Álgebra Moderna I: Teorema de Jordan-Hölder

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Éste es un momento emotivo. Hemos llegado a la última entrada del curso. Así que sin mucho preámbulo comencemos a hablar del tema que nos compete.

El Teorema de Jordan-Hölder nos dice que cada par de series de composición de un grupo G siempre son del mismo tamaño y con factores de composición isomoforfos entre sí. De nuevo, es un teorema que nos describe cómo es un grupo y los subgrupos que lo conforman.

Debido a que los factores de composición son grupos simples, obtenemos una descomposición del grupo G en elementos mínimos (en el sentido de que no tienen una subestructura del mismo tipo) y de nuevo, podemos hacer una analogía con el Teorema fundamental de la aritmética, aunque esto se ve mejor cuando G=Zn.

Por último, así como el Cuarto teorema de isomorfía justifica que los factores de composición son simples, en la demostración del Teorema de Jordan-Hölder usamos mucho el Segundo teorema de isomorfía para justificar la isomorfía que existe entre los factores de composición, así que es recomendable repasarlo. La demostración que se presenta a continuación sigue el desarrollo del libro de Harvey E. Rose que se encuentra en la bibliografía, específicamente en el Teorema 9.5 de la página 191.

El último teorema del curso

Teorema. (de Jordan – Hölder) Sean G un grupo finito y
G=G1G2Gs+1={e}G=H1H2Ht+1={e}
dos series de composición de G. Entonces s=t y existe una permutación σSt tal que para toda i{1,2,,s}
Gi/Gi+1Hσ(i)/Hσ(i)+1.

Demostración.

Sea G un grupo finito.
Por inducción sobre |G|.

H.I. Supongamos que el resultado se cumple si el orden del grupo es menor que |G|.

Sean
G=G1G2Gs+1={e}G=H1H2Ht+1={e}
dos series de composición de G.

Caso 1. G2=H2, entonces
G2Gs+1={e}H2Ht+1={e}
son series de composición de G2.

Dado que G1/G2 es simple, en particular G1/G2{eG1/G2} y así G=G1G2. En consecuencia G2G y |G2|<|G| y por H.I. s1=t1 y existe σSt1 tal que
Gi/Gi+1Hσ(i)/Hσ(i)+1i{2,,t}.

Como G1=G=H1 y G2=H2, entonces G1/G2=H1/H2.

Así, s=t y αSt con α(1)=1, α(i)=σ(i) para i{2,,t} cumple que
Gi/Gi+1Hα(i)/Hα(i)+1i{1,,t}.

Caso 2. G2H2

Como G2G y H2G se tiene que G2H2G.

Además
G2G2H2GH2G2H2G.

Como G/G2 es simple, por el ejercicio 2 de Grupos simples y series de grupos se tiene que G2 es un subgrupo normal de G máximo. Así, G2H2=G ó G2H2=G2. Análogamente G2H2=G ó G2H2=H2. Pero si G2H2=G2 y G2H2=H2 tendríamos que G2=H2, lo que es una contradicción. Por lo tanto (1)G2H2=G.

Como G2G entonces usamos el 2do Teorema de Isomorfía y nos dice que G2H2H2 y

G2H2/G2H2/(G2H2).

Pero, como también H2G, el 2do teorema de isomorfía también nos dice que G2H2G2 y
G2H2/H2G2/(G2H2).

Por (1) tenemos que G=G2H2 obteniendo así que

G/G2H2/(G2H2)G/H2G2/(G2H2).

Diagrama de retícula para el Segundo Teorema de Isomorfía.

Como G/G2 es simple, H2/(G2H2) también lo es. Así, G2H2 es un subgrupo normal máximo de H2.

Análogamente como G/H2 es simple, G2/(G2H2) también lo es. Así, G2H2 es un subgrupo normal máximo de G2.

Sea K3=G2H2. Consideremos una serie de composición para K3
K3K4Kr+1={e}.

Tenemos las siguientes series de composición
(2)G=G1G2Gs+1={e}(3)G=G1G2K3K4Kr+1={e}(4)G=H1H2K3K4Kr+1={e}(5)G=H1H2Ht+1={e}

Por el caso 1 aplicado a (2) y (3), s=r y los factores de composición de
G2Gs+1={e}G2K3K4Kr+1={e}
son isomorfos salvo por el orden en el que están colocados.

Por el caso 1 aplicado a (4) y (5), r=t y los factores de composición de
H2K3K4Kr+1={e}H2Ht+1={e}
son isomorfos salvo por el orden en el que están colocados.
Tenemos entonces que s=t.

Consideremos Gi/Gi+1 con i{2,,t}:

Si Gi/Gi+1Kj/Kj+1 con j{3,,t}, entonces sabemos que existe l{2,,t} tal que Kj/Kj+1Hl/Hl+1.

Por otro lado si Gi/Gi+1G2/K3, entonces G2/K3=G2/(G2H2)G/H2=H1/H2.

Entonces, para i{2,,t} se tiene que Gi/Gi+1 es isomorfo a Hl/Hl+1 para alguna l{1,2,,t}.

Finalmente consideremos el cociente G/G2. Tenemos que G/G2H2/(G2H2)=H2/K3Hm/Hm+1, para alguna m{2,,t}.

Por lo tanto para i{1,2,,t} se tiene que Gi/Gi+1 es isomorfo a Hl/Hl+1 para alguna l{1,2,,t}.

Así, los factores de composición de las series (1) y (4) son isomorfos salvo por el orden en que aparecen.

◻

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que el Teorema de Jordan-Hölder induce el Teorema fundamental de la aritmética.
    1. Toma el grupo cíclico Zn con nZ no necesariamente primo.
    2. Encuentra el orden de un subgrupo máximo de Zn.
    3. Observa la forma de las series de composición de Zn.
    4. Usa el teorema de Jordan-Hölder para concluir el Teorema fundamental de la aritmética.

Más adelante…

Nuestro curso abarca hasta este teorema, pero el estudio del álgebra continúa en un curso de Álgebra Moderna II donde se estudia la Teoría de anillos y la Teoría de Galois. Estas dos teorías son igualmente interesantes y apasionantes y tienen muchas aplicaciones.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.