Archivo del Autor: Miguel Ángel Rodríguez García

Cálculo Diferencial e Integral II: Integrales trigonométricas – Productos de potencias de tan(x) y sec(x)

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior vimos integrales que involucran producto de potencias de funciones senos y cosenos, ahora veremos integrales trigonométricas en donde el integrando son potencias de las funciones trigonométricas tangente y secante.

Integrales trigonométricas-Producto de potencias de $tan(x)$ y $sec(x)$

Para resolver este tipo de integrales lo dividiremos por caso, entonces la integral a resolver es el siguiente:

$$\int \sec^{m}(x)\tan^{n}(x)dx$$

Donde $m$ y $n \space \epsilon \space \mathbb{Z}^{+}$. Para esta integral vamos a obtener 4 casos distintos:

Caso 1: Si $m$ es par y positiva

Entonces a $m$ lo podemos reescribir como $m=2k$ con $k$ $\epsilon$ $\mathbb{N}$, así, la integral la reescribimos como:

$$\int \sec^{m}(x)\tan^{n}(x)dx=\int \sec^{m-2}(x)\sec^{2}(x)\tan^{n}(x)dx=\int \sec^{2(k-1)}(x)\sec^{2}(x)\tan^{n}(x)dx$$

$$=\int \left ( \sec^{2}(x) \right )^{k-1}\sec^{2}(x)\tan^{n}(x)$$

Recordemos que:

$$\tan^{2}(x)+1=\sec^{2}(x) \tag{1}$$

Sustituyendo en el integrando tenemos que:

$$ \int \sec^{m}(x)\tan^{n}(x)dx =\int (\tan(x)+1)^{k-1}(x)\sec^{2}(x)\tan^{n}(x)dx$$

Para resolver esta integral hacemos el siguiente cambio de variable:

$$u=\tan(x)$$

Veamos un ejemplo para aplicar este caso.

  • $\int \sec^{4}(3x)\tan^{3}(3x)dx$

Vemos que $m$ es par y positiva, entonces podemos reescribir la integral utilizando la relación $(1)$ como:

$$\int \sec^{4}(3x)\tan^{3}(3x)dx=\int \sec^{2}(3x)\sec^{2}(3x)\tan^{3}(3x)dx=$$

$$=\int (\tan(3x)+1)^{2}\sec^{2}(3x)\tan^{3}(3x)dx$$

Hacemos el cambio de variable.

Sea $u=\tan(3x) \Rightarrow du=3\sec^{2}(3x)dx \Rightarrow \frac{du}{3}=\sec^{2}(3x)dx$

$$\Rightarrow \int \sec^{4}(3x)\tan^{3}(3x)dx=\frac{1}{3}\int (u^{2}+1)u^{3}du = \frac{1}{3}\int (u^{5}+u^{3})du $$

$$= \frac{1}{3}(\frac{u^{6}}{6}+\frac{u^{4}}{4}+C)$$

Volvemos a la variable original, así el resultado de la integral es:

$$\int \sec^{4}(3x)\tan^{3}(3x)dx=\frac{\tan^{6}(3x)}{18}+\frac{\tan^{4}(3x)}{12}+C$$

Caso 2: Si $n$ es impar y positiva

Entonces a $n$ lo podemos reescribir como $n=2k+1$ con $k \space \epsilon \space \mathbb{N}$ entonces la integral la reescribimos como:

$$\int \sec^{m}(x)\tan^{n}(x)dx=\int \sec^{m-1}(x)\tan^{n-1}(x)\sec(x)\tan(x)dx=\int \sec^{m-1}(x)\tan^{2k}(x)\sec(x)\tan(x)dx$$

Utilizamos la siguiente relación como:

$$\tan^{2}(x)=\sec^{2}(x)-1 \tag{2}$$

$$ \Rightarrow \int \sec^{m-1}(x)(\tan^{2}(x))^{k}\sec(x)\tan(x)dx=\int \sec^{m-1}(x)(\sec^{2}(x)-1)^{k}\sec(x)\tan(x)dx$$

Para resolver esta integral hacemos el siguiente cambio de variable:

$$u=\sec(x)$$

Veamos un ejemplo para aplicar este caso.

  • $\int \tan^{3}(\frac{\pi x}{2})\sec^{2}(\frac{\pi x}{2})dx$

Vemos en este caso que $n$ es impar y positiva, por lo que reescribimos el integrando utilizando la relación $(2)$ como:

$$\int \tan^{3}(\frac{\pi x}{2})\sec^{2}(\frac{\pi x}{2})dx= \int \tan^{2}(\frac{\pi x}{2})\sec(\frac{\pi x}{2})\tan(\frac{\pi x}{2})\sec(\frac{\pi x}{2})dx$$

$$=\int (\sec^{2}(\frac{\pi x}{2})-1)\sec(\frac{\pi x}{2})\tan(\frac{\pi x}{2})\sec(\frac{\pi x}{2})dx$$

Hacemos el cambio de variable.

Sea $u=\sec(\frac{\pi x}{2}) \Rightarrow du=\frac{\pi}{2}\sec(\frac{\pi x}{2})\tan(\frac{\pi x}{2}) \Rightarrow \frac{2}{\pi}du=\sec(\frac{\pi x}{2})\tan(\frac{\pi x}{2})$, sustituyendo tenemos que:

$$\frac{2}{\pi } \int (u^{2}-1)udu=\frac{2}{\pi } \int (u^{3}-u)du=\frac{2}{\pi }(\frac{u^4}{4}-\frac{u^2}{2})+C$$

Así:

$$\int \tan^{3}(\frac{\pi x}{2})\sec^{2}(\frac{\pi x}{2})dx=\frac{\sec^{4}(\frac{\pi x}{2})}{2\pi}-\frac{\sec^{2}(\frac{\pi x}{2})}{\pi}+C$$

Caso 3: Si no hay factores de $sec(x)$, $n$ es par y positiva

Entonces reescribimos a $n$ como $n=2k$, así se tiene que la integral la reescribimos utilizando la relación $(2)$ como:

$$\int \tan^{n}(x)dx=\int \tan^{2k}(x)dx=\int \tan^{2k-2}(x)\tan^{2}(x)dx=$$

$$=\int \tan^{2k-2}(x)(\sec^{2}(x)-1)dx=\int \tan^{2k-2}(x)\sec^{2}(x)dx-\int \tan^{2k-2}(x)dx$$

Repetimos el mismo procedimiento cuantas veces sea necesario, es decir, cuando las integrales sean más sencillas de resolver o sea una integral directa. Veamos un ejemplo:

  • $\int_{0}^{\frac{\pi }{4}}\tan^{4}(x)dx$

Vemos que no hay factores de $\sec(x)$, $n$ es par y positiva, entonces:

$$\int_{0}^{\frac{\pi }{4}}\tan^{4}(x)dx=\int_{0}^{\frac{\pi }{4}}\tan^{2}(x)\tan^{2}(x)dx=\int_{0}^{\frac{\pi }{4}}(\sec^{2}(x)-1)\tan^{2}(x)dx=\int_{0}^{\frac{\pi }{4}}\sec^{2}(x)\tan^{2}(x)dx-\int_{0}^{\frac{\pi }{4}}\tan^{2}(x)dx$$

Para la primera integral vemos que estamos en el caso $(1)$ por lo que podemos hacer el siguiente cambio de variable:

Sea $u=\tan(x) \Rightarrow du=\sec^{2}(x)dx$ Revisemos los límites de integración, si $x=0 \Rightarrow u=\tan(0)=0$, si $x=\frac{\pi }{4} \Rightarrow u=\tan(\frac{\pi }{4})=1$.

Para la segunda integral utilizamos la relación $(2)$, así, se tiene que:

$$\int_{0}^{\frac{\pi }{4}}\tan^{4}(x)dx=\int_{0}^{1}u^{2}du-\int_{0}^{\frac{\pi }{4}}(\sec^{2}(x)-1)dx=\int_{0}^{1}u^{2}du-\int_{0}^{\frac{\pi }{4}}\sec^{2}(x)dx+\int_{0}^{\frac{\pi }{4}}1dx$$

$$=\frac{u^{3}}{3}\bigg|_{0}^{1}-\tan(x)\bigg|_{0}^{\frac{\pi }{4}}+x\bigg|_{0}^{\frac{\pi }{4}}=\left(\frac{1}{3}-0 \right) – \left(1-0 \right)+ \left (\frac{\pi }{4}-0 \right )=\frac{\pi }{4}-\frac{2}{3}$$

Caso 4: Si no hay factores de tan(x) y $m$ es impar

Donde $n=2k+1$, para este caso solo se tiene que integrar por partes.

$$\int \sec^{n}(x)dx=\int \sec^{2k+1}(x)dx$$

Veamos un ejemplo donde se aplique este caso.

  • $\int \sec^{3}(x)dx$

Lo podemos reescribir como:

$$\int \sec^{3}(x)dx=\int \sec^{2}(x)\sec(x)dx$$

Integramos por partes:

Sea $u=\sec(x) \Rightarrow du=\sec(x)\tan(x)$ y sea $dv=\sec^{2}(x) \Rightarrow v=\tan(x)$, asi:

$$\int \sec^{3}(x)dx=\sec(x)\tan(x)-\int \sec(x)\tan^{2}(x)dx=\sec(x)\tan(x)-\int \sec(x)(\sec^{2}(x)-1)dx$$

$$= \sec(x)\tan(x)-\int (\sec^{3}(x)-\sec(x))dx=\sec(x)\tan(x)-\int \sec^{3}(x)dx+\int \sec(x)dx$$

Podemos pasar sumando la primera integral como:

$$\Rightarrow 2\int \sec^{3}(x)dx=\sec(x)\tan(x)+\int \sec(x)dx$$

La segunda integral es una integral que ya habíamos visto:

$$\int \sec(x)dx=ln(\sec(x)+\tan(x))+C$$

$$\Rightarrow \int \sec^{3}(x)dx=\frac{1}{2}\sec(x)\tan(x)+\frac{1}{2}ln(\sec(x)+\tan(x))+C$$

Con este último ejemplo se terminan los casos para resolver este tipo de integrales, sin embargo, análogamente a estos casos, se pueden resolver integrales que contienen productos de potencia de cot(x) y csc(x).

Integrales con términos de productos de potencias de cot(x) y csc(x)

Integrales de la forma: $$\int \csc^{m}(x)\cot^{n}(x)dx$$

Se pueden determinar mediante los métodos similares que vimos en esta sección para resolver integrales con términos de productos de potencias de \cot(x) y csc(x) utilizando la siguiente identidad:

$$1+\cot^{2}(x)=\csc^{2}(x)$$

Y con sus respectivos cambio de variables $u=\cot(x)$ y $u=\csc(x)$, según sea el caso que corresponda.

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Resuelve las siguientes integrales:

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. $$\int \tan^{6}(x)\sec^{4}(x)dx$$
  2. $$\int \frac{\tan^{3}(x)}{\sqrt{\sec(x)}}dx$$
  3. $$\int \tan^{3}(x)dx$$
  4. $$\int \sec^{5}(x)dx$$
  5. $$\int \csc^{4}(3x)\cot^{3}(3x)dx$$

Más adelante…

En esta sección vimos como resolver integrales de productos de potencias de $\tan(x)$ y $\sec(x)$ en el cual se dividió por casos, así mismo, del mismo método, se pueden resolver las integrales de productos de potencias de $\cot(x)$ y $\csc(x)$ utilizando la relación entre esas mismas funciones y los cambios de variable correspondientes. En la siguiente sección veremos otro método de integración llamado integración por sustitución trigonométrica.

Entradas relacionadas

Cálculo Diferencial e Integral II: Integrales trigonométricas-Producto de potencias de senos y cosenos

Por Miguel Ángel Rodríguez García

Introducción

En las secciones anteriores vimos dos métodos de integración: el método de cambio de variable y la integración por partes, además, en la sección anterior estudiamos las integrales de las funciones trigonométricas básicas. En esta sección veremos integrales trigonométricas que en el integrando contienen producto de potencias de senos y cosenos.

Integrales trigonométricas-Producto de potencias de senos y cosenos

Las integrales trigonométricas incluyen combinaciones algebraicas de las seis funciones trigonométricas básicas, siempre podemos expresar tales integrales en términos de senos y cosenos.

Comenzamos con las integrales del tipo:

$$\int \sin^{n}(x)\cos^{m}(x)dx$$

Donde $m$ y $n$ son enteros no negativos, es decir, números positivos o cero y $m, \space n \space \epsilon \space \mathbb{Z}$. Para esta integral vamos a obtener 3 casos distintos, veamos el primer caso:

Caso 1: Si $n$ es impar

Entonces sabemos que $n$ se puede escribir como: $n=2k+1$ con $k \space \epsilon \space \mathbb{Z}$, por lo que la integral la podemos reescribir como:

$$\int \sin^{n}(x)\cos^{m}(x)dx=\int \sin^{2k+1}(x)\cos^{m}(x)dx=\int \sin^{2k}(x)\sin(x)\cos^{m}(x)dx$$

$$=\int (\sin^{2}(x))^{k}\sin(x)\cos^{m}(x)dx$$

Utilizamos la siguiente relación:

$$\sin^{2}(x)+\cos^{2}(x)=1 \Rightarrow \sin^{2}(x)=1-\cos^{2}(x) \tag{1}$$

Sustituimos en la integral, así:

$$\int \sin^{n}(x)\cos^{m}(x)dx= \int (1-\cos^{2}(x))^{k}\cos^{m}(x)\sin(x)dx$$

Para resolver esta integral tomamos el cambio de variable siguiente:

$$u=\cos(x)$$

Veamos un ejemplo en donde se aplica el caso anterior:

  • $\int \sin^{3}(x)dx$

Vemos que la potencia de la función $\sin(x)$ es impar, por lo que podemos usar la relación entre las funciones seno y coseno $(1)$ dando lugar la siguiente integral:

$$\int \sin^{3}(x)dx=\int \sin^{2}(x)\sin(x)dx=\int (1-\cos^{2}(x))\sin(x)dx$$

Utilizamos el cambio de variable que nos sugieren, sea $u=\cos(x) \Rightarrow du=-\sin(x)dx \Rightarrow -du=\sin(x)dx$. La integral se reescribe como:

$$ \int \sin^{3}(x)dx =-\int (1-u^{2})du=\int u^{2}du-\int du=\frac{u^{3}}{3}-u+C$$

Volvemos a la variable original y tenemos que la resolución de la integral es:

$$\int \sin^{3}(x)dx=\frac{\cos^{3}(x)}{3}-\cos(x)+C$$

Caso 2: Si $m$ es impar

Análogamente, al caso anterior, escribimos a $m$ como $m=2k+1$ con $k \space \epsilon \space \mathbb{Z}$, así:

$$\int \sin^{n}(x)\cos^{m}(x)dx=\int \sin^{n}(x)\cos^{2k+1}(x)dx=\int \sin^{n}(x)\cos^{2k}(x)\cos(x)dx$$

Nuevamente, usamos lo siguiente:

$$\sin^{2}(x)+\cos^{2}(x)=1 \Rightarrow \cos^{2}(x)=1-\sin^{2}(x) \tag{2}$$

Sustituyendo esta relación en la integral a resolver, se obtiene que:

$$\Rightarrow \int \sin^{n}(x)\cos^{m}(x)dx=\int \sin(x)^{n}(1-\sin^{2}(x))^{k}\cos(x)dx$$

Para resolver esta integral se toma el cambio de variable siguiente:

$$u=\sin(x)$$

Veamos un ejemplo en donde se aplica el caso anterior:

  • $\int \sin^{4}(x)\cos^{5}(x)dx$

Vemos que el exponente en el coseno es un número impar por lo que reescribimos el integrando utilizando la relación $(2)$ como:

$$\int \sin^{4}(x)\cos^{4}(x)\cos(x)dx=\int \sin^{4}(x)(1-\sin^{2}(x))^{2}\cos(x)dx$$

Utilizamos el cambio de variable que nos sugiere, sea $u=\sin(x) \Rightarrow du=\cos(x)dx$ la integral se reescribe como:

$$\int u^{4}(1-u^{2})^{2}du=\int u^{4}(1-2u^{2}+u^{4})du=\int u^{4}du-\int 2u^{6}du+\int u^{8}du=\frac{u^{5}}{5}+C_{1}-\frac{2u^{7}}{7}-C_{2}+\frac{u^{9}}{9}+C_{3}$$

Sea $C=C_{1}-C_{2}+C_{3}$

$$\Rightarrow \int u^{4}(1-u^{2})^{2}du=\frac{u^{5}}{5}-\frac{2u^{7}}{7}+\frac{u^{9}}{9}+C$$

Así la resolución de la integral es:

$$\int \sin^{4}(x)\cos^{5}(x)dx=\frac{\sin^{5}(x)}{5}-\frac{2\sin^{7}(x)}{7}-\frac{\sin^{9}(x)}{9}+C$$

Caso 3: si $n$ y $m$ son pares

Entonces a $n$ y $m$ se reescriben como $n=2k$ y $m=2p$ con $k, \space p \space \epsilon \space \mathbb{Z}$, en este caso utilizamos identidades de reducción de potencias [Hipervinculo: Calculo II-Demostración de las siguientes identidades], sustituimos las siguientes relaciones: $$\sin^{2}(x)=\frac{1-\cos(2x)}{2} \tag{3}$$ y $$\cos^{2}(x)=\frac{1+\cos(2x)}{2} \tag{4}$$

Reescribiendo la integral, se tiene que:

$$\int \sin^{n}(x)\cos^{m}(x)dx=\int \sin^{2k}(x)\cos^{2p}(x)dx=\int (\sin^{2}(x))^{k}(\cos^{2}(x))^{p}dx=\int \left ( \frac{1-\cos(2x)}{2} \right )^{k}\left ( \frac{1+\cos(2x)}{2} \right )^{p}dx$$

Por lo que se procede a integrar.

Veamos un ejemplo sencillo en donde se aplica este caso:

  • $\int \sin^{2}(x)\cos^{2}(x)dx$

Utilizamos las sustituciones $(3)$ y $(4)$ como sigue:

$$\int \sin^{2}(x)\cos^{2}(x)dx=\left ( \frac{1-\cos(2x)}{2}\right ) \left (\frac{1+\cos(2x)}{2}\right )=\int \frac{1}{4}dx-\frac{1}{4}\int \cos^{2}(2x)dx \tag{5}$$

La primera integral es directo, en la segunda integral vemos que la potencia en el término de coseno está al cuadrado por lo que podemos sustituir nuevamente la relación $(4)$:

$$\int \cos^{2}(2x)dx=\int \frac{1}{2}(1+\cos(4x))dx=\int \frac{1}{2}dx+\frac{1}{2}\int \cos(4x)dx$$

La primera integral es directa, en la segunda integral utilizamos un cambio de variable, sea $u=4x \Rightarrow du=4dx$ entonces:

$$ \int \frac{1}{2}dx+\frac{1}{2}\int \cos(4x)dx =\frac{x}{2}+C_{2}+\frac{\sin(u)}{8}+C_{3}=\frac{x}{2}+C_{2}+\frac{\sin(4x)}{8}+C_{3}$$

Sustituyendo en $(5)$, tenemos que:

$$\int \sin^{2}(x)\cos^{2}(x)dx=\frac{x}{4}+C_{1}-\frac{1}{4} \left (\frac{x}{2}+C_{2}+\frac{\sin(4x)}{8}+C_{3} \right)$$

Sea $C=C_{1}-C_{2}-C_{3}$, entonces la resolución de la integral es:

$$\int \sin^{2}(x)\cos^{2}(x)dx=\frac{4x}{32}-\frac{\sin(4x)}{32}+C=\frac{1}{32}(4x-\sin(4x))+C$$

Integrales que involucran senos y cosenos de distintos ángulos

Estas integrales son de la forma:

$$\int \cos(mx)\sin(mx)dx$$ $$\int \sin(mx)\sin(nx)dx$$ $$\int \cos(mx)\cos(nx)dx$$

Para resolver estas integrales se recurre a las siguientes identidades trigonométricas:

  1. $$\sin(mx)\sin(nx)=\frac{1}{2}[\cos((m-n)x)-\cos((m+n)x)]$$
  2. $$\cos(mx)\cos(nx)=\frac{1}{2}[\cos((m-n)x)+\cos((m+n)x)]$$
  3. $$\sin(mx)\cos(nx)=\frac{1}{2}[\sin((m-n)x)+\sin((m+n)x)]$$
  4. $$\cos(mx)\sin(nx)=\frac{1}{2}[\sin((m-n)x)-\sin((m+n)x)]$$

[Hipervinculo: Calculo II-Demostración de las anteriores relaciones]

Veamos un ejemplo sencillo:

  • $\int \sin(5x)\cos(4x)dx$

Si comparamos con las identidades trigonométricas mencionadas anteriormente utilizamos la identidad trigonométrica número $(3)$, reescribiendo la integral como:

$$\int \sin(5x)\cos(4x)=\int \frac{1}{2}[\sin((5-4)x)+\sin((5+4)x)]=\frac{1}{2} \int \sin(x) + \frac{1}{2} \int \sin(9x)$$

La primera integral es directa y la segunda integral solo utilizamos un cambio de variable proponiendo $u=9x \Rightarrow \frac{du}{9}=dx$ Asi:

$$\int \sin(5x)\cos(4x)dx=\frac{1}{2}\cos(x)-\frac{1}{2}\frac{1}{9}\cos(9x)+C=\frac{1}{2}\cos(x)-\frac{1}{18}\cos(9x)+C$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. $$\int \sin^{3}(x)\cos^{2}(x)dx$$
  2. $$\int \cos^{5}(2x)dx$$
  3. $$\int \sin^{2}(x)\cos^{4}(x)dx$$
  4. $$\int_{0}^{1} \sin^{4}(x)$$
  5. $$\int_{0}^{\frac{\pi }{4}} \sqrt{1+\cos(4x)}dx$$ Hint: Utilice la relación $\cos^{2}(x)=\frac{1+\cos(2x)}{2}$
  6. $$\int \sin(-3x)\sin(2x)dx$$

Más adelante…

En esta sección vimos integrales trigonométricas que involucran potencias de senos y cosenos mostrando los 3 casos en donde se pueden resolver este tipo de integrales, además, vimos integrales que involucran senos y cosenos de distintos ángulos donde se solucionan con las relaciones vistas. En la siguiente sección veremos integrales trigonométricas que involucran potencias de funciones tangente y secante en el integrando y análogamente a esta sección, tendremos varios casos en donde se pueden resolver las integrales trigonométricas que involucran potencias de funciones tangente y secante.

Entradas relacionadas

Cálculo Diferencial e Integral II: Integrales trigonométricas básicas

Por Miguel Ángel Rodríguez García

Introducción

Hasta esta sección ya hemos visto dos métodos de integración: cambio de variable e integración por partes, antes de entrar a las integrales trigonométricas o el método de sustitución trigonométrica, hay que saber algunas integrales trigonométricas básicas para entrar a los métodos de integración mencionados.

Integrales trigonométricas básicas

Ya hemos visto dos integrales trigonométricas directas y fundamentales, estas integrales son las siguientes:

$$\int \sin(x)dx=-\cos(x)+C$$

$$\int \cos(x)dx=\sin(x)+C$$

Ahora veremos las integrales indefinidas de las 4 funciones trigonométricas básicas restantes utilizando el método de cambio de variable, empecemos con la función $\tan(x)$.

  • $$\int \tan (x)dx$$

Para integrar esta función sabemos que lo podemos reescribir en término de las funciones $\sin(x)$ y $\cos(x)$, entonces:

$$\int \tan (x)dx=\int \frac{\sin(x)}{\cos(x)}dx$$

Integramos por el método de sustitución haciendo un cambio de variable.

Sea $u=\cos(x) \Rightarrow du=-\sin(x)dx \Rightarrow -du=\sin(x)dx$ entonces tenemos que:

$$\int \tan (x)dx=-\int \frac{du}{u}=-\int \frac{1}{u}du=-ln|u|+C=-ln|\cos(x)|+C$$

$$\therefore \int \tan (x)dx=-ln|\cos(x)|+C$$

  • $$\int \cot(x)dx$$

Para resolver esta integral, nuevamente usamos el truco anterior, reescribimos el integrando en términos de las funciones $\sin(x)$ y $\cos(x)$, entonces:

$$\int \cot(x)dx=\int \frac{\cos(x)}{\sin(x)}dx$$

Hacemos un cambio de variable, sea $u=\sin(x) \Rightarrow du=\cos(x)dx$ entonces tenemos que:

$$\int \cot(x)dx=\int \frac{1}{u}du=ln|u|+C=ln|\sin(x)|+C$$

$$\therefore \int \cot(x)dx=ln|\sin(x)|+C$$

  • $$\int \sec(x)dx$$

Al resolver las integrales anteriores talvez este tentado por cambiar la función $\sec(x)$ en términos de las funciones $\sin(x)$ y $\cos(x)$, pero esto no nos sirve, ya que al hacer esto no encontraremos un cambio de variable adecuado, recordemos que $\sec(x)=\frac{1}{\cos(x)}$. Para resolver esta integral tenemos que multiplicar por $1$, en donde tiene que ser un uno adecuado, veamos:

$$\int \sec(x)dx=\int \sec(x)\left ( \frac{\sec(x)+\tan(x)}{\sec(x)+\tan(x)}\right )dx=\int \frac{\sec^{2}(x)+\sec(x)\tan(x)}{\sec(x)+\tan(x)}dx$$

Integramos por el método de sustitución, hacemos un cambio de variable.

Sea $u=\sec(x)+\tan(x) \Rightarrow du=(\sec(x)\tan(x)+\sec^{2}(x))dx$, entonces:

$$ \int \sec(x)dx =\int \frac{1}{u}du=ln|u|+C=ln|\sec(x)+\tan(x)|+C$$

$$\therefore \int \sec(x)dx=ln|\sec(x)+\tan(x)|+C$$

  • $$\int \csc(x)dx$$

Análogamente, al ejercicio anterior, multiplicamos por un uno adecuado:

$$\int \csc(x)dx=\int \csc(x) \left ( \frac{\csc(x)+\cot(x)}{\csc(x)+\cot(x)} \right )dx=\int \frac{\csc^{2}(x)+\csc(x)\cot(x)}{\csc(x)+\cot(x)}dx$$

Hacemos un cambio de variable.

Sea $u=\csc(x)+\cot(x) \Rightarrow du=(-\csc(x)\cot(x)-\csc^{2}(x))dx=-(\csc(x)\cot(x)+\csc^{2}(x))dx$

$$\int \csc(x)dx=-\int \frac{1}{u}du=-ln|u|+C=-ln|\csc(x)+\cot(x)|+C$$

$$\therefore \int \csc(x)dx=-ln|\csc(x)+\cot(x)|+C$$

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Resuelve las siguientes integrales:

  1. $$\int (4\sin(x)-4\sec^{2}(x))dx$$
  2. $$\int \cos(2x-6)dx$$
  3. $$\int e^{x}\cos(e^{x})dx$$
  4. $$\int \csc(3x+1)dx$$
  5. $$\int (\tan(5x)+xcot(4x^{2}+1)+\sec(7x+3))dx$$

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

Más adelante…

Aunque esta sección solo vimos integrales trigonométricas básicas, en las siguientes secciones veremos el método de integrales trigonométricas que contienen producto de potencias de funciones $\sin(x)$ y $\cos(x)$, producto de potencias de funciones $\tan(x)$ y $\cot(x)$ y el método por sustitución trigonométrica, por lo que nos serán útiles las integrales que vimos en esta sección para resolver las integrales por venir.

Entradas relacionadas

Cálculo Diferencial e Integral II: Integración por partes

Por Miguel Ángel Rodríguez García

Introducción

En la sección anterior se vio el teorema de integración por cambio de variable, además de ejercicios utilizando este método de integración para la solución de algunas integrales. En esta sección veremos el teorema de la integración por partes, así como, ejercicios para ejemplificar la solución de integrales empleando este método.

Integración por partes

La integración por partes viene de que en general la integral de un producto no es el producto de las integrales, veamos el ejemplo siguiente:

Sabemos que la integral de las funciones $x$ y $x^{2}$ están dadas como:

$$\int xdx=\frac { { x }^{ 2 } }{ 2 } +C$$ y $$ \int { { x }^{ 2 }dx=\frac { { x }^{ 3 } }{ 3 } +C }$$

Por lo que es claro que: $$ \int { (x\cdot x)dx\neq \int { xdx } \cdot \int { xdx } }$$

Toda regla de derivación tiene una regla de integración correspondiente, en este caso, la regla que corresponde a la regla del producto para la derivación se llama regla para integración por partes para las integrales, enunciado en el siguiente teorema.

Teorema: Integración por partes

Sea $f$ y $g$ funciones, con $f’$ y $g’$ continuas, donde $f’$ y $g’$ representan la primera derivada de $f$ y $g$ respectivamente, entonces:

$$\int { f(x)\cdot g'(x)dx=f(x)\cdot g(x)-\int { f'(x)\cdot g(x)dx } }$$

Demostración:

Por la regla del producto de la derivada de dos funciones, sabemos que:

$$\frac { d }{ dx } \left[ f(x)\cdot g(x) \right] =f'(x)\cdot g(x)+f(x)\cdot g'(x)$$

Integrando en ambos lados de la igualdad:

$$\Rightarrow \int { \frac { d }{ dx } \left[ f(x)\cdot g(x)dx \right] } =\int { [f'(x)\cdot g(x)+f(x)\cdot g'(x)] dx }=\int { f'(x)\cdot g(x)dx } +\int { f(x)\cdot g'(x)dx }$$

Por el teorema fundamental del Cálculo [Hipervínculo: Calculo II- Teorema fundamental del calculo] se tiene que:

$$f(x)\cdot g(x) = \int { f'(x) \cdot g(x)dx } +\int { f(x) \cdot g'(x)dx }$$

$$\Rightarrow \int f(x)\cdot g'(x)dx=f(x)\cdot g(x)-\int f'(x)\cdot g(x)dx \tag{1}$$

Lo cual se demuestra este teorema.

$\square$

A esta fórmula $(1)$ se le conoce como integración por partes. Existen reglas nemotécnicas para aprenderse la fórmula anterior. Sea $u=f(x)$ y $v=g(x)$ entonces la fórmula anterior se reescribe como:

$$\int u\cdot dv =u\cdot v-\int v \cdot du \tag{2}$$

Por lo que la idea de esta integración por partes es proponer un cambio de variable $u$ de tal forma que al derivarlo y multiplicarlo por $v$ que es la antiderivada de $dv$, sea una integral más sencilla de resolver y no viceversa.

Para el caso, cuando tenemos una integral definida utilizando este método se tiene que, por el segundo teorema fundamental del Cálculo [Hipervínculo: Calculo II-Segundo Teorema fundamental del calculo] se puede evaluar la fórmula de integración por partes, suponiendo que $f’$ y $g’$ son continuas en un intervalo $[a,b]$, obtenemos:

$$\int_{a}^{b}f(x)\cdot g'(x)dx=f(x)\cdot g(x)\bigg|_{a}^{b}-\int_{a}^{b}f'(x)\cdot g(x)dx \tag{3}$$

La demostración a esta relación se puede basar en la demostración del teorema de integración por partes, por lo cual puede ser un ejercicio de tarea moral para mostrarlo.

Veamos unos ejemplos para ejemplificar el método de la integración por partes.

Ejemplos

  • $\int { \ln { (x) } dx }$

Tenemos que proponer un cambio de variable de tal forma que la integral resultante sea una integral más sencilla de resolver, proponemos a $u=\ln { (x) } \Rightarrow du=\frac { 1 }{ x }$ y sea $dv=1 \Rightarrow v=x$ Reemplazando estos términos en la fórmula $(2)$ tenemos que:

$$\int { \ln { (x) } dx }=x\ln { (x) }-\int { \frac { 1 }{ x } xdx }$$

Vemos que al aplicar esta fórmula conduce a una integral más sencilla y sabemos que:

$$\int { \frac { 1 }{ x } xdx }=\int { 1 dx }=x+C$$

Con $C$ la constante de integración, así:

$$\int \ln { (x) } dx=x\ln { (x) }-x+C=x\left[ \ln (x)-1\right]+C $$

  • $\int { { x }^{ 2 }{ e }^{ x }dx }$

Sea $u={ x }^{ 2 } \Rightarrow du=2x$ y $dv={ e }^{ x } \Rightarrow v={ e }^{ x }$

Sustituyendo en la fórmula $(2)$ tenemos que:

$$\int { { x }^{ 2 }{ e }^{ x }dx }={ x }^{ 2 }{ e }^{ x }-2\int x { e }^{ x }dx \tag{4}$$

Vemos que la nueva integral es menos complicada, ya que el exponente de $x$ se redujo en 1, por lo que volvemos a integrar por partes fijándonos solamente en la integral por resolver.

$\int x { e }^{ x }dx$

Sea $u=x \Rightarrow du=1$ y sea $dv={ e }^{ x } \Rightarrow v={ e }^{ x }$ por lo que:

$$\int { x { e }^{ x }dx }=x \cdot { e }^{ x } -\int { 1\cdot { e }^{ x }dx }$$

Sabemos que: $$\int { { e }^{ x }dx={ e }^{ x }+C }$$

Con $C$ la constante de integración, así:

$$\int { x { e }^{ x } dx }=x \cdot { e }^{ x }-{ e }^{ x }+C={ e }^{ x }\left[ x-1 \right] +C $$

Sustituyendo en la integral que queremos resolver $(4)$, tenemos que:

$$\int { { x }^{ 2 }{ e }^{ x }dx } = { x }^{ 2 }{ e }^{ x }-2\left[{ e }^{ x }\left[ x-1 \right] +C\right] = { x }^{ 2 }{ e }^{ x }-2x{ e }^{ x }+2{ e }^{ x }+C=e^{x} \left[x^{2}-2x+2\right]+C$$

  • $\int { { e }^{ x }\sin(x)dx}$

Sea $u=\sin(x) \Rightarrow du=\cos(x)$ y sea $dv={ e }^{ x } \Rightarrow v={ e }^{ x }$, obtenemos lo siguiente:

$$\int { { e }^{ x }\sin(x)dx}={ e }^{ x }\sin(x)-\int { { e }^{ x }\cos(x)dx}\tag{5}$$ Obtenemos una nueva integral por lo que integramos nuevamente por partes, así que nos enfocamos en solucionar esta integral:

$\int e^{x}\cos(x)dx$

Sea $u=\cos(x) \Rightarrow du=-\sin(x)$ y sea $dv={ e }^{ x } \Rightarrow v={ e }^{ x }$ así obtenemos:

$$\int { e }^{ x }\cos(x)dx={ e }^{ x }\cos(x)+\int { { e }^{ x }\sin(x)dx}$$

Por lo que sustituimos el resultado de esta integral a la integral que queremos resolver $(5)$. Veamos lo siguiente:

$$\int { e }^{ x }\sin(x)dx={ e }^{ x }\sin(x)-\left[ { e }^{ x }\cos(x)+\int { e }^{ x }\sin(x)dx \right]={ e }^{ x }\sin(x)-{ e }^{ x }\cos(x)-\int { e }^{ x }\sin(x)dx$$

Al ser una igualdad podemos pasar sumando la integral obteniendo lo siguiente:

$$2\int { { e }^{ x }\sin(x)dx}={ e }^{ x }\sin(x)-{ e }^{ x }\cos(x)$$

$$\Rightarrow \int { { e }^{ x }\sin(x)dx}=\frac {{ e }^{ x }\sin(x)-{ e }^{ x }\cos(x) }{2 }$$

  • $\int _{ 0 }^{ 1 }{ { x }^{ 2 }ln(x)dx }$

Utilizamos la fórmula $(3)$ para este tipo de integrales definidas, por lo que proponemos lo siguiente:

Sea $u=ln(x) \Rightarrow du=\frac { 1 }{ x }$ y $v={ x }^{ 2 }\Rightarrow dv=\frac { { x }^{ 3 } }{ 3 }$

Así, utilizando la igualdad $(3)$, obtenemos:

$$\int _{ 0 }^{ 1 }{ { x }^{ 2 }ln(x)dx }=\frac{x^{3}}{3}ln(x)\bigg|_{0}^{1}-\int_{0}^{1}\frac{x^{3}}{3}\frac{1}{x}dx$$

La integral nueva es una integral polinómica, fácil de resolver, por lo que integramos directamente obteniendo el resultado de la integral como:

$$\Rightarrow \int_{ 0 }^{ 1 }{ { x }^{ 2 }ln(x)dx }=\frac{x^{3}}{3}ln(x)\bigg|_{0}^{1}-\frac{1}{3}\int_{0}^{1}x^{2}dx=\left[ 0-0 \right]-\left[ \frac { 1 }{ 3 }\frac { { x }^{ 3 } }{ 3 } \right]\bigg|_{ 0 }^{ 1 }= -\frac{1}{9}$$

Existe una regla nemotécnica en el cual se recomienda que para integrar con el método de integración por partes se puede escoger la función $u$ de acuerdo con el orden de la nomenclatura «ILATE», que significa lo siguiente:

Inversa trigonométrica.

Logarítmicas.

Algebraicas.

Trigonométricas.

Exponencial.

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para que practiques lo aprendido que te ayudaran en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Resuelve las siguientes integrales:

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. $$\int x\cos(x)dx$$
  2. $$\int ln^{2}(x)$$
  3. $$\int x^{4}e^{x}dx$$
  4. $$\int_{0}^{4}\frac{x}{e^{x}}$$
  5. $$\int_{0}^{1} \frac{1}{\tan(x)}dx$$

Más adelante…

Es importante comprender estos métodos de integración, ya que veremos más métodos de integración y por consecuente en la resolución de una integral puede llegarse a aplicar varios métodos de integración al resolver una integral.

La integración por partes es muy útil cuando se puede encontrar que al hacer el cambio de variable la integral a resolver sea más sencilla que la integral original. En la siguiente entrada veremos integrales trigonométricas básicas que necesitamos saber para ver las integrales trigonométricas que contienen productos de funciones trigonométricas.

Entradas relacionadas

Cálculo Diferencial e Integral II: Antiderivadas

Por Miguel Ángel Rodríguez García

Introducción

Antes de comenzar con el estudio de los métodos de integración veremos en esta sección un tema importante que es la definición de antiderivadas.

La antiderivada o función primitiva de una función $f(x)$ es una función $F(x)$ tal que al ser derivada nos generará la misma función $f(x)$. Por lo que, $F(x)$ es una antiderivada de $f(x)$ si $F'(x)=f(x)$.

En notación integral se expresa como:

$$\int f(x)dx=F(x)$$

Antiderivada

Definimos la antiderivada de una función como sigue.

Definición. Una función $F(x)$ es una antiderivada de $f(x)$ si $F'(x)=f(x)$, En notación integral:

$$\int f(x)dx=F(x)+C$$

Donde $C$ es la constante de integración.

Observación: Dada una función $f(x)$, la antiderivada no es única, puesto que existe una infinidad de antiderivadas o una familia de antiderivadas, es decir, si $F(x)$ es una antiderivada de $f(x)$ entonces $F(x)+C$ es una antiderivada de $f(x)$.

Veamos el siguiente teorema:

Teorema: Si $F(x)$ es una antiderivada de $f(x)$ en un intervalo $I$, es decir, en un intervalo abierto o cerrado, entonces la función $G(x)$ es una antiderivada de $f(x)$ $\Leftrightarrow G(x)=F(x)+C$, $\space \space$$\forall$ $x$ $\epsilon$ $I$

Demostración:

$\Rightarrow$ $\rfloor$

Por hipótesis $F(x)$ y $G(x)$ son antiderivadas de $f(x)$, entonces por definición:

$$F'(x)=f(x) \space \space y \space \space G'(x)=f(x)\Rightarrow F'(x)=G'(x)$$

Por el colorario visto en el curso de Cálculo I en el tema de Teorema de Rolle y Teorema del Valor Medio, tenemos que:

$$G(x)=F(x)+C$$

$\Leftarrow$ $\rfloor$

Tenemos que $G(x)=F(x)+C$, derivando la relación anterior tenemos que:

$$\frac{\mathrm{d} }{\mathrm{d} x}(G(x))=\frac{\mathrm{d} }{\mathrm{d} x}(F(x)+C)$$

Como $F(x)$ es una antiderivada de $f(x)$ entonces $F'(x)=f(x)$

$\Rightarrow G'(x)=f(x)$ Justo lo que buscamos, ya que recordemos que es la definición de una antiderivada.

$\therefore$ $G(x)$ es una antiderivada de $f(x)$.

$\square$

Para entender un poco mejor el concepto de la familia de antiderivadas veamos el ejemplo siguiente:

Sea $F(x)=x$, que es la antiderivada de la función constante $f(x)=1$, ya que $F'(x)=1=f(x)$. En notación de integral:

$$\int 1 dx=x+c$$

En la siguiente imagen (figura 1) se muestran algunas antiderivadas de la función constante $f(x)=1$, donde el valor de la constante va cambiando en cada función de la gráfica y es por eso que existe una infinidad de antiderivadas de una función. Ahí la importancia de escribir la constante de integración cuando se resuelva una integral indefinida.

Figura 1: Antiderivadas de la función constante 1.

Nota: Una integral definida de una función $f(x)$ dentro de un intervalo $I$ entre $a$ y $b$, nos da un resultado numérico, es decir:

$$\int_{a}^{b}f(x)dx=C$$

En cambio, una antiderivada nos da un conjunto de familia de funciones, es decir:

$$\int f(x)dx=F(x)+C$$

Algunas antiderivadas básicas

En la siguiente tabla se muestran algunas derivadas e integrales indefinidas básicas necesarias que nos serán útiles para comenzar a estudiar los métodos de integración y que nos ayudará con algunos ejercicios y ejemplos en las siguientes secciones.

DerivadaIntegral indefinida
$$\frac{\mathrm{d} }{\mathrm{d} x}C=0$$$$\int 0dx=C$$
$$\frac{\mathrm{d} }{\mathrm{d} x}x=1$$$$\int 1dx=x+C$$
$$\frac{\mathrm{d} }{\mathrm{d} x}(x^{n})=nx^{n-1}$$$$\int x^{n}dx=\frac{x^{n+1}}{n+1}+C$$ $\forall$ $n$ $\neq$ $-1$
$$\frac{\mathrm{d} }{\mathrm{d} x}(\sin(x))=\cos(x)$$$$\int \cos(x)dx=\sin(x)+C$$
$$\frac{\mathrm{d} }{\mathrm{d} x}(\cos(x))=-\sin(x)$$$$\int \sin(x)dx=-\cos(x)+C$$
$$\frac{\mathrm{d} }{\mathrm{d} x}(\tan(x))=\sec^{2}(x)$$$$\int \sec^{2}(x)dx=\tan(x)+C$$
$$\frac{\mathrm{d} }{\mathrm{d} x}(\cot(x))=-\csc^{2}(x)$$$$\int \csc^{2}(x)dx=-\cot(x)+C$$
$$\frac{\mathrm{d} }{\mathrm{d} x}(\sec(x))=-\sec(x)\tan(x)$$$$\int \sec(x)\tan(x)dx=\sec(x)+C$$
$$\frac{\mathrm{d} }{\mathrm{d} x}(\csc(x))=-\csc(x)\cot(x)$$$$\int \csc(x)\cot(x)dx=-\csc(x)+C$$
$$\frac{\mathrm{d} }{\mathrm{d} x}(f(x)+g(x))=\frac{\mathrm{d} }{\mathrm{d} x}(f(x))+\frac{\mathrm{d} }{\mathrm{d} x}(g(x))$$$$\int \left [ f(x)+g(x) \right ]dx=\int f(x)dx+\int g(x)dx$$
$$\frac{\mathrm{d} }{\mathrm{d} x}(Cf(x))=C\frac{\mathrm{d} }{\mathrm{d} x}(f(x))$$$$\int \left [ Cf(x) \right ]dx=C\int f(x)dx$$
Tabla 1: Tabla de derivadas e integrales indefinidas.

Tarea moral

Los siguientes ejercicios no son para evaluación, pero son ejercicios para practicar lo aprendido y que te ayudarán en el desarrollo del entendimiento del tema, por lo que te invitamos a resolver los siguientes ejercicios propuestos relacionados con el tema visto.

Resuelve las siguientes integrales:

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. $$\int \frac{1}{x^{2}}dx$$
  2. $$\int \sqrt{x}dx$$
  3. $$\int 2\sin(x)dx$$
  4. $$\int 100dx$$
  5. $$\int (x+2)dx$$
  6. $$\int \frac{x+1}{\sqrt{x}}dx$$

Más adelante…

En esta sección vimos la definición de antiderivada o también conocido como función primitiva $f(x)$, además de, algunas integrales indefinidas básicas que necesitaremos para estudiar los métodos de integración. Como primer método de integración que estudiaremos en la siguiente sección es el método de cambio de variable o integración por sustitución.

Entradas relacionadas