprayectiva, así que se cumplen a) y b).

Por lo tanto las condiciones a), b) y c) son equivalentes.

$\square$

Tarea moral

1. Sean $A$ y $B$ conjuntos finitos. Demuestra o da un contraejemplo:

i) Si $\#A\leq \#B$ y $f$ es una función $f:A\to B$, entonces $f$ es inyectiva.

ii) Si $\#A\geq \#B$ y $f$ es una función $f:A\to B$, entonces $f$ es suprayectiva.

iii) Si $\#A=\#B$ y $f$ es una función $f:A\to B$, entonces $f$ es biyectiva.

2. Considera que para acceder a una aplicación se requiere una contraseña de tres dígitos que pueden ser $0,1,2,3,4,5,6,7,8$ o $9$.
i) Describe a cada contraseña como una terna ordenada y al conjunto de contraseñas como un producto cartesiano
ii) ¿Cuántas contraseñas posibles hay?
iii) Si ahora la contraseña puede ser de tres o de cuatro dígitos ¿cuántas contraseñas habrá?

3. Ve el siguiente vídeo para que conozcas otro importante principio de conteo, el principio del palomar.

Más adelante

En las siguientes notas haremos énfasis en el estudio de las técnicas de conteo. Estudiaremos las ordenaciones, las ordenaciones con repetición y las combinaciones.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 19. Conjuntos equivalentes y cardinalidad.

Enlace a la nota siguiente. Nota 21. Conteo, ordenaciones con repetición.