Introducción
En la entrada anterior vimos un recordatorio de las formas bilineales, cuadráticas y sus polares. En esta entrada continuaremos recordando algunas propiedades vistas previamente enfocándonos en el teorema de Gauss y su demostración. Esto nos dará una pequeña pista de la relación entre las formas cuadráticas y matrices.
Además, con el teorema de Gauss obtendremos un algoritmo para poder escribir cualquier forma cuadrática en una forma estandarizada. Esto nos llevará más adelante a plantear la ley de inercia de Sylvester.
Preparaciones para el teorema de Gauss
Antes de empezar con el teorema, veamos una propiedad de las formas cuadráticas en $\mathbb{R}^n$. Tomemos $e_1,\ldots, e_n$ la base canónica de $\mathbb{R}^n$. Tomemos $q$ una forma cuadrática de $\mathbb{R}^n$ y $b$ su forma polar.
Cualquier vector $x=(x_1,\ldots,x_n)$ de $\mathbb{R}^n$ se escribe como $ (x_1,\ldots,x_n)=\sum_{i=1}^n x_i e_i$. Por lo que hicimos en la entrada anterior tenemos entonces:
$$q(x)=b(x,x)=\sum_{i=1}^n \sum_{j=1}^n x_i x_j b(e_i, e_j).$$
Para simplificar la notación definamos $a_{ij}:=b(e_i,e_j)$. Podemos «ver» todos los sumandos en la siguiente expresión:
\begin{align*} q(x)& =x_1^2a_{11}+ x_1x_2a_{12} + \dots + x_1x_na_{1n} \\
&+x_2x_1a_{21}+ x_2^2a_{22} + \dots +x_2x_na_{2n} \\
&\vdots \qquad \qquad \qquad \qquad \qquad \qquad \\
&+x_nx_1a_{n1} + x_nx_2a_{n2} + \dots + x_n^2 a_{nn} \end{align*}
Aquí hay algunos términos «puros» de la forma $a_{ii}x_i^2$. Se encuentran en la «diagonal». Tenemos también algunos términos «mixtos» de la forma $a_{ij}x_ix_j$ con $i\neq j$. Por la simetría de $b$, en los términos mixtos tenemos $a_{ij}=a_{ji}$. Al separar en términos puros y mixtos obtenemos entonces la siguiente expresión:
\begin{align}q(x)= \sum_{i=1}^na_{ii}x_i^2+ 2\sum_{1 \leq i < j \leq n} a_{ij} x_i x_j .\end{align}
Usaremos esto más abajo.
Teorema de Gauss de formas cuadráticas
Teorema. Sea $q$ una forma cuadrática en $V=\mathbb{R}^n$. Existen reales $\alpha_1, \dots , \alpha_r $ y formas lineales $l_1, \dots l_r$ de $V$ linealmente independientes tales que, para todo $x \in V$ se tiene
$$q(x)= \sum_{i=1}^r \alpha _i (l_i(x))^2.$$
Recordemos que la independencia lineal de las formas $l_1,\ldots,l_r$ sucede en el espacio dual $V^*$.
Demostración. Procedamos por inducción sobre $n$. De la igualdad $(1)$, cuando $n=1$ la forma cuadrática es de la forma $q(x)=a_{11}x_1^2$. Al definir $\alpha_1=a_{11}$ y $l_1(x)=x_1$ obtenemos la forma deseada.
Supongamos que el teorema se cumple para $n-1$. De la igualdad $(1)$ sabemos que $q$ se puede escribir como sigue:
\begin{align*} q(x)= \sum_{i=1}^n a_{ii} x_i^2 + 2\sum_{1 \leq i < j \leq n} a_{ij} x_ix_j. \end{align*}
Tenemos tres posibilidades:
- Que todos los $a_{ii}$ y todos los $a_{ij}$ sean cero. Este caso es inmediato pues entonces $q$ es la forma cuadrática cero y podemos tomar $l_1(x)=x_1$ y $\alpha_1=0$.
- Que algún $a_{ii}$ sea distinto de cero.
- Que todos los $a_{ii}$ sean cero, pero algún $a_{ij}$ sea distinto de cero.
Hagamos cada uno de los últimos dos casos por separado. Comencemos por el caso en el que algún $a_{ii}$ es distinto de cero. Sin pérdida de generalidad (¿por qué?) podemos suponer que es $a_{nn}$.
Apartando los términos que tienen $x_n$ de los que no obtenemos:
\begin{align*} \sum_{i=1}^n a_{ii}x_i^2=a_{nn} x_n^2 + \sum_{i=1}^{n-1} a_{ii} x_i^2. \end{align*}
y
\begin{align*} 2\sum_{1 \leq i < j \leq n} a_{ij}x_ix_j= 2\left(\sum_{i=1}^{n-1} a_{in} x_i\right)x_n + 2\sum_{1 \leq i < j \leq n-1} a_{ij}x_ix_j\end{align*}
Con esto
\begin{align*} q(x)=a_{nn}x_n^2 + 2\left(\sum_{i=1}^{n-1} a_{in} x_i\right)x_n + \sum_{i=1}^{n-1} a_{ii} x_i^2 + 2\sum_{1 \leq i < j \leq n-1} a_{ij}x_ix_j .\end{align*}
Si bien esta expresión se ve complicada, en realidad podemos pensar que en términos de la variable $x_n$ es «simplemente una cuadrática». Basados en los primeros dos términos podemos completar un binomio al cuadrado como sigue:
\begin{align*} q(x)= a_{nn} \left(x_n+\sum_{i=1}^{n-1} \frac{a_{in}}{a_{nn}}x_i \right)^2- a_{nn}\left(\sum_{i=1}^{n-1} \frac{a_{in}}{a_{nn}}x_i \right)^2 + \sum_{i=1}^{n-1} a_{ii}x_i^2+2\sum_{1 \leq i < j \leq n-1} a_{ij}x_ix_j.\end{align*}
Notemos que la expresión
\begin{align*} – a_{nn}\left(\sum_{i=1}^{n-1} \frac{a_{in}}{a_{nn}}x_i \right)^2 + \sum_{i=1}^{n-1} a_{ii}x_i^2+2\sum_{1 \leq i < j \leq n-1} a_{ij}x_ix_j \end{align*}
ya no tiene a la variable $x_n$ y que de hecho es una forma cuadrática en las variables $x_1,\ldots, x_{n-1}$ (¿por qué?). De este modo, podemos aplicarle hipótesis inductiva para obtener que existen escalares $\alpha_1,\ldots, \alpha_r$ y formas lineales $l’_1,\ldots,l’_r$ linalmente independientes de $\mathbb{R}^{n-1}$ tales que
\begin{align*} q'(x_1,\dots , x_{n-1})= \sum_{i=1}^r \alpha_i (l_i'(x))^2.\end{align*}
Si bien estas $l’_i$ son formas lineales de $\mathbb{R}^{n-1}$, también podemos pensarlas como formas lineales de $\mathbb{R}^n$. Formalmente, tomamos $l_i:\mathbb{R}^n\to \mathbb{R}$ dada por $l_i(x_1,\ldots,x_n)=l’_i(x_1,\ldots,x_{n-1})$. Para finalizar, definimos
\begin{align*} l_{r+1}(x_1, \dots , x_n)= x_n+\sum_{i=1}^{n-1} \frac{a_{in}}{a_{nn}}x_i \text{,} \qquad \alpha_{r+1}=a_{nn}.\end{align*}
De aquí, obtenemos la expresión deseada para $q$:
\begin{align*} q(x)= \sum_{i=1}^{r+1} \alpha_i (l_i(x))^2 \end{align*}
Falta argumentar por qué las $l_i$ son linealmente independientes. Si una combinación lineal de ellas da cero, como $l_{r+1}$ es la única que involucra a $x_n$, entonces su coeficiente debe ser cero. Así, obtendríamos una combinación lineal de $l_1,\ldots,l_r$ igualada a cero. Pero esta es una combinación lineal de $l’_1,\ldots,l’_r$. Por hipótesis inductiva, estas son linealmente independientes así que todos los coeficientes deben ser cero.
Lo anterior termina el caso para cuando hay algún «término puro». Falta el caso en el que todos los «términos puros» tienen coeficiente cero, pero hay por lo menos un «término mixto». Por la igualdad $(1)$ tenemos que la forma cuadrática se ve así:
\begin{align*}q(x)= 2\sum_{1 \leq i < j \leq n} a_{ij} x_i x_j .\end{align*}
Sin pérdida de generalidad podemos suponer que el término mixto que no es cero es el $a_{n-1,n}$ (¿por qué?). La idea es ahora separar a los términos que tienen $x_{n-1}$ ó $x_n$ de los que no, y utilizar la siguientes identidades algebraicas que se valen para cualesquiera $A,B,C, D, E$ (haz las cuentas):
\begin{align} Ax_{n-1}x_n+Bx_{n-1}+Cx_n=A\left(x_{n-1}+\frac{C}{A}\right) \left(x_n+\frac{B}{A}\right)-\frac{BC}{A},\end{align}
\begin{align} DE= \frac{1}{4}(D+E)^2 – \frac{1}{4} (D-E)^2.\end{align}
Al realizar la separación nos queda:
\begin{align*} q(x)= 2a_{n-1,n}x_{n-1}x_n +2\sum_{i=1}^{n-2}a_{in}x_ix_n+ 2\sum_{i=1}^{n-2}a_{i,n-1}x_ix_{n-1} + 2\sum_{1 \leq i < j \leq n-2} x_i x_j a_{ij}. \end{align*}
Así, podemos usar la identidad $(2)$ con los siguientes valores
\begin{align*}
A &=2a_{n-1.n},\\
B&=2\sum_{i=1}^{n-2}a_{i,n-1}x_i,\\
C&=2\sum_{i=1}^{n-2}a_{i,n}x_i
\end{align*}
para obtener que $q$ es:
\begin{align*} A\left(x_{n-1}+\frac{C}{A}\right) \left(x_n+\frac{B}{A}\right)-\frac{BC}{A} + 2\sum_{1 \leq i < j \leq n-2} x_i x_j a_{ij} \end{align*}
Al primer sumando podemos reescribirlo usando la identidad $(3)$ como
\begin{align*}\frac{A}{4}\left(x_{n-1}+x_n+\frac{B+C}{A}\right)^2-\frac{A}{4}\left( x_{n-1}-x_n-\frac{B-C}{A}\right)^2 \end{align*}
A la expresión conformada por los últimos dos sumandos le podemos aplicar hipótesis inductiva (¿por qué?) para escribirla de la forma \begin{align*} q'(x_1, \dots , x_{n-2})= \sum_{i=1}^r \alpha’_i (l’_i(x_1, \dots , x_{n-2}))^2 \end{align*} con $l’_1,\ldots, l’_r$ formas lineales linealmente independientes de $\mathbb{R}^{n-2}$. Como en el caso anterior, podemos «convertir» estas formas lineales a formas lineales $l_1,\ldots,l_r$ en $\mathbb{R}^n$. Al agregar las siguientes dos formas lineales
\begin{align*}
l_{r+1}(x)&= x_{n-1}+x_n+\frac{B+C}{A}\\
l_{r+2}(x)&= x_{n-1}-x_n-\frac{B-C}{A}
\end{align*}
y tomar $\alpha_{r+1}=\frac{A}{4}$, $\alpha_{r+2}=-\frac{A}{4}$, obtenemos la expresión deseada:
\begin{align*} q(x)= \sum_{i=1}^{r+2} \alpha_i (l_i(x))^2. \end{align*}
La demostración de que en efecto $l_1,\ldots,l_{r+2}$ son linealmente independientes queda como ejercicio.
Así por principio de inducción tenemos que el teorema de Gauss se cumple para cualquier forma cuadrática $q$ en $\mathbb{R}^n$ para todo $n\geq 1$ entero.
$\square$
Más adelante…
Debido a la longitud de esta demostración, los ejemplos serán reservados para la siguiente entrada.
Las formas cuadráticas, aunque interesantes, muestran estar limitadas por cómo las definimos, ya que se definen sólo en espacios vectoriales reales. En las siguientes entradas expandiremos un poco esta definición para también abarcar al menos espacios vectoriales complejos y luego nos enfocaremos en un tipo especial de éstas.
Además, al principio de la entrada se dieron pistas a que existe una relación entre formas bilineales y matrices, esto será explorado posteriormente.
Tarea moral
Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.
- Sea $q$ una forma cuadrática en $\mathbb{R}^n$ y $x=(x_1, \dots, x_n)$. Muestra que \begin{align*} q(x)=\sum_{i,j=1}^na_{ij}x_ix_j \text{ con } a_{ij}=b(e_i,e_j). \end{align*}
- Sea $A$ la matriz con entradas $a_{ij}$ dadas en el problema anterior. ¿Qué podrías afirmar acerca de $A$ sin importar la $q$ elegida?
- Sea $A=[a_{ij}]$ una matriz simétrica en $M_n(\mathbb{R})$ y definamos
\begin{align*} q: \mathbb{R}^n \rightarrow \mathbb{R} \text{ dada por } q(x)=\sum_{i,j=1}^na_{ij}x_ix_j \end{align*} ¿Es $q$ así definida una forma cuadrática? ¿Es necesario que $A$ sea simétrica? - Demuestra que las formas lineales definidas en el segundo caso de la demostración del teorema de Gauss en efecto son linealmente independientes.
- Sean $\alpha _1, \dots , \alpha_r $ números reales y $l_1 , \dots , l_r$ formas lineales, linealmente independientes en $\mathbb{R}^n$ y $x \in \mathbb{R}^n$. Definamos $q$ como sigue:
\begin{align*} q(x)=\sum_i^n \alpha_i l_i(x)\end{align*}
¿Es $q$ así definida una forma cuadrática en $\mathbb{R}^n$?
Entradas relacionadas
- Ir a Álgebra Lineal II
- Entrada anterior del curso: Repaso de formas bilineales y cuadráticas
- Siguiente entrada del curso: Problemas de formas bilineales, cuadráticas y teorema de Gauss
Agradecimientos
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»