2.1. TRANSFORMACIÓN LINEAL: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

INTRODUCCIÓN

¿Por qué el uso de la palabra «transformación»?
Como veremos, una transformación lineal es una función que va de un espacio lineal a otro espacio lineal. Y toda función, básica e informalmente, transforma un elemento del dominio en uno del codominio.

Ahora bien, no es una función «cualquiera». Y aunque sólo son dos condiciones las que se piden, estas transformaciones de un espacio vectorial en sí mismo o en otro espacio vectorial tienen un comportamiento que permite aplicaciones muy útiles tanto en matemáticas, como en física, ingenierías e incluso arte digital. Sus propiedades gracias a esas dos condiciones hacen de este tipo de funciones sea un punto esencial del Álgebra lineal.

TRANSFORMACIÓN LINEAL

Definición: Sean $V$ y $W$ $K$ – espacios vectoriales. Una función $T:V\longrightarrow W$ es una transformación lineal de $V$ en $W$ si:
$1)$ $\forall u,v\in V(T(u+v)=T(u)+T(v))$
$2)$ $\forall \lambda\in K(\forall v\in V(T(\lambda v)=\lambda T(v)))$

Nota: Al conjunto de las transformaciones lineales de $V$ a $W$ se le denota como $\mathcal{L}(V,W)$. Cuando una función cumple la condición $1)$ diremos que abre sumas mientras que si cumple la condición $2)$ diremos que saca escalares.

Observación: Si $T$ abre sumas, entonces manda al neutro de $V$ en el neutro de $W$, pues $\theta_W+T(\theta_V)=T(\theta_V)=T(\theta_V+\theta_V)=T(\theta_V)+T(\theta_V)$$\Rightarrow\theta_W+T(\theta_V)=T(\theta_V)+T(\theta_V)\Rightarrow\theta_W=T(\theta_V).$
En otras palabras, las transformaciones lineales envían el neutro del dominio en el neutro del codominio.

Ejemplos

  • Sea $V$ un $K$ – espacio vectorial.
    $T:V\longrightarrow V$ donde $\forall v\in V(T(v)=\theta_V)$ es una transformación lineal de $V$ en $V$

Justificación. Sean $\lambda\in K$ y $u,v\in V$.

Entonces $T(u+v)=\theta_V=\theta_V+\theta_V=T(u)+T(v)$ y
$\lambda T(v)=\lambda\theta_V=\theta_V=T(\lambda v)$

  • Sea $K$ un campo. $T:K[x]\longrightarrow K[x]$ donde $\forall p(x)\in K[x](T(p(x))=p'(x))$ es una transformación lineal de $K[x]$ en $K[x]$

Justificación. Sean $\lambda\in K$ y $p(x),q(x)\in K[x]$.

Entonces $T(p(x)+q(x))=(p(x)+q(x))’=p'(x)+q'(x)=T(p(x))+T(q(x))$ y
$T(\lambda p(x))=(\lambda p(x))’=\lambda p'(x)=\lambda T(p(x))$

Proposición: Sean $V,W$ $K$ – espacios vectoriales, $T:V\longrightarrow W$.
$T$ es lineal si y sólo si $\forall\lambda\in K$ $\forall u,v\in V$ $(T(\lambda u+v)=\lambda T(u)+T(v))$

Demostración: $\Longrightarrow )$ Sean $T:V\longrightarrow W$ lineal, $\lambda\in K$, $u,v\in V$.

$\begin{align*}
T(\lambda u+v)&=T(\lambda u)+T(v)\tag{$1$}\\
&=\lambda T(u)+T(v)\tag{$2$}\\
\therefore T(\lambda u+v)&=\lambda T(u)+T(v)
\end{align*}$

$\Longleftarrow )$ Sea $T$ tal que $\forall\lambda\in K$ $\forall u,v\in V$ $(T(\lambda u+v)=\lambda T(u)+T(v))$. Sean $\lambda\in K$ y $u,v\in V$.

$\begin{align*}
T(u+v)&=T(1_K u+v)\tag{}\\
&=1_KT(u)+T(v)\tag{hip}\\
&=T(u)+T(v)\tag{}\\
\therefore T(u+v)&=T(u)+T(v)
\end{align*}$

$\begin{align*}
T(\lambda u)&=T(\lambda u+\theta_V)\tag{}\\
&=\lambda T(u)+T(\theta_V)\tag{hip}\\
&=\lambda T(u)+\theta_W\tag{Obs.}\\
&=\lambda T(u)\tag{}\\
\therefore T(\lambda u)&=\lambda T(u)
\end{align*}$

$\therefore T$ es lineal

Ejemplos

  • $T:\mathbb{R}^3\longrightarrow\mathbb{R}^2$ donde $\forall (x,y,z)\in\mathbb{R}^3(T(x,y,z)=(x+y+z,2x-7y))$ es una transformación lineal de $\mathbb{R}^3$ en $\mathbb{R}^3$.

Justificación. Sean $(x,y,z),(u,v,w)\in\mathbb{R}^3$ y $\lambda\in\mathbb{R}$.

$T(\lambda(x,y,z)+(u,v,w))=T((\lambda x,\lambda y,\lambda z)+(u,v,w))$$=T(\lambda x + u,\lambda y + v,\lambda z + w)$$=(\lambda x + u+\lambda y + v+\lambda z + w,2(\lambda x + u)-7(\lambda y + v))$$=(\lambda(x+y+z)+u+v+w,2\lambda x-7\lambda y+2u-7v)$$=\lambda (x+y+z,2x-7y)+(u+v+w,2u-7v)$$=\lambda T(x,y,z)+T(u,v,w)$

  • Sea $K$ un campo.
    Si $A\in\mathcal{M}_{m\times n}(K)$, entonces $T:K^n\longrightarrow K^m$ donde $\forall X\in K^n(T(X)=AX)$ es una transformación lineal de $K^n$ en $K^m$.

Justificación. Sean $X,Y\in K^n,\lambda\in K$.

$T(\lambda X+Y)=A(\lambda X+Y)=\lambda AX + AY=\lambda T(X)+T(Y)$.

Tarea Moral

  1. Sean $V$ y $W$ espacios vectoriales sobre un campo $F$.
    Sea $T: V \longrightarrow W$ una transformación lineal. Demuestra que para todo $v_1,v_2,…,v_n\in V$ y para todo $\lambda_1, \lambda_2,…,\lambda_n\in F$ con $n\in\mathbb{N}^{+}$ se tiene que $T(\lambda_1 v_1 + \lambda_2 v_2 + … + \lambda_n v_n) = \lambda_1 T(v_1) + \lambda_2 T(v_2) + … + \lambda_n T(v_n)$.
  2. Sea $T:\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ una transformación lineal tal que $T(1,0)=(2,4)$ y $T(1,1)=(8,5)$. Determina si es posible hallar la regla de correspondencia de $T$, es decir, $T(x,y)$ para todo $(x,y)\in\mathbb{R}^2$. Si no es posible argumenta por qué y si es posible encuéntrala.
  3. ¿Existe una transformación lineal $T:\mathbb{R}^3\longrightarrow \mathbb{R}^2$ tal que $T(1,2,4)=(1,2)$ y $T(-2,-4,-8)=(-2,1)$?

Más adelante…

Veremos ahora cuatro elementos que surgen de una transformación lineal:
Núcleo e imagen, que son dos conjuntos relevantes para dominio y codominio.
Nulidad y rango, que son dos números que nos revelan dimensiones. Comenzaremos por definir el núcleo y la imagen de una transformación lineal y probando que son subespacios vectoriales.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.