Archivo del Autor: Angélica Amellali Mercado Aguilar

Derivadas Parciales de Orden Superior.

Por Angélica Amellali Mercado Aguilar

Derivadas Parciales de Orden Superior

Si $f$ es una función de doas variables $x,y$ $\Rightarrow$ $\displaystyle\frac{\partial f}{\partial x}, \displaystyle\frac{\partial f}{\partial y}$ son funciones de las mismas variables, cuando derivamos $\displaystyle\frac{\partial f}{\partial x}$ y $ \displaystyle\frac{\partial f}{\partial y}$ obtenemos las derivadas parciales de segundo orden, las derivadas de $\displaystyle\frac{\partial f}{\partial x}$ están definidas por:

$$\displaystyle\frac{\partial^{2}f}{\partial x^{2}}(x,y)=\displaystyle\lim_{h\to 0}{\displaystyle\frac{\displaystyle\frac{\partial f}{\partial x}(x+h,y)-\displaystyle\frac{\partial f}{\partial x}(x,y)}{h}}$$

$$\displaystyle\frac{\partial^{2}f}{\partial y \partial x}(x,y)=\displaystyle\lim_{k\to 0}{\displaystyle\frac{\displaystyle\frac{\partial f}{\partial x}(x,y+k)-\displaystyle\frac{\partial f}{\partial x}(x,y)}{k}}$$

Si $f$ es una función de dos variables entonces hay cuatro derivadas parciales de segundo orden.

Consideremos las diferentes notaciones para las derivadas parciales:

$$f_{1,1}=\displaystyle\frac{\partial^{2}f}{\partial x^{2}}=f_{xx}$$

$$f_{1,2}=\displaystyle\frac{\partial^{2}f}{\partial y \partial x}=\frac{\partial}{\partial y}\bigg(\frac{\partial f}{\partial x}\bigg)=f_{xy}$$

$$f_{2,1}=\displaystyle\frac{\partial^{2}f}{\partial x \partial y}=\frac{\partial}{\partial x}\bigg(\frac{\partial f}{\partial y}\bigg)=f_{yx}$$

$$f_{2,2}=\displaystyle\frac{\partial^{2}f}{\partial y^{2}}=\frac{\partial}{\partial y}\bigg(\frac{\partial f}{\partial y}\bigg)=f_{yy}$$

Ejemplo. $z=x^{3}+3x^{2}y-2x^{2}y^{2}-y^{4}+3xy$ hallar $\displaystyle\frac{\partial z}{\partial x}, \displaystyle\frac{\partial z}{\partial y},\displaystyle\frac{\partial^{2} z}{\partial x^{2}},\displaystyle\frac{\partial^{2}z}{\partial x \partial y},\displaystyle\frac{\partial^{2}z}{\partial y \partial x},\displaystyle\frac{\partial^{2} z}{\partial y^{2}}$

$$\displaystyle\frac{\partial z}{\partial x}=3x^{2}+6xy-4xy^{2}+3y$$

$$\displaystyle\frac{\partial z}{\partial y}=3x^{2}-4x^{2}y-4y^{3}+3x$$

$$\displaystyle\frac{\partial^{2} z}{\partial x^{2}}=6x+6y-4y^{2}$$

$$\displaystyle\frac{\partial^{2} z}{\partial y^{2}}=-4x^{2}-12y^{2}$$

$$\displaystyle\frac{\partial^{2}z}{\partial y \partial x}=6x-8xy+3$$

$$\displaystyle\frac{\partial^{2}z}{\partial x \partial y}=6x-8xy+3$$

Teorema 1.Teorema de schwarz

Sea $f:A\subset \mathbb{R}^{2}\rightarrow\mathbb{R}$ una función definida en el abierto A de $\mathbb{R}^{2}$. Si las derivadas parciales

$$\frac{\partial^{2} f}{\partial y\partial x}~y~\frac{\partial^{2} f}{\partial x\partial y}$$

existen y son continuas en $A$, entonces

$$\frac{\partial^{2} f}{\partial y\partial x}=\frac{\partial^{2} f}{\partial x\partial y}$$

Demostración. Sea

$\displaystyle{M=f(x+h_{1},y+h_{2})-f(x+h_{1},y)-f(x,y+h_{2})+f(x,y)}$ y definimos $$\varphi(x)=f(x,y+h_{2})-f(x,y)$$de manera que
$$\varphi(x+h_{1})-\varphi(x)=f(x+h_{1},y+h_{2})-f(x+h_{1},y)-(f(x,y+h_{2})-f(x,y))=M$$

Aplicando el TVM a $\varphi$ en el intervalo $[x,x+h_{1}]$ se tiene que existe $\theta~\in~(x,x+h_{1})$ tal que

$$\varphi(x+h_{1})-\varphi(x)=\varphi'(\theta)h_{1}$$

por otro lado
$$\varphi'(x)=\frac{\partial f}{\partial x}(x,y+h_{2})-\frac{\partial f}{\partial x}(x,y)$$
por lo tanto
$$\varphi'(\theta)=\frac{\partial f}{\partial x}(\theta,y+h_{2})-\frac{\partial f}{\partial x}(\theta,y)$$
tenemos entonces que

$$M=\varphi(x+h_{1})-\varphi(x)=\varphi'(\theta)h_{1}=\left(\frac{\partial f}{\partial x}(\theta,y+h_{2})-\frac{\partial f}{\partial x}(\theta,y)\right)h_{1}$$
Consideremos ahora $\displaystyle{\psi(y)=\frac{\partial f}{\partial x}(x,y)}$. Aplicando el TVM a $\psi$ en el intervalo $[y,y+h_{2}]$ se tiene que existe $\eta~\in~(y,y+h_{2})$ tal que
$$\psi(y+h_{2})-\psi(y)=\psi'(\eta)h_{2}$$
por otro lado

$$\psi'(y)=\frac{\partial }{\partial y}\left(\frac{\partial f}{\partial x}\right)(x,y)=\frac{\partial^{2}f}{\partial y\partial x}(x,y)$$
por lo tanto
$$\psi'(\eta)=\frac{\partial^{2}f}{\partial y\partial x}(x,\eta)$$
de esta manera

$$\psi(y+h_{2})-\psi(y)=\psi'(\eta)h_{2}=\left(\frac{\partial^{2}f}{\partial y\partial x}(x,\eta)\right)h_{2}$$
y si $\theta\in (x,x+h_{1})$ tenemos entonces que

$$\frac{\partial f}{\partial x}(\theta,y+h_{2})-\frac{\partial f}{\partial x}(\theta,y)=\left(\frac{\partial^{2}f}{\partial y\partial x}(\theta,\eta)\right)h_{2}$$
en consecuencia
$$M=\left(\frac{\partial f}{\partial x}(\theta,y+h_{2})-\frac{\partial f}{\partial x}(\theta,y)\right)h_{1}=\left(\frac{\partial^{2}f}{\partial y\partial x}(\theta,\eta)\right)h_{2}h_{1}$$

Consideremos ahora $$\overline{\varphi}(y)=f(x+h_{1},y)-f(x,y)$$de manera que
$$\overline{\varphi}(y+h_{2})-\overline{\varphi}(y)=f(x+h_{1},y+h_{2})-f(x+h_{1},y)-(f(x,y+h_{2})-f(x,y))=M$$

Aplicando el TVM a $\overline{\varphi}$ en el intervalo $[y,y+h_{2}]$ se tiene que existe $\overline{\eta}~\in~(y,y+h_{2})$ tal que
$$\overline{\varphi}(y+h_{2})-\overline{\varphi}(y)=\overline{\varphi}'(\overline{\eta})h_{2}$$
por otro lado
$$\overline{\varphi}'(y)=\frac{\partial f}{\partial y}(x+h_{1},y)-\frac{\partial f}{\partial y}(x,y)$$
por lo tanto

$$\overline{\varphi}'(\overline{\eta})=\frac{\partial f}{\partial y}(x+h_{1},\overline{\eta})-\frac{\partial f}{\partial y}(x,\overline{\eta})$$
tenemos entonces que
$$M=\overline{\varphi}(y+h_{2})-\overline{\varphi}(y)=\overline{\varphi}'(\overline{\eta})h_{2}=\left(\frac{\partial f}{\partial y}(x+h_{1},\overline{\eta})-\frac{\partial f}{\partial y}(x,\overline{\eta})\right)h_{2}$$

Consideremos ahora $\displaystyle{\overline{\psi}(x)=\frac{\partial f}{\partial y}(x,y)}$. Aplicando el TVM a $\psi$ en el intervalo $[x,x+h_{1}]$ se tiene que existe $\overline{\theta}~\in~(x,x+h_{1})$ tal que
$$\overline{\psi}(x+h_{1})-\overline{\psi}(x)=\overline{\psi}'(\overline{\theta})h_{1}$$
por otro lado

$$\overline{\psi}'(x)=\frac{\partial }{\partial x}\left(\frac{\partial f}{\partial y}\right)(x,y)=\frac{\partial^{2}f}{\partial x\partial y}(x,y)$$
por lo tanto
$$\overline{\psi}'(\overline{\theta})=\frac{\partial^{2}f}{\partial y\partial x}(\overline{\theta},y)$$
de esta manera

$$\overline{\psi}(x+h_{1})-\overline{\psi}(x)=\overline{\psi}'(\overline{\theta})h_{1}=\left(\frac{\partial^{2}f}{\partial x\partial y}(\overline{\theta},y)\right)h_{1}$$
es decir
$$\frac{\partial f}{\partial y}(x+h_{1},y)-\frac{\partial f}{\partial y}(x,y)=\left(\frac{\partial^{2}f}{\partial x\partial y}(\overline{\theta},y)\right)h_{1}$$
y si $\overline{\eta}\in (y,y+h_{2})$ tenemos entonces que
$$\frac{\partial f}{\partial y}(x+h_{1},\overline{\eta})-\frac{\partial f}{\partial y}(x,\overline{\eta})=\left(\frac{\partial^{2}f}{\partial x\partial y}(\overline{\theta},\overline{\eta})\right)h_{1}$$
en consecuencia

$$M=\left(\frac{\partial f}{\partial y}(x+h_{1},\overline{\eta})-\frac{\partial f}{\partial y}(x,\overline{\eta})\right)h_{1}h_{2}=\left(\frac{\partial^{2}f}{\partial x\partial y}(\overline{\theta},\overline{\eta})\right)h_{2}h_{1}$$
igualando ambas expresiones de M se tiene
$$\left(\frac{\partial^{2}f}{\partial y\partial x}(\theta,\eta)\right)h_{2}h_{1}=\left(\frac{\partial^{2}f}{\partial x\partial y}(\overline{\theta},\overline{\eta})\right)h_{2}h_{1}$$
donde
$$\left(\frac{\partial^{2}f}{\partial y\partial x}(\theta,\eta)\right)=\left(\frac{\partial^{2}f}{\partial x\partial y}(\overline{\theta},\overline{\eta})\right)$$
Tomando limite cuando $h_{1},h_{2}\rightarrow 0$ y usando la continuidad asumida de las parciales mixtas se tiene que $\theta,\overline{\theta}\rightarrow x$ y $\eta,\overline{\eta}\rightarrow y$ se concluye
$$\frac{\partial^{2}f}{\partial y\partial x}(x,y)=\frac{\partial^{2}f}{\partial x\partial y}(x,y)$$ $\square$

Ejemplo. Sea $f:\mathbb{R}^{2}\rightarrow\mathbb{R}$ dada por $f(x,y)=x^{3}+3x^{2}y-2x^{2}y^{2}-y^{4}+3xy$\
En este caso
$$\frac{\partial f}{\partial x}=3x^{2}+6xy-4xy^{2}+3y$$
$$\frac{\partial f}{\partial y}=3x^{2}-4x^{2}y-4y^{3}+3x$$
$$\frac{\partial^{2} f}{\partial x^{2}}=6x+6y-4y^{2}$$
$$\frac{\partial^{2} f}{\partial y^{2}}=-4x^{2}-12y^{2}$$
$$\frac{\partial^{2} f}{\partial x\partial y}=6x-8xy+3$$
$$\frac{\partial^{2} f}{\partial y\partial x}=6x-8xy+3$$

Ejemplo. Dada la función

tenemos que para $(x,y)\neq (0,0)$
$$\frac{\partial f}{\partial x}=y\frac{x^{4}+4x^{2}y^{2}-y^{4}}{(x^{2}+y^{2})^{2}}$$
$$\frac{\partial f}{\partial y}=x\frac{x^{4}-4x^{2}y^{2}-y^{4}}{(x^{2}+y^{2})^{2}}$$
para el primer caso hacemos $x=0$ y tenemos
$$\frac{\partial f}{\partial x}=y\frac{x^{4}+4x^{2}y^{2}-y^{4}}{(x^{2}+y^{2})^{2}}\underbrace{=}{x=0}-y$$ para el segundo caso hacemos $y=0$ y tenemos $$\frac{\partial f}{\partial y}=x\frac{x^{4}-4x^{2}y^{2}-y^{4}}{(x^{2}+y^{2})^{2}}\underbrace{=}{y=0}1$$
Calculamos ahora
$$\frac{\partial^{2} f}{\partial y\partial x}=\frac{\partial^{2} (-y)}{\partial y\partial x}=-1$$
$$\frac{\partial^{2} f}{\partial x\partial y}=\frac{\partial^{2} (1)}{\partial x\partial y}=1$$
por lo tanto
$$\frac{\partial^{2} f}{\partial y\partial x}=-1\neq 1=\frac{\partial^{2} f}{\partial x\partial y}$$
En este caso las parciales segundas no son contiuas en $(0,0)$

Teorema. Caso General

Sea $f:A\subset\mathbb{R}^{n}\rightarrow\mathbb{R}$ definida en el abierto A de $\mathbb{R}^{n}$ tal que
$$\frac{\partial^{2} f}{\partial x_{i}\partial x_{j}}$$ sean continuas en A, entonces
$$\frac{\partial^{2} f}{\partial x_{i}\partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j}\partial x_{i}}$$

Regla de la Cadena. Plano tangente.

Por Angélica Amellali Mercado Aguilar

Caso particular de la regla de la cadena

Supongamos que $C:\mathbb{R}\rightarrow\mathbb{R}^{3}$ es una trayectoria diferenciable y $f:\mathbb{R}^{3}\rightarrow\mathbb{R}$.

Sea $h(t)$=$f(x(t), y(t), z(t))$ donde $c(t)$=$(x(t),y(t), z(t))$.
Entonces

$$\displaystyle\frac{\partial{h}}{\partial{t}} = \displaystyle\frac{\partial{f}}{\partial{x}}\cdot \frac{\partial{x}}{\partial{t}}+\frac{\partial{f}}{\partial{y}}\cdot
\frac{\partial{y}}{\partial{t}}+\frac{\partial{f}}{\partial{z}}\cdot
\frac{\partial{z}}{\partial{t}}$$

Esto es:
$\displaystyle\frac{\partial{h}}{\partial{t}}$=$\nabla{f(c(t))}\cdot
{c'(t)}$, ~donde $c'(t)$=$((x'(t), y'(t), z'(t))$

Demostración. Por definición
$\displaystyle\frac{\partial{h}}{\partial{t}}(t_{0})$=$\displaystyle\lim_{t\rightarrow0}\displaystyle\frac{h(t)-h(t_{0})}{t-t_{0}}$
Sumando y restando tenemos que

$\displaystyle\frac{h(t)-h(t_{0})}{t-t_{0}}$=$\displaystyle\frac{f(c(t))-f(c(t_{0}))}{t-t_{0}}$=$\displaystyle\frac{f(x(t), y(t), z(t)) – f(x(t_{0}), y(t_{0}), z(t_{0}))}{t-t_{0}}$=

=$\frac{f(x(t), y(t), z(t))~-~f(x(t_{0}), y(t),
z(t))~+~f(x(t_{0}), y(t), z(t))~-~f(x(t_{0}), y(t_{0}),
z(t))~+~f(x(t_{0}), y(t_{0}), z(t))~-~f(x(t_{0}), y(t_{0}),
z(t_{0}))}{t-t_{0}}$…$\ast$

Aplicando el Teorema del valor medio $\textbf{(T.V.M.)}$

$f(~x(t),~y(t),~z(t))-f(~x(t_{0}),~y(t),~z(t))=\displaystyle\frac{\partial{f}}{\partial{x}}(~c,~y(t),~z(t))~(x(t)-x(t_{0}))$

$f(~x(t_{0}),~y(t),~z(t))-f(~x(t_{0}),~y(t_{0}),~z(t))=\displaystyle\frac{\partial{f}}{\partial{y}}~(x(t),~ d, ~z(t))~(y(t)-y(t_{0}))$

$f(~x(t_{0}),~y(t_{0}),~z(t))-f(~x(t_{0}),~y(t_{0}),~z(t_{0}))=\displaystyle\frac{\partial{f}}{\partial{z}}(~x(t),~y(t),~e)~(z(t)-z(t_{0}))$

$\therefore$$\ast$=$\displaystyle\frac{\partial{f}}{\partial{x}}(~c,~y(t),~z(t))~\displaystyle\frac{x(t)-x(t_{0})}{t-t_{0}}+\displaystyle\frac{\partial{f}}{\partial{y}}~(~x(t),~d,~z(t))~\displaystyle\frac{y(t)-y(t_{0})}{t-t_{0}}$+

$+\displaystyle\frac{\partial{f}}{\partial{z}}~(~x(t),~y(t),~e))~\displaystyle\frac{z(t)-z(t_{0})}{t-t_{0}}$

Tomando $\displaystyle\lim_{t\rightarrow{t_{0}}}$ y por la continuidad de las parciales

$\displaystyle\frac{\partial{h}}{\partial{t}}$=$\displaystyle\frac{\partial{f}}{\partial{x}}~\frac{\partial{x}}{\partial{t}}+ \displaystyle\frac{\partial{f}}{\partial{y}}~\frac{\partial{y}}{\partial{t}}+\displaystyle\frac{\partial{f}}{\partial{z}}~\frac{\partial{z}}{\partial{t}}$

Ejemplos: Caso particular de la regla de la cadena

Ejemplo. Verificar la regla de la cadena para $f:\mathbb{R}^{2}\rightarrow\mathbb{R}$ dada por $f(x,y)=x^{2}+3y^{2}$ y $c:\mathbb{R}\rightarrow\mathbb{R}^{2}$ dada por $c(t)=(e^{t},\cos(t))$

Solución. En este caso $\displaystyle{h(t)=f\circ c(t)~\Rightarrow~h'(t)=\frac{\partial h}{\partial t}}$ y aplicando la regla de la cadena se tiene
$$\frac{\partial f}{\partial x}(c(t))\cdot \frac{d x(t)}{dt}=\frac{\partial (x^{2}+3y^{2})}{\partial x}\left|{(e^{t},\cos(t))}\right.\cdot\frac{d (e^{t})}{dt}=2x\left|{(e^{t},\cos(t))}\cdot e^{t}\right.=2e^{t}\cdot e^{t}=2e^{2t}$$

$$\frac{\partial f}{\partial y}(c(t))\cdot \frac{d y(t)}{dt}=\frac{\partial (x^{2}+3y^{2})}{\partial y}\left|{(e^{t},\cos(t))}\right.\cdot\frac{d (\cos(t))}{dt}=6y\left|{(e^{t},\cos(t))}\cdot (-sen(t))\right.=6 cos(t) \cdot (- sen(t))$$
por lo tanto
$$h'(t)=2e^{2t}-6\cos(t)\cdot (sen(t))$$

Ejemplo. Verificar la regla de la cadena para $f:\mathbb{R}^{2}\rightarrow\mathbb{R}$ dada por $f(x,y)=xy$ y $c:\mathbb{R}\rightarrow\mathbb{R}^{2}$ dada por $c(t)=(e^{t},\cos(t))$

Solución. En este caso $\displaystyle{h(t)=f\circ c(t)~\Rightarrow~h'(t)=\frac{\partial h}{\partial t}}$ y aplicando la regla de la cadena se tiene
$$\frac{\partial f}{\partial x}(c(t))\cdot \frac{d x(t)}{dt}=\frac{\partial (xy)}{\partial x}\left|{(e^{t},\cos(t))}\right.\cdot\frac{d (e^{t})}{dt}=y\left|{(e^{t},\cos(t))}\cdot e^{t}\right.=\cos(t)\cdot e^{t}$$

$$\frac{\partial f}{\partial y}(c(t))\cdot \frac{d y(t)}{dt}=\frac{\partial (xy)}{\partial y}\left|{(e^{t},\cos(t))}\right.\cdot\frac{d (cos(t))}{dt}=x\left|{(e^{t},cos(t))}\cdot (-sen(t))\right.=e^{t}\cdot (-sen(t))$$

por lo tanto
$$h'(t)=\cos(t)e^{t}-e^{t}\cdot sen(t)$$

Ejemplo.Verificar la regla de la cadena para $f:\mathbb{R}^{2}\rightarrow\mathbb{R}$ dada por $f(x,y)=e^{xy}$ y $c:\mathbb{R}\rightarrow\mathbb{R}^{2}$ dada por $c(t)=(3t^{2},t^{3})$

Solución. En este caso $\displaystyle{h(t)=f\circ c(t)~\Rightarrow~h'(t)=\frac{\partial h}{\partial t}}$ y aplicando la regla de la cadena se tiene

$$\frac{\partial f}{\partial x}(c(t))\cdot \frac{d x(t)}{dt}=\frac{\partial (e^{xy})}{\partial x}\left|{(3t^{2},t^{3})}\right.\cdot\frac{d (3t^{2})}{dt}=ye^{xy}\left|{(3t^{2},t^{3})}\cdot 6t\right.=t^{3}e^{3t^{5}}6t=6t^{4}e^{3t^{5}}$$

$$\frac{\partial f}{\partial x}(c(t))\cdot \frac{d x(t)}{dt}=\frac{\partial (e^{xy})}{\partial y}\left|{(3t^{2},t^{3})}\right.\cdot\frac{d (t^{3})}{dt}=xe^{xy}\left|{(3t^{2},t^{3})}\cdot 3t^{2}\right.=3t^{2}e^{3t^{5}}3t^{2}=9t^{4}e^{3t^{5}}$$
por lo tanto
$$h'(t)=6t^{4}e^{3t^{5}}+9t^{4}e^{3t^{5}}=15t^{4}e^{3t^{5}}$$

Teorema 1. El gradiente es normal a las superficies de nivel. Sea $f:\mathbb{R}^{3}\rightarrow\mathbb{R}$ una aplicación $C^{1}$ y sea
$(x_{0},y_{0},z_{0})$ un punto sobre la superficie de nivel $S$ definida por $f(x,y,z)$=$k$, $k$=$cte$. Entonces $\nabla{f}(x_{0},~y_{0},~z_{0})$ es normal a la superficie de nivel en el siguiente sentido: si $v$ es el vector tangente en $t$=$t_{0}$ de
una trayectoria $c(t)$ con $c(t_{0})$=$(x_{0},~y_{0},~z_{0})$ Entonces $\nabla{f}\cdot {v}$=$0$

que se puede escribir como
$$\left(\frac{\partial f}{\partial x}(x(t),y(t)z(t)),\frac{\partial f}{\partial y}(x(t),y(t)z(t)),\frac{\partial f}{\partial z}(x(t),y(t)z(t))\right)\cdot\left(\frac{dx}{dt},\frac{dy}{dt},\frac{dz}{dt}\right)=0$$
en $t=t_{0}$
$$\nabla f(x(0),y(0),z(0))\cdot c'(t_{0})=0$$

Plano Tangente

Sea $f:A\subset\mathbb{R}^{3}\rightarrow\mathbb{R}$ una función diferenciable definida en A, y sea
$$S={(x,y,z)\in\mathbb{R}^{3}~|~f(x,y,z)=c}$$

una superficie de nivel de f y $\hat{x}{0}=(x{0},y_{0},z_{0})$ un punto de ella. Considere además, una curva
$$\alpha(t)=(x(t),y(t),z(t))$$
y una curva
$$\beta(t)=(x_{1}(t),y_{1}(t),z_{1}(t))$$

que pasen por $\hat{x}{0}$ con $t\in[a,b]$ en ambos casos y tanto $\alpha$ como $\beta$ diferenciables, se tiene entonces $$(f\circ\alpha)'(t)=f'(\alpha(t))\alpha'(t)=\nabla f(\alpha(t))\cdot \alpha'(t)=0$$ $$(f\circ\beta)'(t)=f'(\beta(t))\beta'(t)=\nabla f(\beta(t))\cdot \beta'(t)=0$$ pues el gradiente $\nabla f(\hat{x}{0})$ en ambos casos es ortogonal tanto al vector $\alpha'(t_{0})$ como al vector $\beta'(t_{0})$ en el punto $\hat{x_{0}}=\alpha(t_{0})=\beta(t_{0})$

Si $\nabla f(\hat{x}{0})\neq 0$, entonces las tangentes a las curvas $\alpha, \beta$ sobre S que pasan por $\hat{x}{0}$

están contenidas en un mismo plano; por lo que el plano tangente a
$$S=\left\{(x,y,z)\in\mathbb{R}^{3}~|~f(x,y,z)=c \right\}$$ se define

Definición. El plano tangente a S en $\hat{x}{0}$ se define $$P={\hat{x}~|~\nabla f(\hat{x}{0})\cdot (\hat{x}-\hat{x}_{0})=0}$$

Ejemplo. Hallar el plano tangente a la superficie
$$S=\left\{(x,y,z)\in\mathbb{R}^{3}~|~\frac{x^{2}}{4}-\frac{y^{2}}{9}+z^{2}=1 \right\}$$
en el punto $(2,3,1)$

Solución. En este caso el gradiente es
$$\nabla f(x,y,z)=\left(\frac{x}{2},-\frac{2}{9}y,2z\right)$$
en el punto $(2,3,1)$ es
$$\nabla f(2,3,1)=\left(1,-\frac{2}{3},2\right)$$
Por tanto la ecuación del plano tangente es
$$\left(1,-\frac{2}{3},2\right)\cdot (x-1,y-3,z-1)=0$$
es decir
$$3x-2y+6z-6=0$$

Diferenciabilidad y continuidad. Gradiente. Máximo crecimiento. Puntos estacionarios

Por Angélica Amellali Mercado Aguilar

Diferenciabilidad de Funciones de $\mathbb{R}^{2}\rightarrow \mathbb{R}$

Definición. Sea $A\subset\mathbb{R}^{2}$, un abierto, $f:A\rightarrow\mathbb{R}$ y $(x_{0},y_{0})\in A$. Se dice que f es diferenciable en $(x_{0},y_{0})$ si existen las derivadas parciales $\displaystyle{\frac{\partial f}{\partial x}(x_{0},y_{0}),~~\frac{\partial f}{\partial y}}(x_{0},y_{0})$ tal que
$$f((x_{0},y_{0})+(h_{1},h_{2}))=f(x_{0},y_{0})+\frac{\partial f}{\partial x}(x_{0},y_{0})h_{1}+\frac{\partial f}{\partial y}(x_{0},y_{0})h_{2}+r(h_{1},h_{2})$$donde
$$\lim_{(h_{1},h_{2})\rightarrow(0,0)}\frac{r(h_{1},h_{2})}{|(h_{1},h_{2})|}=0$$

Diferenciabilidad implica continuidad de Funciones de $\mathbb{R}^{2}\rightarrow \mathbb{R}$

Teorema 1. Si la función $f:A\subset\mathbb{R}^{2}\rightarrow \mathbb{R}$ definida en $A$ de $\mathbb{R}^{2}$, es diferenciable en el ´punto $p=(x_{0},y_{0})\in A$, entonces es continua en ese punto.

Demostración. Si f es diferenciable en el ´punto $p=(x_{0},y_{0})\in A$ se tiene
$$f((x_{0},y_{0})+(h_{1},h_{2}))=f(x_{0},y_{0})+\frac{\partial f}{\partial x}(x_{0},y_{0})h_{1}+\frac{\partial f}{\partial y}(x_{0},y_{0})h_{2}+r(h_{1},h_{2})$$
tomando limite se tiene
$$\lim_{(h_{1},h_{2})\rightarrow(0,0)}f((x_{0},y_{0})+(h_{1},h_{2}))=\lim_{(h_{1},h_{2})\rightarrow(0,0)}f(x_{0},y_{0})+\cancel{\frac{\partial f}{\partial x}(x_{0},y_{0})h_{1}}+\cancel{\frac{\partial f}{\partial y}(x_{0},y_{0})h_{2}}+\cancel{r(h_{1},h_{2})}$$
se tiene entonces que
$$\lim_{(h_{1},h_{2})\rightarrow(0,0)}f((x_{0},y_{0})+(h_{1},h_{2}))=f(x_{0},y_{0})$$
por lo que f es continua en $(x_{0},y_{0})$

Aplicacion del Teorema del Valor Medio de Funciones de $\mathbb{R}^{2}\rightarrow \mathbb{R}$}

Teorema 2. Suponga que $f:A\subset\mathbb{R}^{2}\rightarrow\mathbb{R}$ es tal que
$$\left|\frac{\partial f}{\partial x}(x_{0},y_{0})\right|\leq M$$ y $$\left|\frac{\partial f}{\partial x}(x_{0},y_{0})\right|\leq M$$

donde $M$ no depende de $x,y$ entonces $f$ es continua en $A$.

Demostración. Sean $(x_{0},y_{0}),(x_{0}+h_{1},y_{0}+h_{2})\in A$ tenemos entonces que $$f(x_{0}+h_{1},y_{0}+h_{2})-f(x_{0},y_{0})=f(x_{0}+h_{1},y_{0}+h_{2})\textcolor{Red}{-f(x_{0}+h_{1},y_{0})+f(x_{0}+h_{1},y_{0})}-f(x_{0},y_{0})$$ Aplicando teorema del valor medio se tiene que existen $\xi_{1},\in\ (x_{0},x_{0}+h_{1})$,$\xi_{2}\in(y_{0},y_{0}+h_{2})$ tal que $$f(x_{0}+h_{1},y_{0}+h_{2})\textcolor{Red}{-f(x_{0}+h_{1},y_{0})}=\frac{\partial f}{\partial y}(x_{0}+h_{1},\xi_{2})h_{2}$$ $$\textcolor{Red}{f(x_{0}+h_{1},y_{0})}-f(x_{0},y_{0})=\frac{\partial f}{\partial x}(\xi_{1},y_{0}+h_{2})h_{1}$$ por lo tanto $$\left|f(x_{0}+h_{1},y_{0}+h_{2})-f(x_{0},y_{0})\right|=\left|\left(\frac{\partial f}{\partial y}(x_{0}+h_{1},\xi_{2})h_{2}\right)+\left(\frac{\partial f}{\partial x}(\xi_{1},y_{0}+h_{2})h_{1}\right)\right|\leq $$ $$\left|\left(\frac{\partial f}{\partial y}(x_{0}+h_{1},\xi_{2})\right)\right||h_{2}|+\left|\left(\frac{\partial f}{\partial x}(\xi_{1},y_{0}+h_{2}\right)\right|)|h_{1}|\leq M(|h_{2}|+|h_{1}|)$$ si tenemos que $\displaystyle{|(h_{1},h_{2})|}<\delta$ entonces $$M(|h_{2}|+|h_{1}|)<2M\delta~\therefore~~~\epsilon=2M\delta\Rightarrow \delta=\frac{\epsilon}{2M}$$

Diferenciabilidad y Derivadas Direccionales

Teorema 3. Si $f:\mathbb{R}^{n}\rightarrow \mathbb{R}$ es una función diferenciable en $x_{0}$ en la dirección del vector unitario u entonces
$$\frac{\partial f}{\partial u}(x_{0})=\sum_{i=1}^{n}\frac{\partial~f}{\partial x_{i}}\cdot u_{i}$$

Demostración. Sea $u\in\mathbb{R}^{n}$ tal que $u\neq0$ y $|u|=1$ como $f$ es diferenciable en $x_{0}$, se tiene que
$$f(x_{0}+h)-f(x_{0})=\sum_{i=1}^{n}\frac{\partial f}{\partial x_{i}}(x_{0})h_{i}+r(h)$$satisface
$$\lim_{(h)\rightarrow 0}\frac{r(h)}{|(h)|}=0$$
tomando $h=tu$ se tiene $|h|=|tu|=|t||u|=|t|$\
se tiene entonces
$$f(x_{0}+t(u))-f(x_{0})=\sum_{i=1}^{n}\frac{\partial f}{\partial x_{i}}(x_{0})tu_{i}+r(tu)$$
tenemos entonces
$$\lim_{t\rightarrow0}\frac{f(x_{0}+t(u))-f(x_{0})}{t}=\sum_{i=1}^{n}\frac{\partial f}{\partial x_{i}}(x_{0})u_{i}+\cancel{\lim_{t\rightarrow0}r(tu)}$$
es decir
$$\frac{\partial f}{\partial u}(x_{0})=\sum_{i=1}^{n}\frac{\partial f}{\partial x_{i}}(x_{0})u_{i}$$ $\square$

Ejemplo. Halle la derivada direccional de $f(x,y)=\ln(x^{2}+y^{3})$ en el punto $(1,-3)$ en la dirección $(2,-3)$

Solución. En este caso
$$u=(2,-3)~\Rightarrow~|u|=\sqrt{13}~\rightarrow~\frac{u}{|u|}=\left(\frac{2}{\sqrt{13}},\frac{-3}{\sqrt{13}}\right)$$
$$\frac{\partial f}{\partial x}(1,-3)=\frac{2x}{x^{2}+y^{3}}\left|_{(1,-3)}\right.=\frac{-2}{26}$$

$$\frac{\partial f}{\partial y}(1,-3)=\frac{3y^{2}}{x^{2}+y^{3}}\left|_{(1,-3)}\right.=\frac{-27}{26}$$

por lo tanto
$$D_{\left(\frac{2}{\sqrt{13}},\frac{-3}{\sqrt{13}}\right)}f\left(1,-3\right)=\left(\frac{-2}{26}\right)\cdot\left(\frac{2}{\sqrt{13}}\right)+\left(\frac{-27}{26}\right)\cdot \left(\frac{-3}{\sqrt{13}}\right)=\frac{77\sqrt{13}}{338}$$

El Gradiente

Sea $f:A\subset \mathbb{R}^{n}\rightarrow \mathbb{R}$ una función diferenciable en $x_{0}\in A$. Entonces el vector cuyas componentes
son las derivadas parciales de f en $x_{0}$ se le denomina Vector Gradiente
$$\left(\frac{\partial f}{\partial x_{1}}(x_{0}),\frac{\partial f}{\partial x_{2}}(x_{0}),…,\frac{\partial f}{\partial x_{n}}(x_{0}),\right)$$
y se le denota por $\nabla f$.

En el caso particular $n=2$ se tiene
$$\nabla f(x_{0})=\left(\frac{\partial f}{\partial x}(x_{0}),\frac{\partial f}{\partial y}(x_{0})\right)$$
En el caso particular $n=3$ se tiene
$$\nabla f(x_{0})=\left(\frac{\partial f}{\partial x}(x_{0}),\frac{\partial f}{\partial y}(x_{0}),\frac{\partial f}{\partial z}(x_{0})\right)$$

Ejemplo. Calcular $\nabla f$ para $f(x,y)=x^{2}y+y^{3}$
Solución. En este caso
$$\nabla f(x,y)=\left(2xy,x^{2}+3y^{2}\right)$$

Teorema 4. Si $f:\mathbb{R}^{2}\rightarrow \mathbb{R}$ es una función diferenciable en $(x_{0},y_{0})$ en la dirección del vector unitario u entonces
$$\frac{\partial f}{\partial u}(x_{0},y_{0})=\nabla f(x_{0},y_{0})\cdot u$$

Sea $u\in\mathbb{R}^{n}$ tal que $u\neq0$ y $|u|=1$ como $f$ es diferenciable en
$(x_{0},y_{0})$, se tiene que
$$f((x_{0},y_{0})+(h_{1},h_{2}))=f(x_{0},y_{0})+\frac{\partial f}{\partial x}(x_{0},y_{0})h_{1}+\frac{\partial f}{\partial y}(x_{0},y_{0})h_{2}+r(h_{1},h_{2})$$

satisface
$$\lim_{(h_{1},h_{2})\rightarrow(0,0)}\frac{r(h_{1},h_{2})}{|(h_{1},h_{2})|}=0$$
tomando $h=tu$ se tiene $|h|=|(h_{1},h_{2})|=|tu|=|t||u|=|t|$

se tiene entonces
$$f((x_{0},y_{0})+t(u))=f(x_{0},y_{0})+\frac{\partial f}{\partial x}(x_{0},y_{0})tu_{1}+\frac{\partial f}{\partial y}(x_{0},y_{0})tu_{2}+r(tu_{1},ru_{2})$$
y también
$$\frac{r(h_{1},h_{2})}{|(h_{1},h_{2})|}=\frac{r(tu_{1},ru_{2})}{|tu|}=\frac{r(tu_{1},ru_{2})}{|t||u|}=\frac{r(tu_{1},ru_{2})}{|t|}$$
tenemos entonces
$$\lim_{t\rightarrow0}\frac{r(tu_{1},ru_{2})}{|t|}=\lim_{t\rightarrow0}\frac{f((x_{0},y_{0})+t(u))-f(x_{0},y_{0})}{|t|}-\frac{\frac{\partial f}{\partial x}(x_{0},y_{0})tu_{1}}{|t|}-\frac{\frac{\partial f}{\partial y}(x_{0},y_{0})tu_{2}}{|t|}$$
es decir
$$0=\frac{\partial f}{\partial u}(x_{0},y_{0})-\frac{\partial f}{\partial x}(x_{0},y_{0})u_{1}-\frac{\partial f}{\partial y}(x_{0},y_{0})u_{2}$$
y en consecuencia

$$\frac{\partial f}{\partial u}(x_{0},y_{0})=\frac{\partial f}{\partial x}(x_{0},y_{0})u_{1}+\frac{\partial f}{\partial y}(x_{0},y_{0})u_{2}=\left(\frac{\partial f}{\partial x}(x_{0},y_{0},\frac{\partial f}{\partial y}(x_{0},y_{0}\right)\cdot\left(u_{1},u_{2}\right)=\nabla f(x_{0},y_{0})\cdot u$$ $\square$

Ejemplo. Halle la derivada direccional de $f(x,y)=\ln(x^{2}+y^{3})$ en el punto $(1,-3)$ en la dirección $(2,-3)$

Solución. En este caso

$$\frac{\partial f}{\partial x}(1,-3)=\frac{2x}{x^{2}+y^{3}}\left|_{(1,-3)}\right.=\frac{-2}{26}$$

$$\frac{\partial f}{\partial y}(1,-3)=\frac{3y^{2}}{x^{2}+y^{3}}\left|_{(1,-3)}\right.=\frac{-27}{26}$$

por lo tanto
$$\nabla f(1,-3)=\left(\frac{-2}{26},\frac{-27}{26}\right)\cdot \left(\frac{2}{\sqrt{13}},\frac{-3}{\sqrt{13}}\right)=\frac{77}{26\sqrt{13}}=\frac{77\sqrt{13}}{338}$$

Dirección de Mayor Crecimiento de una Función

Teorema 5. Supongamos que $\nabla(f(x))\neq(0,0,0)$. Entonces $\nabla(f(x))$ apunta en la dirección a lo largo de la cual f crece más rápido.

Demostración. Si v es un vector unitario, la razón de
cambio de f en la dirección v está dada por $\nabla(f(x))\cdot v$ y
$\nabla(f(x)) \cdot v$ = $|\nabla{f(x)}|~|v|\cos\Theta$ = $|\nabla{f(x)}|\cos\Theta$,
donde $\Theta$ es el ángulo entre $\nabla{f}$, $v$. Este es máximo cuando $\Theta~=~0$ y esto ocurre cuando $v$, $~\nabla{f}$ son paralelos. En otras palabras, si queremos movernos en una dirección en la cual $f$ va a crecer más rápidamente, debemos proceder en la dirección $\nabla{f(x)}$. En forma análoga, si queremos movernos en la dirección en la cual $f$ decrece más rápido, habremos de proceder
en la dirección $-\nabla{f}$.

Ejemplo. Encontrar la dirección de rapido crecimiento en $(1,1,1)$ para $\displaystyle{f(x,y,z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}}$

Solución. En este caso

$$\nabla f(1,1,1)=\left(\frac{\partial \left(\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)}{\partial x},\frac{\partial \left(\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)}{\partial y},\frac{\partial \left(\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)}{\partial z}\right)\left|_{(1,1,1)}\right.=$$

$$\left(-\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}},-\frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}},-\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)\left|_{(1,1,1)}\right.=-\frac{1}{3\sqrt{3}}\left(1,1,1\right)$$
Podemos tomar

$$u=\frac{\nabla f}{|\nabla f|}$$
en este caso
$$u=\frac{-\frac{1}{3\sqrt{3}}\left(1,1,1\right)}{\frac{1}{3}}=\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)$$

Puntos Estacionarios

Definición. Sea $f:\Omega\subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ diferenciable, a los puntos $x\in \Omega$ tales que $\nabla f(x)=0$ se les llama puntos críticos (o punto estacionario) de la función.

Ejemplo. Sea $f:\mathbb{R}^{2}\rightarrow\mathbb{R}$ dada por $f(x,y)=x^{2}-y^{2}$ hallar los puntos críticos de $f$

Solución. Se tiene que $\nabla f(x)=(2x, 2y)$ \hspace{0.5cm}$\nabla f(x)=0\Leftrightarrow(2x, 2y)=(0,0)\Leftrightarrow 2x=0$ y $2y=0\Leftrightarrow x=0$ y $y=0$ \hspace{0.5cm} $\therefore$ $(0,0)$ es el único punto crítico de $f$.

Ejemplo. Que condición se debe satisfacer para que la función $f:\mathbb{R}^{2}\rightarrow\mathbb{R}$ dada por $f(x,y)=ax^{2}+2bxy+cy^{2}+dx-ey+f$ tenga un punto crítico

$\nabla f=(2ax+2by+d, 2bx+2cy-e)$ entonces

$\nabla f=0\Leftrightarrow 2ax+2by+d=0$ y $2bx+2cy-e=0$

$\Rightarrow$ $ 2ax+2by=-d$ y $2bx+2cy=e$ se necesita que

$\Rightarrow$ $2a(2c)-(2b)^{2}\neq 0$ $\therefore$ $ac-b^{2}\neq 0$

Diferenciación, Derivadas Direccionales

Por Angélica Amellali Mercado Aguilar

Diferenciación de funciones $\mathbb{R}^{n}\rightarrow\mathbb{R}$

Sea $f:A \subseteq\mathbb{R}^{n}\rightarrow \mathbb{R}$ y $\overline{a}=(a_{1},\ldots,a_{n}) \epsilon {A}$. Se define la derivada pacial $i$-esima en $\overline{a}$ denotada $f_{x}(\overline{a})$, $D_{x}f(\bar{a})$ ó $\displaystyle\frac{\partial f}{\partial x}(\bar{a})$ de la forma $f_{x}=\displaystyle\lim_{h \rightarrow 0}\frac{f(a_{1},\ldots,a_{i}+h,\ldots.a_{n})-f(\bar{a})}{h}=\displaystyle\lim_{h \rightarrow 0}\frac{f(a+he_{i})-f(a)}{h}$ siendo
$\bar{e}_{i}=(0,\ldots,\underset{i-esimo}{1},\ldots,0)$. Si $n=2$ existen 2 derivadas parciales.

Sea $\bar{a}=(x_{0},y_{0})$ un punto del interior del dominio de $f:A \subseteq\mathbb{R}^{2}\rightarrow \mathbb{R}$ las derivas parciales de $f$ en el punto $\bar{a}$ denotada respectivamente por $f_{x}(x_{0},y_{0})$, $f_{y}(x_{0},y_{0})$
son:

$$f_{x}(x_{0},y_{0})=\displaystyle\lim_{h \rightarrow 0}\frac{f(x_{0}+h,y_{0})-f(x_{0},y_{0})}{h}$$

$$f_{y}(x_{0},y_{0})=\displaystyle\lim_{k \rightarrow 0}\frac{f(x_{0},y_{0}+k)-f(x_{0},y_{0})}{k}$$

Sea $f:I\subset\mathbb{R}^{2}\rightarrow\mathbb{R}$ dada por $f(x,y)=x^{2}y^{3}$

Calcular $f_{x},~f_{y}$

En este caso

$$f_{x}=\lim_{h\rightarrow 0}\frac{f(x+h,y)-f(x,y)}{h}$$
$$=\lim_{h\rightarrow 0}\frac{(x+h)^{2}y^{3}-x^{2}y^{3}}{h}$$
$$=\lim_{h\rightarrow 0}2xy^{3}+hy^{3}=2xy^{3}$$
$$f_{y}=\lim_{h\rightarrow 0}\frac{f(x,y+h)-f(x,y)}{h}$$
$$=\lim_{h\rightarrow 0}\frac{x^{2}(y+h)^{3}-x^{2}y^{3}}{h}$$
$$=\lim_{h\rightarrow 0}3x^{2}y^{2}+hy^{3}$$
$$=3x^{2}y^{2}$$

Ejemplo. Sea

Calculemos $f_{x}(0,0)$
$$f_{x}(0,0)=\lim_{h\rightarrow 0}\frac{f(0+h,0)-f(0,0)}{h}$$
$$=\lim_{h\rightarrow 0}\frac{\frac{h(0)}{h^{2}}}{h}$$
$$=\lim_{h\rightarrow 0}\frac{0}{h^{3}}=0$$
$$f_{y}(0,0)=\lim_{h\rightarrow 0}\frac{f(0,0+h)-f(0,0)}{h}$$
$$=\lim_{h\rightarrow 0}\frac{\frac{(0)h}{h^{2}}}{h}$$
$$=\lim_{h\rightarrow 0}\frac{0}{h^{3}}=0$$
En este caso $f_{x}=0=f_{y}$ sin embargo la función no es continua

Derivada Direccional en un punto

Sea $f:A\subseteq\mathbb{R}^{n}\rightarrow \mathbb{R}$ $x_{0}\in A$. Sea $u\in \mathbb{R}^{n}$ con $|u|=1$ la derivada direcional de $f$ en
la dirección del vector $u$, en el punto $x_{0}$ denotada por $\displaystyle{\frac{\partial f}{\partial u}}(x_{0})$, se define por
$$\displaystyle{\frac{\partial f}{\partial u}}(x_{0})=\displaystyle\lim_{h \rightarrow
0}\frac{f(x_{0}+hu)-f(x_{0})}{h}$$

Ejemplo. Sea $f(x,y)=x^{2}y$ y sea $\displaystyle{u=\left(\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}}\right)}$ por lo tanto la derivada direccional en $(x_{0},y_{0})$ es:
$$\lim_{h \rightarrow0}\frac{f\left((x_{0},y_{0})+h\left(\frac{1}{\sqrt{5}},\frac{2}{\sqrt{5}}\right)\right)-f(x_{0},y_{0})}{h}=\lim_{h \rightarrow0}\frac{\left(x_{0}+\frac{h}{\sqrt{5}}\right)^{2}\left(y_{0}+\frac{2h}{\sqrt{5}}\right)-x_{0}^{2}y_{0}}{h}=$$
$$\lim_{h \rightarrow0}\frac{\left(x_{0}^{2}+\frac{2x_{0}h}{\sqrt{5}}+\frac{h^{2}}{5}\right)\left(y_{0}+\frac{2h}{\sqrt{5}}\right)-x_{0}^{2}y_{0}}{h}=\frac{2x_{0}^{2}}{\sqrt{5}}+\frac{2x_{0}y_{0}}{\sqrt{5}}$$

Notas: 1) La derivada direccional indica la variación de la función en la dirección de $\bar{u}$.
2)Las derivadas parciales son derivadas direccionales respecto a los vectores de la base canonica.

Diferenciabilidad

$\textbf{Idea Geometrica}$

$y=f'(x_{0})(x-x_{0})+f(x_{0})$
si $x=x_{0}$
$y=f(x_{0})$
si $x=x_{0}+h$
$y=f'(x_{0})h$
$\therefore$ \qquad $r(h)=f(x_{0}+h)-f(x_{0})-f'(x_{0})h \qquad$ (Diferencial)
donde
$$\frac{r(h)}{h}=\frac{f(x_{0}+h)-f(x_{0})}{h}-f'(x_{0})$$
Debería ocurrir
$$\lim_{h\rightarrow 0}\frac{r(h)}{h}=0$$

Definición. Sea $A\subset\mathbb{R}^{2}$, un abierto, $f:A\rightarrow\mathbb{R}$ y $(x_{0},y_{0})\in A$. Se dice que f es diferenciable en $(x_{0},y_{0})$ si existen constantes $A_{1},~~A_{2}$ tal que
$$f((x_{0},y_{0})+(h_{1},h_{2}))=f(x_{0},y_{0})+A_{1}h_{1}+A_{2}h_{2}+r(h_{1},h_{2})$$donde
$$\lim_{(h_{1},h_{2})\rightarrow(0,0)}\frac{r(h_{1},h_{2})}{|(h_{1},h_{2})|}=0$$

En la definición anterior si se toma $h=(h_{1},0)$ se tiene
$$f((x_{0},y_{0})+(h_{1},0))=f(x_{0},y_{0})+A_{1}h_{1}+A_{2}(0)+r(h_{1},0)$$donde
$$\lim_{h_{1}\rightarrow0}\frac{f(x_{0}+h_{1},y_{0})-f(x_{0},y_{0})}{h_{1}}-A_{1}=\lim_{h_{1}\rightarrow0}\frac{r(h_{1},0)}{h_{1}}$$
como

$$\lim_{h_{1}\rightarrow0}\frac{r(h_{1},0)}{h_{1}}=0$$se tiene
$$\lim_{h_{1}\rightarrow0}\frac{f(x_{0}+h_{1},y_{0})-f(x_{0},y_{0})}{h_{1}}-A_{1}=0$$
en consecuencia

$$\frac{\partial f}{\partial x}=\lim_{h_{1}\rightarrow0}\frac{f(x_{0}+h_{1},y_{0})-f(x_{0},y_{0})}{h_{1}}=A_{1}$$
En la definición anterior si se toma $h=(0,h_{2})$ se tiene
$$f((x_{0},y_{0})+(0,h_{2}))=f(x_{0},y_{0})+A_{1}(0)+A_{2}h_{2}+r(0,h_{2})$$donde
$$\lim_{h_{2}\rightarrow0}\frac{f(x_{0},y_{0}+h_{2})-f(x_{0},y_{0})}{h_{2}}-A_{2}=\lim_{h_{2}\rightarrow0}\frac{r(0,h_{2})}{h_{2}}$$
como
$$\lim_{h_{2}\rightarrow0}\frac{r(0,h_{2})}{h_{2}}=0$$se tiene
$$\lim_{h_{0}\rightarrow0}\frac{f(x_{0},y_{0}+h_{2})-f(x_{0},y_{0})}{h_{2}}-A_{2}=0$$
en consecuencia

$$\frac{\partial f}{\partial y}=\lim_{h_{2}\rightarrow0}\frac{f(x_{0},y_{0}+h_{2})-f(x_{0},y_{0})}{h_{2}}=A_{2}$$


Definición. Sea $A\subset\mathbb{R}^{2}$, un abierto, $f:A\rightarrow\mathbb{R}$ y $(x_{0},y_{0})\in A$. Se dice que f es diferenciable en $(x_{0},y_{0})$ si existen las derivadas parciales $\displaystyle{\frac{\partial f}{\partial x}(x_{0},y_{0}),~~\frac{\partial f}{\partial y}}(x_{0},y_{0})$ tal que
$$f((x_{0},y_{0})+(h_{1},h_{2}))=f(x_{0},y_{0})+\frac{\partial f}{\partial x}(x_{0},y_{0})h_{1}+\frac{\partial f}{\partial y}(x_{0},y_{0})h_{2}+r(h_{1},h_{2})$$donde
$$\lim_{(h_{1},h_{2})\rightarrow(0,0)}\frac{r(h_{1},h_{2})}{|(h_{1},h_{2})|}=0$$

Más adelante

Tarea Moral

Enlaces

Continuidad, Diferenciabilidad

Por Angélica Amellali Mercado Aguilar

Proposición 1 Sea $f:\mathbb{R}^{2}\rightarrow \mathbb{R}$ tal que $$\lim_{(x,y)\rightarrow (a,b)}f(x,y)=L$$
Entonces para una función real y continua $g$ definida en un entorno da $a$ tal que $$\lim_{x\rightarrow a}g(x)=b$$ se tiene que $$\lim_{x\rightarrow a}f(x,g(x))=L$$

Demostración. Por la existencia del límite doble, dado $\epsilon>0$ existe un $\delta>0$, tal que $$|(x,y)-(a,b)|<\delta \Rightarrow |f(x,y)-L|<\epsilon.$$ Ahora $$\lim_{x\rightarrow a}g(x)=b$$ quiere decir que dado $\delta>0$ existe $\sigma>0$, con $0<\sigma<\delta$ tal que: $$|x-a|<\sigma \Rightarrow |g(x)-b|<\delta.$$ Por
tanto, si $|x-a|<\sigma$, se tiene que $|(x,g(x))-(a,b)|<\delta.$ Con lo cual, $$|f(x,g(x))-L|<\epsilon$$ $\square$

Ejemplo: Determinar si existe, el límite de la función definida por

$$f(x,y)=\left{\begin{matrix} \frac{x^{2}y}{x^{2}+y^{2}}&(x,y)\neq (0,0)\ 0&(x,y)=(0,0) \end{matrix}\right.$

Para determinar su límite podemos acercarnos por trayectorias (funciones continuas) al origen.

Pongamos $y=g(x)=0$ se tiene entonces que

$$\lim_{(x,y)\rightarrow(0,0)}f(x,y)=\lim_{(x,y)\rightarrow(0,0)}f(x,g(x))=\lim_{(x,y)\rightarrow(0,0)}f(x,0)=\lim_{x\rightarrow0}\frac{x^{2}0}{x^{2}+0^{2}}=0$$
Pongamos ahora $y=g(x)=x$ se tiene entonces que
$$\lim_{(x,y)\rightarrow(0,0)}f(x,y)=\lim_{(x,y)\rightarrow(0,0)}f(x,g(x))=\lim_{(x,x)\rightarrow(0,0)}f(x,x)=\lim_{x\rightarrow0}\frac{x^{2}x}{x^{2}+x^{2}}=\lim_{x\rightarrow0}\frac{x^{3}}{2x^{2}}=0$$
Lo anterior nos dice que si existe el límite, éste tendría que ser 0, para comprobarlo usaremos la definición, se tiene entonces que debemos hallar un $\delta>0$ tal que
$\left|\frac{x^{2}y}{x^{2}+y^{2}}\right|<\epsilon$ siempre que $|(x,y)-(0,0)|<\delta$. Observamos que
$$\left|\frac{x^{2}y}{x^{2}+y^{2}}\right|=\frac{|x^{2}||y|}{|x^{2}+y^{2}|}=\frac{|x|^{2}|y|}{|x^{2}+y^{2}|}\leq
\frac{|\overline{x}|^{2}|\overline{x}|}{|\overline{x}|^{2}}=|\overline{x}|<\delta.$$
$\therefore$ podemos tomar $\delta=\epsilon$

Ejemplo: Determinar si existe, el límite de la función definida por

Para determinar su límite podemos acercarnos por trayectorias (funciones continuas) al origen.

Pongamos $y=g(x)=x$ se tiene entonces que

$$\lim_{(x,y)\rightarrow(0,0)}f(x,y)=\lim_{(x,y)\rightarrow(0,0)}f(x,g(x))=\lim_{(x,x)\rightarrow(0,0)}f(x,x)=\lim_{x\rightarrow0}\frac{x^{2}}{x^{2}+x^{2}}=\frac{1}{2}$$

Pongamos $y=g(x)=0$ se tiene entonces que

$$\lim_{(x,y)\rightarrow(0,0)}f(x,y)=\lim_{(x,y)\rightarrow(0,0)}f(x,g(x))=\lim_{(x,0)\rightarrow(0,0)}f(x,0)=\lim_{x\rightarrow0}\frac{x (0)}{x^{2}+0^{2}}=0$$

como $\frac{1}{2}\neq 0$ entonces $\cancel{\exists}$ el límite de la función.

Continuidad de Funciones de $\mathbb{R}^{n} \rightarrow \mathbb{R}$}}$

Definición 1. Sea $f:\Omega\subset\mathbb{R}^{n} \rightarrow \mathbb{R}$, y sea $x_{0}$ un punto de acumulación de $\Omega$.Se dice que $f(x_{0})\in\mathbb{R}$ es el límite de $f$ en $x_{0}$, y se denota por: $$\displaystyle\lim_{x\rightarrow x_{0}}f(x)=f(x_{0})$$ Si dado $\varepsilon > 0$, existe $\delta > 0$ tal que $|f(x)-f(x_{0})|<\varepsilon$ cuando $x \in \Omega$, $0<|x-x_{0}|<\delta$

Ejemplo: Demostrar la continuidad en $\mathbb{R}^2$ de la función $f(x,y)=xy$.

p.d. Dado $\epsilon>0$ $\exists$ $\delta>0$ tal que $|xy-ab|\leq \epsilon$ siempre que $0<|x-a|<\delta_1$ y $0<|y-b|\leq \delta_2$ tenemos que:

$|xy-ab|
=|xy-xb+xb-ab|
\leq |x(y-b)|+|b(x-a)|
\leq \left(|x-a|+|a|\right)|y-b|+|b||x-a|\leq \left(\delta+|a|\right)\delta+|b|\delta
=\delta\underset{\underset {\text{Esta la podemos acotar}}{\searrow\ \ \ \ \ \ \ \ \ \ \ \
}}{\left(\left(\delta+|a|\right)+|b|\right)}$

Si $\delta=1$ tenemos que $\delta(1+|a|+|b|)$ y asi tomamos

$$\delta=mín \left\{ 1 , \frac{\epsilon}{1+|a|+|b|}\right\}$$

Diferenciación de funciones $\mathbb{R}^{n}\rightarrow\mathbb{R}$

Sea $f:A \subseteq\mathbb{R}^{n}\rightarrow \mathbb{R}$ y $\overline{a}=(a_{1},\ldots,a_{n})\epsilon$ $A$. Se define la derivada pacial $i$-esima en $\overline{a}$ denotada $f_{x}(\overline{a})$, $D_{x}f(\bar{a})$ ó $\displaystyle\frac{\partial f}{\partial x}(\bar{a})$ de la forma $$f_{x}=\displaystyle\lim_{h \rightarrow 0}\frac{f(a_{1},\ldots,a_{i}+h,\ldots.a_{n})-f(\bar{a})}{h}=\displaystyle\lim_{h \rightarrow 0}\frac{f(a+he_{i})-f(a)}{h}$$ siendo $\bar{e}_{i}=(0,\ldots,\underset{i-esimo}{1},\ldots,0)$.

Si $n=2$ existen 2 derivadas parciales.

Sea $\bar{a}=(x_{0},y_{0})$ un punto del interior del
dominio de $f:A \subseteq\mathbb{R}^{2}\rightarrow \mathbb{R}$
las derivas parciales de $f$ en el punto $\bar{a}$ denotada
respectivamente por $f_{x}(x_{0},y_{0})$, $f_{y}(x_{0},y_{0})$
son:

$$f_{x}(x_{0},y_{0})=\displaystyle\lim_{h \rightarrow 0}\frac{f(x_{0}+h,y_{0})-f(x_{0},y_{0})}{h}$$
$$f_{y}(x_{0},y_{0})=\displaystyle\lim_{k \rightarrow 0}\frac{f(x_{0},y_{0}+k)-f(x_{0},y_{0})}{k}$$

Ejemplo. Si $f(x,y)=x^{2}+x+1$ entonces
$f_{x}(0,0)=1$ ya que $f_{x}=\displaystyle\lim_{h \rightarrow 0}\frac{f(0+h,0)-f(0,0)}{h}=
\displaystyle\lim_{h \rightarrow 0}\frac{h^{2}+h+1-1}{h}=\displaystyle\lim_{h \rightarrow 0}\frac{h(h+1)}{h}=
\displaystyle\lim_{h \rightarrow 0}h+1 = 1$ y $f_{y}=\displaystyle\lim_{k \rightarrow 0}\frac{f(0,0+k)-f(0,0)}{k}=
\displaystyle\lim_{k \rightarrow 0}\frac{1-1}{k}=0$

Ejemplo. Si $f(x,y)=x^{2}+x+1$ entonces $f_{x}(0,0)=1$ ya que

$f_{x}=\displaystyle\lim_{h \rightarrow 0}\frac{f(0+h,0)-f(0,0)}{h}=
\displaystyle\lim_{h \rightarrow 0}\frac{h^{2}+h+1-1}{h}=\displaystyle\lim_{h \rightarrow 0}\frac{h(h+1)}{h}= \displaystyle\lim_{h \rightarrow 0}h+1 = 1$ y $f_{y}=\displaystyle\lim_{k \rightarrow 0}\frac{f(0,0+k)-f(0,0)}{k}= \displaystyle\lim_{k \rightarrow 0}\frac{1-1}{k}=0$

Observación: La derivada parcial en un punto de una función de varias variables en la derivada de la función de una variable, obtenida haciendo constante todas las variables, menos una. en consecuencia se pueden aplicar con esta interpretación, las reglas de derivación en una variable.

Las derivadas parciales en el punto $(x_{0},y_{0})$ de la función $z=f(x,y)$ representa la pendiente de las curvas intersección $C_{1}$ y $C_{2}$ de la superficie $z=f(x,y)$ con los planos $y=y_{0}$, $x=x_{0}$ respectivamente

Ejemplo. Calcular las derivadas parciales

$a)$ $f(x,y)=a\arcsin(x-y)$

$b)$ $f(t,u)=\displaystyle\frac{\cos(2tu)}{t^{2}+u^{2}}$

$c)$ $f(x,y,z)=\displaystyle\frac{xyz}{x^{2}+y^{2}+z^{2}}$

$d)$ $f(x,y)=\displaystyle\int_{0}^{\sqrt{xy}}e^{-t^{2}}dt \qquad x>0, \, y>0$

Solución.

$a)$ $f_{x}=\displaystyle\frac{x}{\sqrt{1-(x-y)^{2}}}+ \arcsin(x-y)$

$f_{y}=\displaystyle\frac{-x}{\sqrt{1-(x-y)^{2}}}$

$b)$ $f_{t}=\displaystyle\frac{-(t^{2}+u^{2})\sin(2tu)\cdot2u-\cos(2tu)2t}{(t^{2}+u^{2})^{2}}$


$f_{u}=\displaystyle\frac{(t^{2}+u^{2})-\sin(2tu)2u-\cos(2tu)2u}{(t^{2}+u^{2})^{2}}$

$c)$ $f_{x}=\displaystyle\frac{(x^{2}+y^{2}+z^{2})yz-xyz(2x)}{(x^{2}+y^{2}+z^{2})^{2}}$


$f_{y}=\displaystyle\frac{(x^{2}+y^{2}+z^{2})xz-xyz(2y)}{(x^{2}+y^{2}+z^{2})^{2}}$


$f_{z}=\displaystyle\frac{(x^{2}+y^{2}+z^{2})xy-xyz(2z)}{(x^{2}+y^{2}+z^{2})^{2}}$

$d)$ $f_{x}=\displaystyle e^{-xy}\frac{y}{2\sqrt{xy}}$


$f_{y}=\displaystyle e^{-xy}\frac{x}{2\sqrt{xy}}$

Más adelante

Tarea Moral

Enlaces