1TFC

Los TFC (Teoremas Fundamentales de los Cuadraditos)

Esta entrada está motivada por una pregunta en el grupo de Matemáticos de Facebook. Palabras más, palabras menos, alguien preguntaba por qué “derivar es el inverso de integrar”, si uno tiene que ver con sacar un área y el otro tiene que ver con sacar una pendiente.

La idea formal que está detrás de esto de que sean “inversas” son los teoremas fundamentales del cálculo (TFC). Pero en esta entrada no me quiero meter con definiciones de límite ni cosas por el estilo. A fin de cuentas es un blog y estamos navegando tranquilos. Así que déjenme trabajar “al ahí se va”, osea, informalmente. La idea es entender por qué derivar e integrar son operaciones inversas “con dibujitos” y en un caso más sencillo: el caso discreto. Veremos los teoremas fundamentales de los cuadraditos (TFC). ¡Oh no! ¡Se confunden las siglas! Bueno, ni modo.

Los cuadraditos

Todo empieza con algunos cuadraditos ordenados en columnas. De izquierda a derecha, tenemos 1, 2, 5, 3, 2, 4 y 2 cuadraditos en cada columna. Le voy a llamar C_j a la cantidad de cuadraditos en la columna j. Por ejemplo, C_3=5.

Funcion

El área de cuadraditos y la diferencia de cuadraditos

Ahora imagina que queremos ver todos los cuadraditos que quedan acumulados hasta la columna j. Es decir, queremos el área hasta la columna j y por eso le llamaremos A_j a la cantidad de cuadritos en las primeras j columnas. Por ejemplo, el área naranja tiene los cuadraditos hasta la columna 5 y por tanto A_5=1+2+5+3+2=13.

g6874

Otra idea que también va a ser importante es la diferencia de cuadraditos, es decir, cuántos necesitamos para pasar de una columna a otra.  A la cantidad de cuadraditos para pasar de la columna j a la j+1 le llamamos D_j. Observa que justo D_j=C_{j+1}-C_j. Por ejemplo, en la siguiente figura, D_5=4-2=2, osea hay que agregar dos cuadraditos. Por otro lado, D_4=2-3=-1, osea de la columna 4 a la 5 quitamos un cuadradito.g6895

El primer TFC

Observa el siguiente dibujo:

1TFC

Si consideramos el área hasta donde está en naranja, tenemos A_3. Si consideramos hasta la columna verde, tenemos A_4. Justo para pasar de un área a otra, tenemos que agregar C_4. Esto es un hecho más general, que enuncio a continuación.

Primer teorema fundamental de los cuadraditos:

“La diferencia entre A_j y A_{j+1} justo es C_{j+1}, en símbolos: A_{j+1}-A_j=C_{j+1}

El segundo TFC

Nuestros numeritos D_j están buenos para saber cómo cambia la cantidad de cuadraditos de una columna a la siguiente. Pero a lo mejor queremos saber cuánto cambiamos desde el principio hasta el final como en la figura. O de la columna m a la columna n.

g6741¡Aprovechemos que sabemos cómo cambiar de uno en uno! Lo que cambiamos en total de principio a fin es la suma de todos los cambios de uno en uno. Es decir, podemos escribir:

C_7-C_1=(C_7-C_6)+(C_6-C_5)+\ldots+(C_2-C_1)=D_6+D_5+\ldots+D_1

Esta idea nos lleva al siguiente teorema

Segundo teorema fundamental de los cuadraditos:

“Para encontrar la diferencia de cuadritos de la columna m a la n, basta sumar las diferencias D_m, D_{m+1},\ldots, D_{n-1}, en símbolos: \sum_{j=m}^{n-1} D_j = C_n-C_m.”

Y le metemos infinitos y…

Bueno, pues ahí están los TFC. En realidad si uno lo piensa, son ideas sencillas. Pero pensemos un poco qué sucede cuando metemos infinitos. La suma y diferencia de cuadraditos son los equivalentes discretos a la integral y la derivada. O dicho al revés, la integral y la derivada es lo que sucede cuando metemos una infinidad de columnas.

Recordemos que si tenemos una función f, entonces usamos los símbolos F y f' para hablar de la integral y la derivada. Saltándonos hipótesis y otras cosas latosas, comparemos los TFCuadraditos con los TFCálculo.

Las primeras versiones de ambos son A_{j+1}-A_j=C_{j+1} y F'(x)=f(x). En ambos casos nos está diciendo “si vemos la diferencia inmediata de sumar cosas, entonces obtenemos el último sumando”.

Las segundas versiones de ambos son \sum_{j=m}^{n-1} D_j = C_n-C_m y \int_a^b f'(x)\, dx = f(b)-f(a). Ambos nos dicen “al sumar las pequeñas diferencias inmediatas, obtenemos la diferencia total”.

¡Los teoremas fundamentales del cálculo son los teoremas fundamentales de cuadraditos! Bueno, pero son más fufufu y hay que tenerles más respeto por que requieren la noción de límite y más madurez matemática.

Extra

Voy a dejarle hasta aquí, pero este cambio de lenguaje entre sucesiones y funciones va más allá de los teoremas fundamentales del cálculo. También se pueden hacer analogías similares entre las ecuaciones en diferencias y las ecuaciones diferenciales. O entre la integración por partes y las sumas de Abel. O intentar dar una definición de continuidad para sucesiones de enteros (por ejemplo |a_{n+1}-a_n|\leq 1) y encontrarle su teorema del valor intermedio.

Bueno, ya que me puse a hacer dibujitos para esta entrada, también hice otro, que es algo así como una teselación hexagonal. Más o menos. Se las dejo:

g6602

¿Qué otras analogías entre funciones discretas y contínuas conoces?

6 pensamientos en “Los TFC (Teoremas Fundamentales de los Cuadraditos)

  1. Salvador Pérez

    Me ha encantado tu blog sobre los Teoremas fundamentales de “Los Cuadraditos”.

    Creo que es una muy buena manera de introducir los Teoremas fundamentales del Cálculo. Aunque después se le dé el rigor que merece.

    Por favor si se te ocurren más cosas como estás, me encantará conocerlas.

    Muchas muchas gracias.

    Responder
    1. LeoLeo Autor

      Hola Salvador. Gracias por el comentario. Estaría padre si compartieras la entrada a personas que crees que les pueda servir. Si se me ocurren más cosas así, las publicaré por acá. Saludos.

      Responder
  2. Eolo vega

    Hola yo estudio matemáticas en ciencias que me recomiendas como para adquirir destreza o algún camino divertido que seguir o que opciones hay jeje se que es muy general pero pues siempre los que ya recorrieron un camino lo conocen mejor qu elos. Que van empezando gracias saludos infinitos

    Responder
    1. LeoLeo Autor

      Hola Eolo. Me alegra que andes ahí en ciencias. Espero que en general disfrutes mucho la carrera. Un primer paso es darse cuenta que las matemáticas dejan de ser algo estático y ahora se convierten en algo más creativo. Dar demostraciones y crear ideas para probar cosas se parece un poco más a crear que a repetir.

      Te recomiendo complementar tu aprendizaje con una parte de técnicas de resolución de problemas. Puedes consultar más acerca de esto en los videos de matemáticas que tengo en este blog. Los puedes encontrar en la parte superior. Además, ahí en la Facultad de ciencias pronto empezará un proyecto tipo club de resolución de problemas para que personas entusiastas como tú puedan ir a aprender un poco más y seguir disfrutando de las matemáticas.

      Responder
  3. Raul

    Muy interesante tu Blog, por cierto voy a aplicar para la maestria en Ing. Civil en la FES Acatlan, que libro me recomiendas para aprobar el examen de admision en MAtematicas. Soy de Ecuador, saludos

    Responder
    1. LeoLeo Autor

      Hola Raul:
      Chin, creo que ya es algo tarde para responderte. De cualquier forma lo hago. Para poder recomendarte algún libro, tendría que conocer un poco más cómo es el examen de admisión de la maestría en Ing. Civil.
      Si quieres cuéntame un poco de eso y te puedo decir qué se me ocurre.

      Responder

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *