Archivo del Autor: Angélica Amellali Mercado Aguilar

El Método de los Mínimos Cuadrados.

Por Angélica Amellali Mercado Aguilar

El método de los mínimos cuadrados

El método de mínimos cuadrados se aplica para ajustar rectas a una serie de datos presentados como punto en el plano.
Suponagamos que se tienen los siguientes datos para las variables $x$,$y$.

Esta situación se puede presentar en estudios experimentales, donde se estudia la variación de cierta magnitud x en función de otra magnitud y. Teóricamente es de esperarse que la relación entre estas variables sea lineal, del tipo
$$y=mx+b$$
El método de mínimos cuadrados nos proporciona un criterio con el cual podremos obtener la mejor recta que representa a los puntos dados. Se desearía tener
$$y_{i}=mx_{i}+b$$
para todos los puntos $(x_{i},y_{i})$ de $i=1,…,n$. Sin embargo, como en general
$$y_{i}\neq mx_{i}+b$$
se pide que la suma de los cuadrados de las diferencias (las desviaciones)
$$y_{i}-(mx_{i}+b)$$
sea la menor posible.

Se requiere
$$S=(y_{1}-(mx_{1}+b))^{2}+(y_{2}-(mx_{2}+b))^{2}+\cdots+(y_{n}-(mx_{n}+b))^{2}$$
$$=\sum_{i=1}^{n}(y_{i}-(mx_{i}+b))^{2}$$
sea lo más pequeña posible. Los valores de m y b que cumplan con esta propiedad, determinan la recta
$$y=mx+b$$
que mejor representa el comportamiento lineal de los puntos $(x_{i},y_{i})$

Consideremos entonces la función f de las variables m y b dada por
$$f(m,b)=\sum_{i=1}^{n}(y_{i}-(mx_{i}+b))^{2}$$
donde los puntos críticos de esta función se obtienen al resolver el sistema
$$\frac{\partial f}{\partial m}=\sum_{i=1}^{n}2(y_{i}-(mx_{i}+b))(-x_{i})=2\sum_{i=1}^{n}x_{i}(y_{i}-(mx_{i}+b))=0$$
$$\frac{\partial f}{\partial b}=\sum_{i=1}^{n}2(y_{i}-(mx_{i}+b))(-1)=-2\sum_{i=1}^{n}(y_{i}-(mx_{i}+b))=0$$
De la segunda ecuación obtenemos
$$\sum_{i=1}^{n}y_{i}-m\sum_{i=1}^{n}x_{i}-\sum_{i=1}^{n}b=0$$
de donde
$$b=\frac{1}{n}\sum_{i=1}^{n}y_{i}-m\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right)$$
Llamemos
$$\overline{x}=\frac{1}{n}\sum_{i=1}^{n}x_{i}$$
$$\overline{y}=\frac{1}{n}\sum_{i=1}^{n}y_{i}$$
que son las medias aritméticas de los valores $x_{i},~y_{i}$ respectivamente. Entonces
$$b=\overline{y}-m\overline{x}$$

sustituyendo en la ecuación
$$\frac{\partial f}{\partial m}=0$$
nos queda
$$\sum_{i=1}^{n}x_{i}(y_{i}-mx_{i}-(\overline{y}-m\overline{x}))=0$$
de donde se obtiene
$$m=\frac{\sum_{i=1}^{n}x_{i}(y_{i}-\overline{y})}{\sum_{i=1}^{n}x_{i}(x_{i}-\overline{x})}$$
En resumen, la función
$$f(m,b)=\sum_{i=1}^{n}(y_{i}-(mx_{i}+b))^{2}$$
tiene un único punto crítico para
$$m=\frac{\sum_{i=1}^{n}x_{i}(y_{i}-\overline{y})}{\sum_{i=1}^{n}x_{i}(x_{i}-\overline{x})},~~~b=\overline{y}-m\overline{x}$$
Ahora vamos a verificar que en dicho punto crítico se alcanza un mínimo local, para lo cual recurrimos a nuestro criterio de la segunda derivada, en este caso
$$\frac{\partial^{2} f}{\partial m^{2}}=-2\sum_{i=1}^{n}-x_{i}^{2}=2\sum_{i=1}^{n}x_{i}^{2}$$
$$\frac{\partial^{2} f}{\partial m \partial b}=-\sum_{i=1}^{n}-x_{i}=2\sum_{i=1}^{n}x_{i}$$
$$\frac{\partial^{2} f}{\partial b^{2}}=-2\sum_{i=1}^{n}(-1)=2n$$

Tenemos que
$$\frac{\partial^{2} f}{\partial m^{2}}>0$$
Por otro lado
$$\left(2\sum_{i=1}^{n}x_{i}\right)^{2}-\left(2\sum_{i=1}^{n}x_{i}^{2}\right)(2n)<0$$
esta desigualdad es equivalente a
$$\left(\sum_{i=1}^{n}x_{i}\right)^{2}<n\sum_{i=1}^{n}x_{i}$$
La cual no es mas que la desigualdad de Cauchy-Schwarz aplicada a los vectores $(1,1,…,1)$ y $(x_{1},x_{2},…,x_{n})$ de $\mathbb{R}^{n}$. Por lo que la función f posee un mínimo local en el punto punto crítico dado.

Ejemplo. Se obtuvieron experimentalmente los siguientes valores de las variables x, y, los cuales se sabe que guardan entre sí una relación lineal

Vamos a encontrar la recta que mejor se ajusta a estos datos, según el método de mínimos cuadrados se tiene
$$\overline{x}=\frac{1+2+3+4}{2}=2.5$$
$$\overline{y}=\frac{1.4+1.1+0.7+0.1}{4}=0.825$$
Aplicando la fórmula obtenida para m y b obtenemos
$$m=\frac{\sum_{i=1}^{n}x_{i}(y_{i}-\overline{y})}{\sum_{i=1}^{n}x_{i}(x_{i}-\overline{x})}=\frac{1(1.4-0.825)+2(1.1-0.825)+3(0.7-0.825)+4(0.1-0.825)}{1(1-2.5)+2(2-2.5)+3(3-2.5)+4(4-2.5)}$$
$$=\frac{-2.15}{5}=-0.43$$
$$b=\overline{y}-m\overline{x}=0.825-(0.43)(2.5)=1.9$$

por lo que la recta que mejor ajusta los datos proporcionados

La suma de las diferencias de la recta y real con la y predicha por la ecuación obtenida es
$$-0.07+0.06+0.09-0.08=0$$
Es decir nuestra recta efectivamente compensa los puntos que quedaron por encima con puntos que quedaron por debajo. Gráficamente esto se ve.

La mejor recta que ajusta los datos del ejemplo.

Multiplicadores de Lagrange

Por Angélica Amellali Mercado Aguilar

Introducción

Para entender el método de los multiplicadores de Lagrange ilustraremos las ideas con un ejemplo.

Ejemplo. Sea $f:\mathbb{R}^{2}\rightarrow\mathbb{R}$ dada por
$$f(x,y)=(x+1)^{2}+y^{2}$$
En este caso vamos a encontrar los puntos críticos

$$\nabla f(x,y)=(2(x+1),2y)~\Rightarrow~\nabla f(x,y)=(0,0)~\Leftrightarrow~\begin{matrix}2(x+1)=0\\2y=0\end{matrix}~\Leftrightarrow~\begin{matrix}x=-1\\y=0\end{matrix}$$
por lo tanto el único punto crítico es $(-1,0)$ para ver si es máximo o mínimo nos fijamos que en la función
$$f(x,y)=(x+1)^{2}+y^{2}~\Rightarrow~f(x,y)\geq 0$$
en este caso cuando evaluamos en el punto crítico $(-1,0)$ se tiene
$$f(-1,0)=(-1+1)^{2}+0^{2}=0$$

por lo que podemos decir que el punto $(-1,0)$ es un punto mínimo.

La pregunta ahora es si la función alcanza un valor máximo, para ello debemos restringir el dominio de la función, en este caso al conjunto
$$\left\{(x,y)\in \mathbb{R}^{2}~|~|(x,y)|\leq 2\right\}$$

en la parte roja se calculo que $f$ alcanzaba un valor mínimo en $(-1,0)$ falta ver lo que ocurre en la frontera del conjunto, es decir en la parte azul. Esta parte se puede parametrizar.

donde $\alpha:[0,2\pi]\rightarrow\mathbb{R}^{2}$
Podemos entonces definir la función $g(t)=f\circ \alpha~(t)$ en este caso
$$g(t)=f\circ \alpha (t)=f(\alpha (t))$$
$$=f(2\cos~t,2 sen~t)$$
$$=(2\cos~t+1)^{2}+4 sen^{2}~t$$
$$=4\cos~t+5$$
lo que haremos ahora es encontrar los valores máximos y mínimos sobre g, en este caso

$$g'(t)=-4 sen t$$
por lo que
$$g'(t)=0~\Leftrightarrow~-4 sen t=0~\Leftrightarrow~t=0,~t=\pi,~t=2\pi$$
evaluando en g se tiene

$$g(0)=4\cos^{2}(0)+5$$
$$=9$$
$$g(\pi)=4\cos\pi+5$$
$$=1$$
$$g(2\pi)=4\cos^{2}(2\pi)+5$$
$$=9$$
se tiene entonces que el máximo valor se alcanza en $t=0$, $t=2\pi$ y el mínimo valor se alcanza en $t=\pi$
Ahora sobre la frontera se tiene

$$\alpha(0)=(2\cos~0,2 sen~0)=(2,0)$$
$$\alpha(\pi)=(2\cos\pi, sen\pi)=(-2,0)$$
$$\alpha(2\pi)=(2\cos~2\pi, sen~2\pi)=(2,0)$$
por lo tanto tenenmos que el valor mínimo de f sobre el conjunto es 1 y que este valor se alcanza en $(-2,0)$

y su valor máximo sobre el conjunto es 9 y que este valor se alcanza en $(-2,0)$.\Por lo tanto comparando los valores de f en los puntos críticos que estan en el interior del conjunto
$$\left\{(x,y)\in\mathbb{R}^{2}~|~||(x,y)||=2\right\}$$
junto con los valores en la frontera de dicho conjunto, concluimos que f alcanza sus valores máximo y mínimo en los puntos $(-1,0)$ y $(2,0)$

El conjunto
$$\left\{(x,y)\in \mathbb{R}^{2}~|~||(x,y)||\leq 2\right\}$$
se puede considerarse como el conjunto de nivel de una función $g:\mathbb{R}^{2}\rightarrow\mathbb{R}$ en el caso de nuestro ejemplo la función g es
$$g(x,y)=x^{2}+y^{2}$$
Vamos a considerar los conjuntos de nivel de la función
$$f(x,y)=(x+1)^{2}+y^{2}$$
para $c=1$ y $c=9$ (que son los valores extremos que alcanzo f sobre el nivel 4 de g)

Observamos que estos conjuntos de nivel $N_{1}(f)$ y $N_{9}(f)$ se intersectan tangencialmente con $N_{4}(g)$ en los puntos $(-2,0)$ y $(2,0)$ que son justo los puntos en donde f alcanza sus valores extremos sobre la frontera del conjunto.Recordando que el gradiente de una función en un punto $x_{0}$ es ortogonal al conjunto de nivel que contiene a este punto, concluimos que los vectores
$$\nabla f(-2,0), \nabla g(-2,0)$$

deben de ser paralelos y lo mismo para

$$\nabla f(2,0),~\nabla g(2,0)$$
vamos averificar
$$\left(\begin{matrix}\nabla f(-2,0)=(-2,0)\\ \nabla g(-2,0)=(-4,0)\end{matrix}\right)~\Rightarrow~\nabla f(-2,0)=\frac{1}{2}\nabla g(-2,0)$$
$$\left(\begin{matrix}\nabla f(2,0)=(6,0)\\ \nabla g(2,0)=(4,0)\end{matrix}\right)~\Rightarrow~\nabla f(2,0)=\frac{3}{2}\nabla g(2,0)$$

Conjeturamos lo siguiente:
Si tenemos una función $f$ para la cual queremos calcular sus valores extremos sobre un conjunto de nivel de una función $g$ y localizar los puntos de este conjunto en los cuales alcanza estos valores extremos, es suficiente con encontrar los puntos $\hat{x}\in N_{c}(g)$ en los cuales se satisface que

$$\nabla f(\hat{x})=\lambda\nabla g(\hat{x})$$

Teorema 1. Método de los multiplicadores de lagrange.

Sean $f:u\subset \mathbb{R}^n\rightarrow \mathbb{R}$ y $g: u\subset \mathbb{R}^n\rightarrow \mathbb{R}$ funciones $C^1$ con valores reales dados. Sean $x_0 \in u$ y $g(x_0)=c$, y sea $S$ el conjunto de nivel de $g$ con valor $c$. Suponer $\nabla g(x_0)\neq 0$. Si $f|_s$ (f restringida a s) tiene un máximo o un mínimo local en $S$, en $x_0$, entonces existe un número real $\lambda$ tal que $\nabla f(x_0)=\lambda\nabla g(x_0)$.

Demostración. Para $n=3$ el espacio tangente o plano tangente de $S$ en $x_0$ es el
espacio ortogonal a $\nabla g(x_0)$ y para $n$ arbitraria podemos dar la misma definición de espacio tangente de $S$ en $x_0$. Esta definición se puede motivar al considerar tangentes a trayectorias $c(t)$ que estan en $s$, como sigue: si $c(t)$ es una trayectoria en $S$ y $c(0)=x_0$, entonces $c'(0)$ es un vector tangente a $S$ en $x_0$, pero
$$\frac{dg(c(t))}{dt}=\frac{d}{dt}(c)=0$$
Por otro lado usando regla de la cadena
$$\left.\frac{d}{dt}g(c(t))\right|{t=0}=\nabla g(x_0)\cdot c'(0)$$

de manera que $\nabla g(x_0)\cdot c'(0)=0$, esto es, $c'(0)$ es ortogonal a $\nabla g(x_0)$. Si $f|_s$ tiene un máximo en $x_0$, entonces $f(c(t))$ tiene un máximo en $t=0$. Por cálculo de una variable, $\displaystyle\left.\frac{df(c(t))}{dt}\right|{t=0}=0$. Entonces por regla de la cadena

$$0=\displaystyle\left.\frac{df(c(t))}{dt}\right|_{t=0}=\nabla f(x_0)\cdot c'(0)$$
Asi, $\nabla f(x_0)$ es perpendicular a la tangente de toda curva en $S$ y entonces tambien es perpendicular al espacio tangente completo de $S$ en $x_0$. Como el espacio perpendicular a este espacio tangente es una recta, $\nabla f(x_0)$ y $\nabla g(x_0)$ son paralelos. Como $\nabla g(x_0)\neq 0$, se deduce que $\nabla f(x_0)$ es multiplo de $\nabla g(x_0)$. $\square$

Ejemplo. Use el método de los multiplicadores de Lagrange para encontrar los valores extremos de la función $f:\mathbb{R}^{2}\rightarrow\mathbb{R}$ dada por
$$f(x,y)=2x+3y$$ sobre la restricción
$$x^{2}+y^{2}=4$$

Solución. En este caso la restricción la vemos como el conjunto de nivel cero de la función
$$g(x,y)=x^{2}+y^{2}-4$$
y tenemos entonces que
$$\left(\begin{matrix}\nabla f=(2,3)\\ \nabla g=(2x,2y)\end{matrix}\right)~\Rightarrow~(2,3)=\lambda (2x,2y)$$
tenemos el sistema

$$\left(\begin{matrix}2=2 \lambda x\\ 3= \lambda 2y \end{matrix}\right)~\Rightarrow~\left(\begin{matrix}\lambda=\frac{1}{x}\\ \lambda =\frac{3}{2}y \end{matrix}\right)~\Rightarrow~\frac{1}{x}=\frac{3}{2}y~\Rightarrow~y=\frac{3}{2}x$$
dicho valor se sustituye en la restricción

$$x^{2}+\left(\frac{3}{2}x\right)^{2}=4~\Rightarrow~x^{2}+\frac{9}{4}x^{2}=4~\Rightarrow~\frac{13}{4}x^{2}=4~\Rightarrow~13x^{2}=16~\Rightarrow~x^{2}=\frac{16}{13}~\Rightarrow~|x|=\frac{4}{\sqrt{13}}$$
por lo que
$$\left(\begin{matrix}y=\frac{3}{2}(\frac{4}{\sqrt{13}})=\frac{6}{\sqrt{13}}\\y=-\frac{3}{2}(\frac{4}{\sqrt{13}})=-\frac{6}{\sqrt{13}} \end{matrix}\right)$$
evaluando en nuestra función

El método de Lagrange se puede utilizar cuando hay más de una ecuación de restricción, pero se debe añadir otro multiplicador por cada restricción adicional. Si se requiere hallar los valores extremos de $f(x,y,z)$ sujetos a las restricciones $g(x,y,z)=0$ y $h(x,y,z)=0$ entonces la condición de Lagrange es
$$\nabla f=\lambda\nabla g+\mu \nabla h$$
sujeto a
$$g(x,y,z)=0$$
$$h(x,y,z)=0$$

Ejemplo. La intersección del plano
$$x+\frac{1}{2}y+\frac{1}{3}z=0$$
con la esfera
$$x^{2}+y^{2}+z^{2}=1$$ es un circulo. Halle el punto sobre este círculo con coordenada $x$ máxima
$\small{Solución}$ Se requiere maximizar la función
$$f(x,y,z)=x$$
sujeta a
$$x+\frac{1}{2}y+\frac{1}{3}z=0,~~~x^{2}+y^{2}+z^{2}=1$$
tenemos entonces
$$\left(\begin{matrix}\nabla f=(1,0,0)\\ \nabla g=\left(1,\frac{1}{2},\frac{1}{3} \right)\\ \nabla h=\left(2x,2y,2z \right) \end{matrix}\right)~\Rightarrow~(1,0,0)=\lambda \left(1,\frac{1}{2},\frac{1}{3} \right)+\mu (2x,2y,2z)$$

es decir
$$\begin{matrix}\lambda+\mu 2x=1\\ \frac{1}{2}\lambda+\mu 2y=0\\ \frac{1}{3}\lambda+\mu 2z=0 \end{matrix}~\Rightarrow~\begin{matrix}\mu=\frac{1-\lambda}{2x}\\ \lambda=-4\mu y\\ \lambda=-6\mu z\end{matrix}$$
las dos últimas nos llevan a
$$-4\mu y=-6\mu z~\Rightarrow~y=\frac{3}{2}z$$
este valor se sustituye en la primer restricción (plano)
$$x+\frac{1}{2}\left(\frac{3}{2}z\right)+\frac{1}{3}z=0~\Rightarrow~x=-\frac{13}{12}z$$
ambos valores se sustituyen en la segunda restricción (esfera)

$$\left(-\frac{13}{12}z\right)^{2}+\left(\frac{3}{2}z\right)^{2}+z^{2}=1~\Rightarrow~z=\pm\frac{12}{7\sqrt{13}}$$
por lo que los valores de $x,y$ son
$$x=\pm\frac{\sqrt{13}}{7}$$
$$y=\pm\frac{18}{7\sqrt{13}}$$
Tenemos entonces los puntos
$$P=\left(-\frac{\sqrt{13}}{7},\frac{18}{7\sqrt{13}},\frac{12}{7\sqrt{13}}\right),~~Q=\left(\frac{\sqrt{13}}{7},-\frac{18}{7\sqrt{13}},-\frac{12}{7\sqrt{13}}\right)$$
donde $Q$ es el punto con mayor coordenada $x$.

Continuación extremos locales.

Por Angélica Amellali Mercado Aguilar

Introducción

Extremos Locales parte 2

Entre las caracteristicas geometricas básicas de la gráficas de una
función estan sus puntos extremos, en los cuales la función alcanza
sus valores mayor y menor.

Definición 1. Si $f:u\subset \mathbb{R}^n \rightarrow
\mathbb{R}$ es una función escalar, dado un punto $x_0 \in u$
se llama mínimo local de $f$ si existe una vecindad $v$ de $x_0$ tal que $\forall x \in v$ , $f(x)>f(x_0)$. De manera analoga, $x_0 \in u$ es un máximo local si existe una vecindad $v$ de $x_0$ tal que $f(x)< f(x_0)$, $\forall \quad x \in v$. El punto $x_0 \in u$ es un extremo local o relativo, si es un mínimo local o máximo local.

Teorema 1. $\textcolor{Red}{\textbf{Criterio de la primera derivada}}$ Si $u \in \mathbb{R}$ es abierto, la función $f:u\subset \mathbb{R}^n \rightarrow \mathbb{R}$ es diferenciable y $x_0 \in u$ es un extremo local entonces $\nabla f(x_0)=0$, esto es $x_0$ es un punto crítico de $f$.

Demostración. Supongamos que $t$ alcanza su máximo local en $x_0$. Entonces para cualquier $h \in \mathbb{R}^n$ la función $g(t)=f(x_0+th)$ tiene un máximo local en $t=0$. Asi, del cálculo de una variable $g'(0)=0$ ya que como $g(0)$ es máximo local, $g(t)\leq g(0)$ para $t > 0$ pequeño

$$\therefore \quad g'(0)=\displaystyle\lim_{t \rightarrow t_0^+}\frac{g(t)-g(0)}{t}=0$$

Análogamente para $t< 0$ pequeño tomamos

$$g'(0)=\displaystyle\lim_{t \rightarrow t_0^-}\frac{g(t)-g(0)}{t}=0$$

Ahora por regla de la cadena $$g'(0)=\frac{\partial f}{\partial x_{1}}(x_{0})h_{1}+\frac{\partial f}{\partial x_{2}}(x_{0})h_{2}+\cdots+\frac{\partial f}{\partial x_{n}}(x_{0})h_{0}=\nabla f(x_{0})\cdot h$$
Así $\nabla f(x_{0})\cdot h=0 \quad \forall \: h$ de modo que $\nabla f(x_{0})=0$. En resumen si $x_0$ es un extremo local, entonces $\displaystyle\frac{\partial f}{\partial x_i}(x_0)=0 \quad \forall~i=1,\ldots,n$. En otras palabras $\nabla f(x_0)=0$.

Ejemplo. Hallar los máximos y mínimos de la función $f:\mathbb{R}^2 \rightarrow \mathbb{R}$, definida por $$f(x,y)=x^2+y^2-2x-6y+14$$

Solución. Debemos identificar los puntos críticos de $f$ resolviendo $\displaystyle{\frac{\partial f}{\partial x}=0}$, $\displaystyle{\frac{\partial f}{\partial y}=0}$ para $x,y$, $$2x-2=0~~~2y-6=0$$ De modo que el punto crítico es $(1,3)$. Como $$f(x,y)=\left(x^{2}-2x+1\right)+\left(y^{2}-6y+9\right)+4=\left(x-1\right)^{2}+\left(y-3\right)^{2}+4$$
tenemos que $f(x,y)\geq 4$ por lo tanto en $(1,3)$ f alcanza un mínimo relativo.

Ejemplo. Considerar la función $f:\mathbb{R}^2 \rightarrow \mathbb{R}$,
$f(x,y)=4-x^2-y^2$ entonces $\displaystyle{\frac{\partial f}{\partial x}=-2x}$, $\displaystyle{\frac{\partial f}{\partial y}=-2y}$. $f$ solo tiene un punto crítico en el origen, donde el valor de $f$ es 4. Como $$f(x,y)=4-(x^{2}+y^{2})$$
tenemos que $f(x,y)\leq 4$ por lo tanto en $(0,0)$ f alcanza un máximo relativo.

Ejemplo. En el siguiente ejemplo mostramos que no todo punto critico es un valor extremo\Sea $f(x,y)=x^{2}y+y^{2}x$ tenemos que sus puntos criticos son
$$\frac{\partial f}{\partial x}=2xy+y^{2}~~~\frac{\partial f}{\partial y}=2xy+x^{2}=0$$
por lo tanto

$$\left(\begin{matrix}2xy+y^{2}=0\\2xy+x^{2}=0\end{matrix}\right)\Leftrightarrow\left(\begin{matrix}x=y\\x=-y\end{matrix}\right)$$

tomando $x=-y$ tenemos que
$$2xy+y^{2}=0~\Rightarrow~-2y^{2}+y^{2}=0~\Rightarrow~-y^{2}=0\Rightarrow~y=0~\Rightarrow~x=0$$
tomando $x=y$ tenemos que
$$2xy+y^{2}=0~\Rightarrow~2y^{2}+y^{2}=0~\Rightarrow~-3y^{2}=0\Rightarrow~y=0~\Rightarrow~x=0$$
por lo tanto $(0,0)$ es el único punto critico.

Ahora bien para $f(x,y)$ tomamos $x=y$
$$f(x,x)=2x^{3}$$
la cual es ($<0$ si $x<0$) y ($>0$ si $x>0$) por lo tanto el punto critico $(0,0)$ no es ni máximo ni mínimo local de $f$

Ahora bien para $f(x,y)$ tomamos $x=-y$
$$f(x,-x)=0~~~\forall x$$
por lo tanto el punto critico $(0,0)$ no es ni máximo ni mínimo local de $f$

Para el caso de funciones $f:\mathbb{R}^{3}\rightarrow\mathbb{R}$ tenemos que recordando un poco de la expresión de taylor
$$f(x,y)=f(x_{0},y_{0})+\left(\frac{\partial f}{\partial
x}\right){p}(x-x_{0})+\left(\frac{\partial f}{\partial
y}\right){p}(y-y_{0})+\left(\frac{\partial f}{\partial
z}\right){p}(z-z_{0})+$$

$$\textcolor{Red}{\frac{1}{2!}\left(\frac{\partial^{2}f}{\partial
x^{2}}{p}(x-x_{0})^{2}+2\frac{\partial^{2}f}{\partial x \partial
y}{p}(x-x_{0})(y-y_{0})+\frac{\partial^{2}f}{\partial
y^{2}}{p}(y-y_{0})^{2}+2\frac{\partial^{2}f}{\partial
x\partial z}{p}(z-z_{0})(x-x_{0})+2\frac{\partial^{2}f}{\partial
y\partial z}{p}(z-z_{0})(y-y_{0})\right)}$$
$$\textcolor{Red}{+\frac{\partial^{2}f}{\partial z^{2}}_{p}(z-z_{0})}$$

Haciendo $x-x_{0}=h_{1},y-y_{0}=h_{2},z-z_{0}=h_{3}$ podemos escribir el término rojo de la siguiente manera

$$\frac{1}{2!}\left(\frac{\partial^{2}f}{\partial x^{2}}h_{1}^{2}+2\frac{\partial^{2}f}{\partial x\partial y}h_{1}h_{2}+\frac{\partial^{2}f}{\partial y^{2}}h_{2}^{2}+2\frac{\partial^{2}f}{\partial x\partial z}h_{3}h_{1}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}\right)$$

y también se puede ver como producto de matrices
$$\frac{1}{2!}(h_{1}~h_{2}~h_{3})\left(\begin{matrix}\frac{\partial^{2}f}{\partial
x^{2}}&\frac{\partial^{2}f}{\partial
y\partial x}&\frac{\partial^{2}f}{\partial
z\partial x}\\\frac{\partial^{2}f}{\partial
x\partial y}&\frac{\partial^{2}f}{\partial
y^{2}}&\frac{\partial^{2}f}{\partial
z\partial y}\\\frac{\partial^{2}f}{\partial
x\partial z}&\frac{\partial^{2}f}{\partial
y\partial z}&\frac{\partial^{2}f}{\partial
z^{2}}\end{matrix}\right)_{p}\left(\begin{matrix}h{1}\\h_{2}\\h_{3}\end{matrix}\right)$$

Si $(x_{0},y_{0},z_{0})$ es un punto critico de la función entonces en la expresión de Taylor
$$f(x,y)=f(x_{0},y_{0})+\left(\frac{\partial f}{\partial
x}\right)_{p}(x-x_{0})+\left(\frac{\partial f}{\partial
y}\right)_{p}(y-y_{0})+\left(\frac{\partial f}{\partial
z}\right){p}(z-z_{0})$$

$$\textcolor{Red}{\frac{1}{2!}\left(\frac{\partial^{2}f}{\partial
x^{2}}_{p}(x-x_{0})^{2}+2\frac{\partial^{2}f}{\partial x \partial
y}_{p}(x-x_{0})(y-y_{0})+\frac{\partial^{2}f}{\partial
y^{2}}_{p}(y-y_{0})^{2}+2\frac{\partial^{2}f}{\partial
x\partial z}_{p}(z-z_{0})(x-x_{0})+2\frac{\partial^{2}f}{\partial
y\partial z}_{p}(z-z_{0})(y-y_{0})\right)}$$

$$\textcolor{Red}{+\frac{\partial^{2}f}{\partial
z^{2}}_{p}(z-z_{0})(x-x_{0})}$$

El término
$$\frac{\partial f}{\partial x}{p}(x-x{0})+\frac{\partial f}{\partial y}{p}(y-y{0})+\frac{\partial f}{\partial z}{p}(z-z{0})=0$$
y por lo tanto
$$f(x,y)-f(x_{0},y_{0})=\frac{1}{2!}(h_{1}~h_{2}~h_{3})\left(\begin{matrix}\frac{\partial^{2}f}{\partial
x^{2}}&\frac{\partial^{2}f}{\partial
y\partial x}&\frac{\partial^{2}f}{\partial
z\partial x}\\\frac{\partial^{2}f}{\partial
x\partial y}&\frac{\partial^{2}f}{\partial
y^{2}}&\frac{\partial^{2}f}{\partial
z\partial y}\\\frac{\partial^{2}f}{\partial
x\partial z}&\frac{\partial^{2}f}{\partial
y\partial z}&\frac{\partial^{2}f}{\partial
z^{2}}\end{matrix}\right)_{p}\left(\begin{matrix}h{1}\\h_{2}\\h_{3}\end{matrix}\right)$$

vamos a determinar el signo de la forma
$$Q(h)=\frac{1}{2!}(h_{1}~h_{2}~h_{3})\left(\begin{matrix}\frac{\partial^{2}f}{\partial
x^{2}}&\frac{\partial^{2}f}{\partial
y\partial x}&\frac{\partial^{2}f}{\partial
z\partial x}\\\frac{\partial^{2}f}{\partial
x\partial y}&\frac{\partial^{2}f}{\partial
y^{2}}&\frac{\partial^{2}f}{\partial
z\partial y}\\\frac{\partial^{2}f}{\partial
x\partial z}&\frac{\partial^{2}f}{\partial
y\partial z}&\frac{\partial^{2}f}{\partial
z^{2}}\end{matrix}\right)_{p}\left(\begin{matrix}h{1}\\h_{2}\\h_{3}\end{matrix}\right)$$

vamos a trabajar sin el término $\displaystyle{\frac{1}{2!}}$ que no afectara al signo de la expresión, tenemos entonces

$$Q(h)=(h_{1}~h_{2}~h_{3})\left(\begin{matrix}\frac{\partial^{2}f}{\partial
x^{2}}&\frac{\partial^{2}f}{\partial
y\partial x}&\frac{\partial^{2}f}{\partial
z\partial x}\\\frac{\partial^{2}f}{\partial
x\partial y}&\frac{\partial^{2}f}{\partial
y^{2}}&\frac{\partial ^{2}f}{\partial
z\partial y}\\\frac{\partial^{2}f}{\partial
x\partial z}&\frac{\partial^{2}f}{\partial
y\partial z}&\frac{\partial^{2}f}{\partial
z^{2}}\end{matrix}\right)_{p}\left(\begin{matrix}h{1}\\h_{2}\\h_{3}\end{matrix}\right)=\textcolor{Red}{\frac{\partial^{2}f}{\partial x^{2}}h_{1}^{2}+2\frac{\partial^{2}f}{\partial x\partial y}h_{1}h_{2}+\frac{\partial^{2}f}{\partial y^{2}}h_{2}^{2}}+2\frac{\partial^{2}f}{\partial x\partial z}h_{3}h_{1}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$
$$=\textcolor{Red}{\frac{\partial^{2}f}{\partial x^{2}}\left(h_{1}+\frac{\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}h_{2}\right)^{2}+\left(\frac{\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}}\right)h_{2}^{2}}+2\frac{\partial^{2}f}{\partial x\partial z}h_{3}h_{1}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$

hacemos $\displaystyle{b_{1}=\frac{\partial^{2}f}{\partial x^{2}},h_{1}’=\left(h_{1}+\frac{\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}h_{2}\right),b_{2}=\frac{\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}},~~h_{2}’=h_{2}}$ y obtenemos

$$=b_{1}h_{1}’^{2}+b_{2}h_{2}’^{2}+2\frac{\partial^{2}f}{\partial x\partial z}h_{3}h_{1}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$

que podemos escribir
$$=b_{1}h_{1}’^{2}+b_{2}h_{2}’^{2}+2\frac{\partial^{2}f}{\partial x\partial z}\left(h_{1}+\frac{\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}h_{2}-\frac{\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}h_{2}\right)h_{3}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$

$$=b_{1}h_{1}’^{2}+b_{2}h_{2}’^{2}+2\frac{\partial^{2}f}{\partial x\partial z}\left(h_{1}’-\frac{\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}h_{2}’\right)h_{3}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$

$$=b_{1}h_{1}’^{2}+b_{2}h_{2}’^{2}+2\frac{\partial^{2}f}{\partial x\partial z}h_{1}’h_{3}+\left(2\frac{\partial^{2}f}{\partial y\partial z}-\frac{2\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}\right)h_{2}’h_{3}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$

hacemos
$$2b_{23}=2\frac{\partial^{2}f}{\partial y\partial z}-\frac{2\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}$$y obtenemos
$$=b_{1}h_{1}’^{2}+b_{2}h_{2}’^{2}+2\frac{\partial^{2}f}{\partial x\partial z}h_{1}’h_{3}+2b_{23}h_{2}’h_{3}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$
que se puede escribir

$$=b_{1}\left(h_{1}’^{2}+2\frac{\frac{\partial^{2}f}{\partial x\partial z}}{b_{1}}h_{1}’h_{3}+\left(\frac{\frac{\partial^{2}f}{\partial x\partial z}h_{3}}{b_{1}}\right)^{2}\right)+b_{2}\left(h_{2}’^{2}+2\frac{b_{23}}{b_{2}}h_{2}’h_{3}+\left(\frac{b_{23}}{b_{2}}h_{3}\right)^{2}\right)+\left(\frac{\partial^{2}f}{\partial z^{2}}-\frac{\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{b_{1}}-\frac{b_{23}^{2}}{b_{2}}\right)h_{3}^{2}$$

hacemos
$$b_{3}=\frac{\partial^{2}f}{\partial z^{2}}-\frac{\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{b_{1}}-\frac{b_{23}^{2}}{b_{2}}$$
y obtenemos

$$=b_{1}\left(h_{1}’^{2}+2\frac{\frac{\partial^{2}f}{\partial x\partial z}}{b_{1}}h_{1}’h_{3}+\left(\frac{\frac{\partial^{2}f}{\partial x\partial z}h_{3}}{b_{1}}\right)^{2}\right)+b_{2}\left(h_{2}’^{2}+2\frac{b_{23}}{b_{2}}h_{2}’h_{3}+\left(\frac{b_{23}}{b_{2}}h_{3}\right)^{2}\right)+b_{3}h_{3}^{2}$$
$$=b_{1}\left(h_{1}’+\frac{\frac{\partial^{2}f}{\partial x\partial z}}{b_{1}}h_{3}\right)^{2}+b_{2}\left(h_{2}’+\frac{b_{23}}{b_{2}}h_{3}\right)^{2}+b_{3}h_{3}^{2}$$
esta última expresión será positiva si y solo si $b_{1}>0~~b_{2}>0$ y $b_{3}>0$ en clases pasadas vimos los dos primeros, veamos ahora que $$b_{3}=\frac{\partial^{2}f}{\partial z^{2}}-\frac{\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{b_{1}}-\frac{b_{23}^{2}}{b_{2}}>0$$
tenemos entonces que

$$\frac{\partial^{2}f}{\partial z^{2}}-\frac{\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{b_{1}}-\frac{b_{23}^{2}}{b_{2}}=\frac{\partial^{2}f}{\partial z^{2}}-\frac{\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{\frac{\partial^{2}f}{\partial z^{2}}}-\frac{\left(\frac{\partial^{2}f}{\partial y\partial z}-\frac{2\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial x^{2}}}\right)^{2}}{\frac{\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}}}$$

$$=\frac{\frac{\partial^{2}f}{\partial z^{2}}\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}}-\frac{\frac{\left(\frac{\partial^{2}f}{\partial y\partial z}\frac{\partial^{2}f}{\partial x^{2}}-\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\left(\frac{\partial^{2}f}{\partial x^{2}}\right)^{2}}}{\frac{\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}}}=\frac{\frac{\partial^{2}f}{\partial z^{2}}\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}}-\frac{\left(\frac{\partial^{2}f}{\partial y\partial z}\frac{\partial^{2}f}{\partial x^{2}}-\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\left(\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}\right)\frac{\partial^{2}f}{\partial x^{2}}}$$

$$=\frac{\left(\frac{\partial^{2}f}{\partial z^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}\right)\left(\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}\right)-\left(\frac{\partial^{2}f}{\partial y\partial z}\frac{\partial^{2}f}{\partial x^{2}}-\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}\right)}$$

$$=\frac{\frac{\partial^{2}f}{\partial z^{2}}\frac{\partial^{2}f}{\partial x^{2}}\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\frac{\partial^{2}f}{\partial z^{2}}\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}-\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}+\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}-\left(\frac{\partial^{2}f}{\partial y\partial z}\right)^{2}\left(\frac{\partial^{2}f}{\partial x^{2}}\right)^{2}-}{\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}\right)}$$

$$\frac{2\left(\frac{\partial^{2}f}{\partial x^{2}}\frac{\partial^{2}f}{\partial y\partial z}\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}\right)-\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}{\frac{\partial^{2}f}{\partial x^{2}}\left(\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}\right)}$$
$$=\frac{\frac{\partial^{2}f}{\partial z^{2}}\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\frac{\partial^{2}f}{\partial z^{2}}\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}-\frac{\partial^{2}f}{\partial y^{2}}\left(\frac{\partial^{2}f}{\partial x\partial z}\right)^{2}-\left(\frac{\partial^{2}f}{\partial y\partial z}\right)^{2}\frac{\partial^{2}f}{\partial x^{2}}+2\frac{\partial^{2}f}{\partial y\partial z}\frac{\partial^{2}f}{\partial x\partial z}\frac{\partial^{2}f}{\partial y\partial x}}{\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}$$

$$=\frac{\left|\begin{matrix}\frac{\partial^{2}f}{\partial x^{2}}&\frac{\partial^{2}f}{\partial y\partial x}&\frac{\partial^{2}f}{\partial z\partial x}\\\frac{\partial^{2}f}{\partial x\partial y}&\frac{\partial^{2}f}{\partial y^{2}}&\frac{\partial^{2}f}{\partial z\partial y}\\\frac{\partial^{2}f}{\partial x\partial z}&\frac{\partial^{2}f}{\partial y\partial z}&\frac{\partial^{2}f}{\partial z^{2}}\end{matrix}\right|}{\frac{\partial^{2}f}{\partial y^{2}}\frac{\partial^{2}f}{\partial x^{2}}-\left(\frac{\partial^{2}f}{\partial y\partial x}\right)^{2}}$$

por lo tanto
$$b_{3}>0~\Leftrightarrow~\left|\begin{matrix}\frac{\partial^{2}f}{\partial x^{2}}&\frac{\partial^{2}f}{\partial y\partial x}&\frac{\partial^{2}f}{\partial z\partial x}\\\frac{\partial^{2}f}{\partial x\partial y}&\frac{\partial^{2}f}{\partial y^{2}}&\frac{\partial^{2}f}{\partial z\partial y}\\\frac{\partial^{2}f}{\partial x\partial z}&\frac{\partial^{2}f}{\partial y\partial z}&\frac{\partial^{2}f}{\partial z^{2}}\end{matrix}\right|>0$$

Un poco de Algebra Lineal

Si $A\in M_{n\times n}$ una matriz simétrica entonces existe una $B\in M_{n\times n}$ una matriz ortonormal tal que
$$BAB^{T}$$
es una matriz diagonal, es decir

$$BAB^{T}=\left[\begin{matrix}\lambda_{1}&\cdots&0\\0&\ddots&\vdots\\0&\cdots&\lambda_{n}\end{matrix}\right]$$
Las matrices ortonormales se usan para realizar un cambio de base.

Si $F:\mathbb{R}^{n}\rightarrow\mathbb{R}$ es una forma cuadrática que tiene asociada la matriz simétrica A (en una base ortonormal) es decir
$$F(x_{1},x_{2},…,x_{n})=(x_{1}\cdots x_{n})A(x_{1}\cdots x_{n})^{T}$$
existe entonces una base ortonormal tal que la matriz asociada a $F$ en esta nueva base es una matriz diagonal.

Tenemos que si
$$B=\left[\begin{matrix}b_{11}&\cdots&b_{1n}\\\vdots&\ddots&\vdots\\b_{n1}&\cdots&b_{nn}\end{matrix}\right]$$
es tal que $BAB^{T}$ es diagonal entonces
$$(x_{1}\cdots x_{n})=[x_{1}’\cdots x_{n}’]\left[\begin{matrix} b_{11} & \cdots &b_{1n}\\ \vdots&\ddots&\vdots \\b_{n1}&\cdots&b_{nn}\end{matrix}\right]$$
$$=[x_{1}’\cdots x_{n}’]B$$
Por lo que
$$F(x_{1},x_{2},…,x_{n})=(x_{1}\cdots x_{n})A(x_{1}\cdots x_{n})^{T}$$
$$=F(x_{1},x_{2},…,x_{n})=(x_{1}’\cdots x_{n}’)BA(x_{1}’\cdots x_{n}’B)^{T}$$
$$=(x_{1}’\cdots x_{n}’)BAB^{T}(x_{1}’\cdots x_{n})^{T}$$
$$=(x_{1}’\cdots x_{n}’)\left[\begin{matrix}\lambda_{1}&\cdots&0\\0&\ddots&\vdots\\0&\cdots&\lambda_{n}\end{matrix}\right](x_{1}’\cdots x_{n})^{T}$$
$$=\lambda_{1}x_{1}^{2}+\lambda_{2}x_{2}^{2}+\cdots +\lambda_{n}x_{n}^{2}$$

por lo que $F$ es positiva si $\lambda_{1},\cdots,\lambda_{n}$ son positivos, de igual manera $F$ es negativa si $\lambda_{1},\cdots,\lambda_{n}$ son negativos

Si definimos, para cada $k\in{1,\ldots,n}$
$$D_{k}=\left[\begin{matrix}\lambda_{1}&\cdots&0\\ \vdots&\ddots&\vdots\\0&\cdots&\lambda_{k}\end{matrix}\right]$$

entonces
$$\det (D_{k})=\lambda_{1}\cdot \lambda_{2}\cdots \lambda_{k}$$
de tal forma que podemos decir que F es positiva si $\det (D_{k})>0$ y también $F$ es negativa si $\det (D_{k})< 0$ lo cual ocurre si $\det (D_{k})<0$ si k es impar y $\det (D_{k})>0$ si k es par para cada $k\in \left\{1,..,n\right\}$

Definición 2. La forma $Q(x)=xAx^{t}$, que tiene asociada la matriz $A$ (respecto a la base canónica de $\mathbb{R}^{n}$) se dice:
$\textcolor{Red}{\text{Definida positiva}}$, si $Q(x)>0~\forall x \in~\mathbb{R}^{n}$

La forma $Q(x)=xAx^{t}$, que tiene asociada la matriz $A$ (respecto a la base canónica de $\mathbb{R}^{n}$) se dice:
$\textcolor{Red}{\text{Definida negativa}}$, si $Q(x)<0~\forall x\in~\mathbb{R}^{n}$

Definición 3. Si la forma $Q(x)=xAx^{t}$ es definida positiva, entonces $f$ tiene un mínimo local en en $x$. Si la forma $Q(x)=xAx^{t}$ es definida negativa, entonces $f$ tiene un máximo local en en $x$.

Definición 4. Dada una matriz cuadrada $A=a_{ij}j=1,…,ni=1,…,n$ se consideran las submatrices angulares $A_{k}k=1,…,n$ definidas como $$A_{1}=(a_{11})~A_{2}=\left(\begin{matrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{matrix}\right)~~A_{3}=\left(\begin{matrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{matrix}\right),\cdots,A_{n}=A$$
se define $\det A_{k}=\triangle_{k}$

$\textbf{Criterio 1 (a)}$ Se tiene entonces que la forma $Q(x)=xAX^{t}$ es definida positiva si y solo si todos los determinantes $\triangle_{k}~~k=1,…,n$ son números positivos.

$\textbf{Criterio 1 (b)}$ La forma $Q(x)=xAX^{t}$ es definida negativa si y solo si los dterminantes $\triangle_{k}k=1,…,n$ tienen signos alternados comenzando por $\triangle_{1}<0,\triangle_{2}>0,…$ respectivamente.

Ejemplo. Consideremos la función $f:\mathbb{R}^3\rightarrow\mathbb{R}$ $f(x,y,z)=\sin x +\sin y + \sin z -\sin(x+y+z)$, el punto $P=\left(\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2}\right)$ es
un punto crítico de $f$ y en ese punto la matriz hessiana de
$f$ es $$H(p)=\left[\begin{array}{ccc}
-2 & -1 & -1 \\
-1 & -2 & -1 \\
-1 & -1 & -2 \\
\end{array}
\right]
$$

los determinantes de las submatrices angulares son
$$\Delta_1=det(-2)\qquad \quad $$ $$\Delta_2=det \left[
\begin{array}{cc}
-2 & -1 \
-1 & -2 \
\end{array}
\right]$$

$$\Delta_3=det H(p)=-4$$ puesto que son signos alternantes con $\Delta t< 0$ concluimos que la funcion $f$ tiene en $\left(\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2}\right)$ un máximo local. Este máximo local vale $f\left(\frac{\pi}{2},\frac{\pi}{2},\frac{\pi}{2}\right)=4$

Aproxiación de Taylor, Extremos Locales.

Por Angélica Amellali Mercado Aguilar

$\textcolor{Red}{\textbf{Aproximación de Taylor para funciones $f:\mathbb{R}^{3}\rightarrow\mathbb{R}$}}$

El caso de la aproximación con $n=2$ nos queda
$$f(x,y)=f(x_{0},y_{0})+\textcolor{Blue}{\frac{1}{1!}\left(\frac{\partial f}{\partial x}(x_{0},y_{0})\cdot (x-x_{0})+\frac{\partial f}{\partial y}(x_{0},y_{0})\cdot (y-y_{0})\right)}+$$

$$\textcolor{Red}{\frac{1}{2!}\left(\frac{\partial^{2} f}{\partial x^{2}}(x_{0},y_{0})(x-x_{0})^{2}+2\frac{\partial^{2} f}{\partial x\partial y}(x_{0},y_{0})(x-x_{0})(y-y_{0})+\frac{\partial^{2} f}{\partial y^{2}}(x_{0},y_{0})(y-y_{0})^{2}\right)}+R_{2}$$
Donde la expresión azul se puede escribir

$$\textcolor{Blue}{\frac{1}{1!}\left(\frac{\partial f}{\partial x}(x_{0},y_{0})\cdot (x-x_{0})+\frac{\partial f}{\partial y}(x_{0},y_{0})\cdot (y-y_{0})\right)=\nabla f(x_{0},y_{0},z_{0})\cdot (h_{1},h_{2},h_{3})}$$
y la expresión en rojo

$$\textcolor{Red}{\frac{1}{2!}\left(\frac{\partial^{2}f}{\partial
x^{2}}{p}(x-x{0})^{2}+2\frac{\partial^{2}f}{\partial y \partial
x}{p}(x-x{0})(y-y_{0})+\frac{\partial^{2}f}{\partial
y^{2}}{p}(y-y{0})^{2}\right)}$$ Define una forma cuadratica que
podemos escribir

$$\textcolor{Red}{\frac{1}{2!}(x-x_{0}\quad y-y_{0})\left(\begin{array}{cc}
\frac{\partial^{2}f}{\partial x^{2}}&\frac{\partial^{2}f}{\partial y \partial x}\\
\frac{\partial^{2}f}{\partial x \partial y }&\frac{\partial^{2}f}{\partial y^{2}} \end{array}\right)\left(\begin{array}{c}
x-x_{0} \\y-y_{0} \end{array}\right)}$$

Por lo que el desarrollo de Taylor se puede escribir
$$f(x,y)=f(x_{0},y_{0})+\nabla f(x_{0},y_{0},z_{0})\cdot (h_{1},h_{2},h_{3})+\frac{1}{2!}(x-x_{0}\quad y-y_{0})\left(\begin{array}{cc}
\frac{\partial^{2}f}{\partial x^{2}}&\frac{\partial^{2}f}{\partial y \partial x} \\
\frac{\partial^{2}f}{\partial x \partial y }&\frac{\partial^{2}f}{\partial y^{2}} \end{array}\right)\left(\begin{array}{c}
x-x_{0} \\y-y_{0} \end{array}\right)$$

A la matriz

$$\left(\begin{array}{cc}
\frac{\partial^{2}f}{\partial x^{2}}&\frac{\partial^{2}f}{\partial y \partial x} \\
\frac{\partial^{2}f}{\partial x \partial y }&\frac{\partial^{2}f}{\partial y^{2}} \end{array}\right)$$

se le conoce como matriz Hessiana y se denota $H(x_{0},y_{0})$ por lo que el desarrollo de Taylor se puede escribir
$$f(x,y)=f(x_{0},y_{0})+\nabla f(x_{0},y_{0},z_{0})\cdot (h_{1},h_{2},h_{3})+\frac{1}{2!}(x-x_{0}\quad y-y_{0})(H(x_{0},y_{0}))\left(\begin{array}{c}
x-x_{0} \\y-y_{0} \end{array}\right)$$

$\textcolor{Red}{\textbf{Aproximación de Taylor para funciones $f:\mathbb{R}^{3}\rightarrow\mathbb{R}$}}$

Sea $f:A\subset\mathbb{R}^{3}\rightarrow\mathbb{R}$ y sea $F(t)=f(x_{0}+h_{1}t,y_{0}+h_{2}t,z_{0}+h_{3}t)$ con $t\in[0,1]$, de esta manera f recorre el segmento de $[x_{0},y_{0},z_{0}]$ a $[x_{0}+h_{1}t,y_{0}+h_{2}t,z_{0}+h_{3}t]$. Se tiene entonces que usando la regla de la cadena

$$F'(t)=\frac{\partial f}{\partial x}(x_{0}+h_{1}t,y_{0}+h_{2}t,z_{0}+h_{3}t)\cdot \frac{d(x_{0}+h_{1}t)}{dt}+\frac{\partial f}{\partial y}(x_{0}+h_{1}t,y_{0}+h_{2}t,z_{0}+h_{3}t)\cdot \frac{d(y_{0}+h_{2}t)}{dt}+$$

$$\frac{\partial f}{\partial z}(x_{0}+h_{1}t,y_{0}+h_{2}t,z_{0}+h_{3}t)\cdot \frac{d(z_{0}+h_{3}t)}{dt}=$$

$$\frac{\partial f}{\partial x}(x_{0}+h_{1}t,y_{0}+h_{2}t,z_{0}+h_{3})\cdot h_{1}+\frac{\partial f}{\partial y}(x_{0}+h_{1}t,y_{0}+h_{2}t,z_{0}+h_{3})\cdot h_{2}+\frac{\partial f}{\partial z}(x_{0}+h_{1}t,y_{0}+h_{2}t,z_{0}+h_{3})\cdot h_{3}$$

Vamos ahora a calcular $F^{´´}(t)$

$$F^{´´}(t)=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}h_{1}+ \frac{\partial f}{\partial y}h_{2}+\frac{\partial f}{\partial z}h_{3}\right)h_{1}+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}h_{1}+ \frac{\partial f}{\partial y}h_{2}+\frac{\partial f}{\partial z}h_{3}\right)h_{2}+\frac{\partial}{\partial z}\left(\frac{\partial f}{\partial x}h_{1}+ \frac{\partial f}{\partial y}h_{2}+\frac{\partial f}{\partial z}h_{3}\right)h_{3}=$$

$$\frac{\partial^{2}f}{\partial x^{2}}h_{1}^{2}+2\frac{\partial^{2}f}{\partial x\partial y}h_{1}h_{2}+\frac{\partial^{2}f}{\partial y^{2}}h_{2}^{2}+2\frac{\partial^{2}f}{\partial x\partial z}h_{3}h_{1}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}$$
Ahora bien si se aplica la fórmula de Taylor con la forma del residuo de Lagrange a la función $$F(t)=f(x_{0}+h_{1}t,y_{0}+h_{2}t)$$ y ponemos $t=0$, y $n=2$ se tiene

$$F(t)=F(0)+\frac{1}{1!}F'(0)t+\frac{1}{2!}F^{´´}(0)t^{2}+R_{2}$$

ahora bien con $t=1$, $x=x_{0}+h_{1}$, $y=y_{0}+h_{2}$, $z=z_{0}+h_{3}$

$$f(x,y)=f(x_{0},y_{0})+\textcolor{Blue}{\left(\frac{\partial f}{\partial
x}\right){p}(x-x_{0})+\left(\frac{\partial f}{\partial
y}\right){p}(y-y_{0})+\left(\frac{\partial f}{\partial
z}\right){p}(z-z_{0})}+$$

$$\textcolor{Red}{\frac{1}{2!}\left(\frac{\partial^{2}f}{\partial
x^{2}}{p}(x-x_{0})^{2}+2\frac{\partial^{2}f}{\partial x \partial
y}{p}(x-x_{0})(y-y_{0})+\frac{\partial^{2}f}{\partial
y^{2}}{p}(y-y_{0})^{2}+2\frac{\partial^{2}f}{\partial
x\partial z}{p}(z-z_{0})(x-x_{0})+2\frac{\partial^{2}f}{\partial
y\partial z}{p}(z-z_{0})(y-y_{0})\right)}$$

$$\textcolor{Red}{+\frac{\partial^{2}f}{\partial
z^{2}}{p}(z-z_{0})}+R_{2}$$
Donde la expresión en azul se puede escribir

$$\textcolor{Blue}{\left(\frac{\partial f}{\partial
x}\right){p}(x-x_{0})+\left(\frac{\partial f}{\partial
y}\right){p}(y-y_{0})+\left(\frac{\partial f}{\partial
z}\right){p}(z-z_{0})=\nabla f(x_{0},y_{0},z_{0})\cdot (h_{1},h_{2},h_{3})}$$

y la expresión en rojo
$$\textcolor{Red}{\frac{1}{2!}\left(\frac{\partial^{2}f}{\partial x^{2}}h_{1}^{2}+2\frac{\partial^{2}f}{\partial x\partial y}h_{1}h_{2}+\frac{\partial^{2}f}{\partial y^{2}}h_{2}^{2}+2\frac{\partial^{2}f}{\partial x\partial z}h_{3}h_{1}+2\frac{\partial^{2}f}{\partial y\partial z}h_{3}h_{2}+\frac{\partial^{2}f}{\partial z^{2}}h_{3}^{2}\right)}$$

se puede ver como producto de matrices

$$\frac{1}{2!}(h_{1}~h_{2}~h_{3})\left(\begin{matrix}\frac{\partial^{2}f}{\partial
x^{2}}&\frac{\partial^{2}f}{\partial y \partial x}&\frac{\partial^{2}f}{\partial z \partial x}\\ \frac{\partial^{2}f}{\partial x \partial y}&\frac{\partial^{2}f}{\partial
y^{2}}&\frac{\partial^{2}f}{\partial z \partial y}\\ \frac{\partial^{2}f}{\partial
x \partial z}&\frac{\partial^{2}f}{\partial y \partial z}&\frac{\partial^{2}f}{\partial
z^{2}}\end{matrix}\right)_{p}\left(\begin{matrix}h{1}\\h_{2}\\h_{3}\end{matrix}\right)$$

La matriz
$$\left(\begin{matrix}\frac{\partial^{2}f}{\partial
x^{2}}&\frac{\partial^{2}f}{\partial
y\partial x}&\frac{\partial^{2}f}{\partial
z\partial x}\\\frac{\partial^{2}f}{\partial
x \partial y}&\frac{\partial^{2}f}{\partial
y^{2}}&\frac{\partial^{2}f}{\partial
z \partial y}\\\frac{\partial^{2}f}{\partial
x \partial z}&\frac{\partial^{2}f}{\partial
y \partial z}&\frac{\partial^{2}f}{\partial
z^{2}}\end{matrix}\right)$$
se le conoce como matriz Hessiana y se le denota $H(x_{0},y_{0},z_{0})$, por lo que la aproximación de Taylor se puede escribir

$$f(x,y)=f(x_{0},y_{0})+\nabla f(x_{0},y_{0},z_{0})\cdot (h_{1},h_{2},h_{3})+\frac{1}{2!}(h_{1}~h_{2}~h_{3})H(x_{0},y_{0},z_{0})\left(\begin{matrix}h_{1}\\h_{2}\\h_{3}\end{matrix}\right)$$

$\textbf{Ejemplo}$ Considere la función $f(x,y)=e^{2x+3y}$
$f[(0,0)+(x,y)]=f(0,0) +\nabla f(0,0)\cdot(x,y)+\frac{1}{2}[xy]H(0,0)\left[\begin{array}{c} x\\y\end{array}\right]+r_2(x,y)$

donde $\displaystyle\lim _{(x,y)\rightarrow(0,0)} \displaystyle\frac{r(x,y)}{x^2+y^2}=0$

$\nabla f=\left(\displaystyle\frac{\partial f}{\partial x}, \displaystyle\frac{\partial f}{\partial y}\right)=(2e^{2x+3y},3e^{2x+3y})~~~~ \therefore \nabla f(0,0)=(2,3)$

$$
H(x,y)=\left[\begin{array}{cc}
\displaystyle\frac{\partial ^2f}{\partial x^2} & \displaystyle\frac{\partial ^2f}{\partial y\partial x}\\
\displaystyle\frac{\partial ^2f}{\partial x\partial y} & \displaystyle\frac{\partial ^2f}{\partial y^2}\end{array}\right]=
\left[\begin{array}{cc}
4e^{2x+3} & 6e^{2x+3y}\\
6e^{2x+3y} & 9e^{2x+3y}\end{array}\right] ~~~~ \therefore H(0,0)= \left(\begin{array}{cc} 4&6\\6&9\end{array}\right)
$$

Así

Así $f(x,y)=f(0,0)+(2,3)\cdot (x,y) +\frac{1}{2}[xy]\left(\begin{array}{cc} 4&6\\6&9 \end{array}\right)\left[\begin{array}{c} x\\y\end{array}\right]+r(x,y)$
$\therefore e^{2x+3y}=1+2x+3y+2x^2+6xy\frac{9}{2}y^2+r(x,y)$

$\textcolor{Red}{\textbf{Extremos Locales}}$

Entre las caracteristicas geometricas básicas de la gráficas de una función estan sus puntos extremos, en los cuales la función alcanza sus valores mayor y menor.

$\textbf{Definición 1.}$ Si $f:u\subset \mathbb{R}^n \rightarrow
\mathbb{R}$ es una función escalar, dado un punto $x_0 \in u$
se llama mínimo local de $f$ si existe una vecindad $v$ de $x_0$ tal que $\forall x \in v$ ,$f(x)>f(x_0)$. De manera analoga, $x_0 \in u$ es un máximo local si existe una vecindad $v$ de $x_0$ tal que $f(x)<f(x_0)$, $\forall \quad x \in v$. El punto $x_0 \in u$ es un extremo local o relativo, si es un mínimo local o máximo
local.

En la expresión del desarrollo de Taylor
$$f(x,y)=f(x_{0},y_{0})+\nabla f(x_{0},y_{0},z_{0})\cdot (h_{1},h_{2},h_{3})+\frac{1}{2!}(x-x_{0}\quad y-y_{0})(H(x_{0},y_{0}))\left(\begin{array}{c}
x-x_{0} \\y-y_{0} \end{array}\right)$$
Si consideramos los valores para los cuales

$$\nabla f(x_{0},y_{0},z_{0})=(0,0,0)$$
es decir los puntos críticos del gradiente entonces nuestra aproximación de Taylor nos queda

$$f(x,y)=f(x_{0},y_{0})+\frac{1}{2!}(x-x_{0}\quad y-y_{0})(H(x_{0},y_{0}))\left(\begin{array}{c}
x-x_{0} \\y-y_{0} \end{array}\right)$$
que se puede escribir
$$f(x,y)-f(x_{0},y_{0})=\frac{1}{2!}(x-x_{0}\quad y-y_{0})(H(x_{0},y_{0}))\left(\begin{array}{c}
x-x_{0} \\y-y_{0} \end{array}\right)$$

por lo que el signo del lado izquierdo $f(x,y)-f(x_{0},y_{0})$ dependerá del signo de la expresión
$$\frac{1}{2!}(x-x_{0}\quad y-y_{0})(H(x_{0},y_{0}))\left(\begin{array}{c}
x-x_{0} \\y-y_{0} \end{array}\right)$$

es decir dependerá del signo de la forma
$$\frac{1}{2!}(h_{1}~h_{2})\left(\begin{matrix}\frac{\partial^{2}f}{\partial
x^{2}}&\frac{\partial^{2}f}{\partial
y\partial x}\\\frac{\partial^{2}f}{\partial
x\partial y}&\frac{\partial^{2}f}{\partial
y^{2}}\end{matrix}\right)_{p}\left(\begin{matrix}h{1}\\h_{2}\\h_{3}\end{matrix}\right)$$

$\textbf{Teorema 1.}$ Sea $B=\left[\begin{array}{cc}
a & b \\
b & c \\
\end{array}
\right]$ y $H(h)=\frac{1}{2}[h_1,h_2]\left[
\begin{array}{cc}
a & b \\
b & c \\
\end{array}
\right]\left(
\begin{array}{c}
h_1 \\
h_2
\end{array}
\right)$ entonces $H(h)$ es definida positiva si y solo si $a>0$ y $ac-b^2>0$

$\small{Demostración.}$ Tenemos $$H(h)=\frac{1}{2}[h_1,h_2]\left[
\begin{array}{cc}
a h_1& bh_2 \\
b h_1& ch_2 \
\end{array}
\right]=\frac{1}{2}(ah_1^2+2bh_1h_2+ch_1^2)$$
si completamos el cuadrado
$$H(h)=\frac{1}{2}a\left(h_1+\frac{b}{a}h_2\right)^2+\frac{1}{2}\left(c-\frac{b^2}{a}\right)h_2^2$$
supongamos que $h$ es definida positiva. Haciendo
$h_2=0$ vemos que $a>0$. Haciendo $h_1=-\frac{b}{a}h_2$ $c-\frac{b^2}{a}>0$ ó $ac-b^2>0$. De manera analoga $H(h)$ es definida negativa si y solo si $a<0$ y $ac-b^2>0$. $\square$

Criterio del máximo y del mínimo para funciones de dos variables Sea $f(x,y)$ de clase
$C^3$ en un conjunto abierto $u$ de $\mathbb{R}^2$. Un punto $x_0,y_0$ es un mínimo local (Estricto) de $f$ si se cumple las siguientes tres condiciones:


$I)$ $\frac{\partial f}{\partial x}(x_0,y_0)=\frac{\partial f}{\partial y}(x_0,y_0)$
$II)$$\frac{\partial^2 f}{\partial x^2}(x_0,y_0)> 0$
$III)$ $\left(\frac{\partial^2 f}{\partial x^2}\right)\left(\frac{\partial^2 f}{\partial y^2}\right)-\left(\frac{\partial^2 f}{\partial x \partial y}\right)^2> 0$ en $(x_0,y_0)$ (Discriminante). Si en II) tenemos $<0$ en lugar de $>0$ sin cambiar III)
hay un máximo local.

Diferencial de orden N, Teorema de Taylor

Por Angélica Amellali Mercado Aguilar

Diferencial de orden n

$$d^{n}f=\frac{\partial^{n} f}{\partial x^{n}}dx^{n}+\left(\begin{matrix}n\\1\end{matrix}\right)\frac{\partial^{n-1} f}{\partial x^{n-1}\partial y}dx^{n-1}dy+\left(\begin{matrix}n\\2\end{matrix}\right)\frac{\partial^{n-2} f}{\partial x^{n-2}\partial y^{2}}dx^{n-2}dy^{2}+\cdots+$$ $$\left(\begin{matrix}n\\k\end{matrix}\right)\frac{\partial^{n-k} f}{\partial x^{n-k}\partial y^{k}}dx^{n-k}dy^{k}+\cdots+\frac{\partial^{n}f}{\partial y^{n}}dy^{n}$$
que se puede escribir
$$d^{n}f=\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}dx^{n-j}dy^{j}$$

Ejercicio. Probar usando inducción
$$d^{n}f=\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}dx^{n-j}dy^{j}$$

Solución. Para n=1 se tiene
$$df=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy$$
Suponemos valido para n

$$d^{n}f=\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}dx^{n-j}dy^{j}$$
Por demostrar que es valida para n+1
$$d^{n+1}f=d(d^{n}f)=\frac{\partial}{\partial x}\left(\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}dx^{n-j}dy^{j}\right)dx+\frac{\partial}{\partial y}\left(\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}dx^{n-j}dy^{j}\right)dy=$$

$$\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}+\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n-j}\partial y^{j+1}}dx^{n-j}dy^{j+1}=$$
$$\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}+\sum_{j=1}^{n+1}\left(\begin{matrix}n\\j-1\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}=$$

$$\frac{\partial^{n+1}f}{\partial x^{n+1}}dx^{n+1}+\sum_{j=1}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}+\sum_{j=1}^{n}\left(\begin{matrix}n\\j-1\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}+\frac{\partial^{n+1}f}{\partial y^{n+1}}dy^{n+1}=$$

$$\frac{\partial^{n+1}f}{\partial x^{n+1}}dx^{n+1}+\sum_{j=1}^{n}\left(\left(\begin{matrix}n\\j\end{matrix}\right)+\left(\begin{matrix}n\\j-1\end{matrix}\right)\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}+\frac{\partial^{n+1}f}{\partial y^{n+1}}dy^{n+1}=$$

$$\frac{\partial^{n+1}f}{\partial x^{n+1}}dx^{n+1}+\sum_{j=1}^{n}\left(\begin{matrix}n+1\\j\end{matrix}\right)\frac{\partial^{n+1}f}{\partial x^{n+1-j}\partial y^{j}}dx^{n+1-j}dy^{j}+\frac{\partial^{n+1}f}{\partial y^{n+1}}dy^{n+1}=\sum_{j=0}^{n+1}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}dx^{n-j}dy^{j}$$

La última fórmula puede expresarse simbólicamente por la ecuación
$$d^{n}f=\left(\frac{\partial}{\partial x}dx+\frac{\partial}{\partial y}dy\right)^{n}f$$

donde primero debe desarrollarse le expresión de la derecha formalmente por medio del teorema del binomio y, a continuación deben sustituirse los términos
$$\frac{\partial^{n}f}{\partial x^{n}}dx^{n},\frac{\partial^{n}f}{\partial x^{n-1}\partial y}dx^{n-1}dy,\cdots,\frac{\partial^{n}f}{\partial y^{n}}dy^{n}$$
por los términos
$$\left(\frac{\partial}{\partial x}dx\right)^{n}f,\left(\frac{\partial}{\partial x}dx\right)^{n-1}\left(\frac{\partial}{\partial y}dy\right)f,\cdots,\left(\frac{\partial}{\partial y}dy\right)^{n}f$$

Teorema de Taylor para funciones $f:A\subset\mathbb{R}^{2}\rightarrow\mathbb{R}$}

Recordando el Teorema de Taylor para funciones $f:\mathbb{R}\rightarrow\mathbb{R}$

Teorema. Si $f(x)$ tiene n-ésima derivada continua en una vecindad de $x_{0}$, entonces en esa vecindad
$$f(x)=f(x_{0})+\frac{1}{1!}f'(x_{0})(x-x_{0})+\frac{1}{2!}f»(x_{0})(x-x_{0})^{2}+\frac{1}{3!}f»'(x_{0})(x-x_{0})^{3}+…+\frac{1}{n!}f^{n}(x_{0})(x-x_{0})^{n}+R_{n}$$
donde
$$R_{n}=\frac{f^{n+1}(\epsilon)}{(n+1)!}(x-x_{0})^{n+1},~donde~\epsilon\in(x_{0},x)$$

Sea $f:A\subset\mathbb{R}^{2}\rightarrow\mathbb{R}$ y sea $F(t)=f(x_{0}+h_{1}t,y_{0}+h_{2}t)$ con $t\in[0,1]$, de esta manera f recorre el segmento de $[x_{0},y_{0}]$ a $[x_{0}+h_{1}t,y_{0}+h_{2}t]$. Se tiene entonces que usando la regla de la cadena
$$F'(t)=\frac{\partial f}{\partial x}(x_{0}+h_{1}t,y_{0}+h_{2}t)\cdot \frac{d(x_{0}+h_{1}t)}{dt}+\frac{\partial f}{\partial y}(x_{0}+h_{1}t,y_{0}+h_{2}t)\cdot \frac{d(y_{0}+h_{2}t)}{dt}=$$

$$\frac{\partial f}{\partial x}(x_{0}+h_{1}t,y_{0}+h_{2}t)\cdot h_{1}+\frac{\partial f}{\partial y}(x_{0}+h_{1}t,y_{0}+h_{2}t)\cdot h_{2}$$
Vamos ahora a calcular $F^{´´}(t)$

$$F^{´´} ( t )=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}h_{1}+ \frac{\partial f}{\partial y}h_{2}\right)h_{1}+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}h_{1}+ \frac{\partial f}{\partial y}h_{2}\right)h_{2}=$$
$$\frac{\partial^{2} f}{\partial x^{2}}h_{1}^{2}+2\frac{\partial^{2} f}{\partial x\partial y}h_{1}h_{2}+\frac{\partial^{2} f}{\partial y^{2}}h_{2}^{2}$$

simbólicamente se puede escribir
$$F^{»}(t)=\left(\frac{\partial }{\partial x}\cdot h_{1}+\frac{\partial }{\partial y}\cdot h_{2}\right)^{2}f$$
y en general

$$F^{n}(t)=\frac{\partial^{n} f}{\partial x^{n}}h_{1}^{n}+\left(\begin{matrix}n\\1\end{matrix}\right)\frac{\partial^{n-1} f}{\partial x^{n-1}\partial y}h_{1}^{n-1}h_{2}+\left(\begin{matrix}n\\2\end{matrix}\right)\frac{\partial^{n-2} f}{\partial x^{n-2}\partial y^{2}}h_{1}^{n-2}h_{2}^{2}+\cdots+\left(\begin{matrix}n\\k\end{matrix}\right)\frac{\partial^{n-k} f}{\partial x^{n-k}\partial y^{k}}h_{1}^{n-k}h_{2}^{k}+\cdots+\frac{\partial^{n}f}{\partial y^{n}}h_{2}^{n}$$

que simbólicamente se puede escribir
$$F^{n}=\sum_{j=0}^{n}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}h_{1}^{n-j}h_{2}^{j}=\left(\frac{\partial }{\partial x}\cdot h_{1}+\frac{\partial }{\partial y}\cdot h_{2}\right)^{n}f$$

Ahora bien si se aplica la fórmula de Taylor con la forma del residuo de Lagrange a la función $$F(t)=f(x_{0}+h_{1}t,y_{0}+h_{2}t)$$ y ponemos $t=0$, se tiene
$$F(t)=F(0)+\frac{1}{1!}F'(0)t+\frac{1}{2!}F^{»}(0)t^{2}+\frac{1}{3!}F»'(0)t^{3}+…++\frac{1}{n!}F^{^{n}}(0)t^{n}+R_{n}$$
ahora bien con $t=1$
$$f(x_{0}+h_{1},y_{0}+h_{2})=f(x_{0},y_{0})+\frac{1}{1!}\left(\frac{\partial f}{\partial x}(x_{0},y_{0})\cdot h_{1}+\frac{\partial f}{\partial y}(x_{0},y_{0})\cdot h_{2}\right)+\frac{1}{2!}\left(\frac{\partial^{2} f}{\partial x^{2}}(x_{0},y_{0})h_{1}^{2}+2\frac{\partial^{2} f}{\partial x\partial y}(x_{0},y_{0})h_{1}h_{2}+\frac{\partial^{2} f}{\partial y^{2}}(x_{0},y_{0})h_{2}^{2}\right)$$
$$+\cdots+\frac{1}{n!}\left(\sum_{j=0}^{n+1}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}(x_{0},y_{0})h_{1}^{n-j}h_{2}^{j}\right)$$

$x=x_{0}+h_{1}$, $y_{0}+h_{2}=y$ por lo que $h_{1}=x-x_{0}$ y $h_{2}=y-y_{0}$ entonces

$$f(x,y)=f(x_{0},y_{0})+\frac{1}{1!}\left(\frac{\partial f}{\partial x}(x_{0},y_{0})\cdot (x-x_{0})+\frac{\partial f}{\partial y}(x_{0},y_{0})\cdot (y-y_{0})\right)+$$

$$\frac{1}{2!}\left(\frac{\partial^{2} f}{\partial x^{2}}(x_{0},y_{0})(x-x_{0})^{2}+2\frac{\partial^{2} f}{\partial x\partial y}(x_{0},y_{0})(x-x_{0})(y-y_{0})+\frac{\partial^{2} f}{\partial y^{2}}(x_{0},y_{0})(y-y_{0})^{2}\right)+$$

$$\cdots+\frac{1}{n!}\left(\sum_{j=0}^{n+1}\left(\begin{matrix}n\\j\end{matrix}\right)\frac{\partial^{n}f}{\partial x^{n-j}\partial y^{j}}(x_{0},y_{0})(x-x_{0})^{n-j}(y-y_{0})^{j}\right)+R_{n}$$

donde
$$R_{n}=\frac{1}{n+1!}\left((x-x_{0})^{n+1}\frac{\partial^{n+1}f}{\partial x^{n+1}}(\xi,\eta)+\cdots+(y-y_{0})^{n+1}\frac{\partial^{n+1}f}{\partial y^{n+1}}(\xi,\eta)\right)$$ donde $\xi\in(x_{0},x_{0}+h_{1})$ y $\eta\in(y_{0},y_{0}+h_{2})$\En general el residuo $R_{n}$ se anula en un orden mayor que el término $d^{n}f$

Ejemplo. Desarrollar la fórmula de Taylor en $(x_{0},y_{0})=(0,0)$ con $n=3$ para la función $$f(x,y)=e^{y}\cos x$$

Solución. En este caso tenemos que
$$f(0,0)=e^{0}\cos(0)=1$$
Para la diferencial de orden 1
$$\frac{\partial f}{\partial x}(0,0)~\Rightarrow~\frac{\partial (e^{y}\cos(x))}{\partial x}(0,0)~\Rightarrow~-e^{y} sen\left( x\right) \big{|}{(0,0)}=0$$ $$\frac{\partial f}{\partial y}(0,0)~\Rightarrow~\frac{\partial (e^{y} \cos x)}{\partial y}(0,0)~\Rightarrow~-e^{y}\cos(x)\big{|}{(0,0)}=1$$
por lo tanto
$$\frac{1}{1!}\left(\frac{\partial f}{\partial x}(x_{0},y_{0})\cdot (x-x_{0})+\frac{\partial f}{\partial y}(x_{0},y_{0})\cdot (y-y_{0})\right)=\frac{1}{1!}\left((0)(x)+(1)(y)\right)=y$$
Para la diferencial de orden 2
$$\frac{\partial^{2} f}{\partial x^{2}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y}\ cos x)}{\partial x^{2}}(0,0)~\Rightarrow~-e^{y} \cos~x\big{|}{(0,0)}=-1$$ $$\frac{\partial^{2} f}{\partial y^{2}}(x{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y} \cos x)}{\partial y^{2}}(0,0)~\Rightarrow~e^{y} \cos~x\big{|}{(0,0)}=1$$ $$\frac{\partial^{2} f}{\partial x~\partial y}(x{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y}\cos x)}{\partial x~\partial y}(0,0)~\Rightarrow~-e^{y} sen~x~ \big{|}{(0,0)}=0$$ Por lo tanto $$\frac{1}{2!}\left(\frac{\partial^{2} f}{\partial x^{2}}(x{0},y_{0})h_{1}^{2}+2\frac{\partial^{2} f}{\partial x\partial y}(x_{0},y_{0})h_{1}h_{2}+\frac{\partial^{2} f}{\partial y^{2}}(x_{0},y_{0})h_{2}^{2}\right)=\frac{1}{2!}((-1)x^{2}+2(0)xy+(1)y^{2})$$
Para la diferencial de orden 3

$$\frac{\partial^{3} f}{\partial x^{3}}(x_{0},y_{0})~\Rightarrow~e^{y} sen~x\big{|}_{(0,0)}=0$$

$$\frac{\partial^{3} f}{\partial y^{3}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y}\cos x)}{\partial y^{3}}(0,0)~\Rightarrow~e^{y}\cos~x\big{|}_{(0,0)}=1$$

$$\frac{\partial^{3} f}{\partial x^{2}~\partial y}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y}\cos x)}{\partial x^{2}~\partial y}(0,0)~\Rightarrow~-e^{y}\cos~x\big{|}_{(0,0)}=-1$$

$$\frac{\partial^{3} f}{\partial y^{3}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y}\cos x)}{\partial y^{3}}(0,0)~\Rightarrow~e^{y}\cos~x\big{|}_{(0,0)}=1$$

$$\frac{\partial^{3} f}{\partial x~\partial y^{2}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (e^{y}\cos x)}{\partial x~\partial y^{2}}(0,0)~\Rightarrow~-e^{y} sen~x\big{|}_{(0,0)}=0$$

Por lo tanto
$$\frac{1}{3!}\left(\frac{\partial^{3} f}{\partial x^{3}}h_{1}^{3}+3\frac{\partial^{3} f}{\partial x^{2}\partial y}h_{}1^{2}h_{2}+3\frac{\partial^{3} f}{\partial x\partial y^{2}}h_{1}h_{2}^{2}+\frac{\partial^{3} f}{\partial y^{3}}h_{}2^{3}\right)=$$

$$\frac{1}{3!}\left((0)(x^{3})+3(-1)x^{2}y+3(0)xy^{2}+(1)y^{3}\right)$$
Finalmente para el residuo se tiene

$$\frac{\partial^{4} f}{\partial x^{4}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{4} (e^{y}\cos(x))}{\partial y^{3}}(0,0)~\Rightarrow~e^{y}\cos~x\big{|}_{(\xi,\eta)}=e^{\eta}\cos~\xi$$

$$\frac{\partial^{4} f}{\partial x^{2}\partial y^{2}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{4} (e^{y}\cos x)}{\partial x^{2}\partial y^{2}}(0,0)~\Rightarrow~-e^{y}\cos~x\big{|}_{(\xi,\eta)}=-e^{\eta}\cos~\xi$$

$$\frac{\partial^{4} f}{\partial x\partial y^{3}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{4} (e^{y}\cos x)}{\partial x\partial y^{3}}(0,0)~\Rightarrow~-e^{y} sen~x\big{|}_{(\xi,\eta)}=-e^{\eta} sen~\xi$$

$$\frac{\partial^{4} f}{\partial y^{4}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{4} (e^{y}\cos x)}{\partial y^{4}}(0,0)~\Rightarrow~e^{y}\cos~x\big{|}_{(\xi,\eta)}=e^{\eta}\cos~\xi$$

$$R_{3}=\frac{1}{4!}\left(\frac{\partial^{4} f}{\partial x^{4}}h_{1}^{4}+4\frac{\partial^{4} f}{\partial x^{3}\partial y}h_{1}^{3}h_{2}+6\frac{\partial^{4} f}{\partial x^{2}\partial y^{2}}h_{1}^{2}h_{2}^{2}+4\frac{\partial^{4} f}{\partial x\partial y^{3}}h_{1}h_{2}^{3}+\frac{\partial^{4} f}{\partial h_{2}^{4}}dy^{4}\right)$$

$$=\frac{1}{4!}\left(x^{4}e^{\eta}\cos~\xi+4x^{3}ye^{\eta} sen~xi-6x^{2}y^{2}e^{\eta}\cos~\xi-4xy^{3}e^{\eta} sen~\xi+y^{4}e^{\eta}\cos~\xi\right)$$

Por lo que nuestro desarrollo de Taylor nos queda
$$e^{y}\cos~x=1+y+\frac{1}{2}(x^{2}-y^{2})+\frac{1}{6}(x^{3}-3xy^{2})+R_{3}$$
donde
$$R_{3}=\frac{1}{4!}\left(x^{4}e^{\eta}\cos~\xi+4x^{3}ye^{\eta} sen~xi-6x^{2}y^{2}e^{\eta}\cos~\xi-4xy^{3}e^{\eta} sen~\xi+y^{4}e^{\eta}\cos~\xi\right)$$
$\textbf{Ejercicio}$ Use la fórmula de Taylor en
$$f(x,y)=\cos~(x+y)$$
en el punto $(x_{0},y_{0})=(0,0)$ con $n=2$ para comprobar que
$$\lim_{(x,y)\rightarrow(0,0)}\frac{1-\cos~(x+y)}{(x^{2}+y^{2})^{2}}=\frac{1}{2}$$

En este caso para
$$f(x,y)=\cos(x+y)$$
se tiene
$$f(0,0)=\cos(0+0)=1$$
Para la diferencial de orden 1
$$\frac{\partial f}{\partial x}(0,0)~\Rightarrow~\frac{\partial (\cos x+y)}{\partial x}(0,0)~\Rightarrow~- sen(x+y)\big{|}{(0,0)}=0$$ $$\frac{\partial f}{\partial y}(0,0)~\Rightarrow~\frac{\partial (\cos x+y)}{\partial y}(0,0)~\Rightarrow~- sen(x+y)\big{|}{(0,0)}=0$$
por lo tanto

$$\frac{1}{1!}\left(\frac{\partial f}{\partial x}(x_{0},y_{0})\cdot (x-x_{0})+\frac{\partial f}{\partial y}(x_{0},y_{0})\cdot (y-y_{0})\right)=\frac{1}{1!}\left((0)(x)+(0)(y)\right)=0$$

Para la diferencial de orden 2
$$\frac{\partial^{2} f}{\partial x^{2}}(x_{0},y_{0})~\Rightarrow~\frac{\partial^{2} (\cos x+y)}{\partial x^{2}}(0,0)~\Rightarrow~-\cos~x+y\big{|}{(0,0)}=-1$$ $$\frac{\partial^{2} f}{\partial y^{2}}(x{0},y_{0})~\Rightarrow~\frac{\partial^{2} (\cos x+y)}{\partial y^{2}}(0,0)~\Rightarrow~-\cos~x+y\big{|}{(0,0)}=-1$$ $$\frac{\partial^{2} f}{\partial x~\partial y}(x{0},y_{0})~\Rightarrow~\frac{\partial^{2} (\cos x+y)}{\partial x~\partial y}(0,0)~\Rightarrow~-\cos~x+y\big{|}_{(0,0)}=-1$$
Por lo tanto

$$\frac{1}{2!}\left(\frac{\partial^{2} f}{\partial x^{2}}(x_{0},y_{0})h_{1}^{2}+2\frac{\partial^{2} f}{\partial x\partial y}(x_{0},y_{0})h_{1}h_{2}+\frac{\partial^{2} f}{\partial y^{2}}(x_{0},y_{0})h_{2}^{2}\right)=\frac{1}{2!}((-1)x^{2}-2xy+(-1)y^{2})$$
Por lo que nuestro desarrollo de Taylor nos queda
$$\cos(x+y)=1-\frac{x^{2}}{2}-xy-\frac{y^{2}}{2}$$
De manera que

$$\lim_{(x,y)\rightarrow(0,0)}\frac{1-\cos~(x+y)}{(x^{2}+y^{2})^{2}}=\lim_{(x,y)\rightarrow(0,0)}\frac{1-(1-\frac{x^{2}}{2}-xy-\frac{y^{2}}{2})}{(x^{2}+y^{2})^{2}}$$
$$=\lim_{(x,y)\rightarrow(0,0)}\frac{1}{2}\frac{(x^{2}+y^{2})^{2}}{(x^{2}+y^{2})^{2}}=\frac{1}{2}$$