Álgebra Lineal I: Problemas de transformaciones lineales, vectores independientes y forma matricial

El objetivo de esta entrada es mostrar algunos problemas resueltos sobre los temas vistos el jueves y viernes de la semana pasada.

Problema 1. Sean

v_1=(1,0,0), v_2=(1,1,0), v_3=(1,1,1)

y sea T:\mathbb{R}^3\longrightarrow \mathbb{R}^2 una transformación lineal tal que

T(v_1)=(3,2), T(v_2)=(-1,2), T(v_3)=(0,1)

Calcula el valor de T(5,3,1).

 

Solución. Primero observemos que {(1,0,0), (1,1,0), (1,1,1)} es una base de \mathbb{R}^3, entonces existen a,b,c\in \mathbb{R} tales que

    \[(5,3,1)=a(1,0,0)+b(1,1,0)+c(1,1,1).\]


Si logramos expresar a (5,3,1) de esta forma, después podremos usar que T es lineal para encontrar el valor que queremos. Encontrar los valores de a,b,c que satisfacen la ecuación anterior lo podemos ver como el sistema de ecuaciones:

    \[\begin{pmatrix}1 & 1 & 1\\0 & 1 & 1\\0 & 0 & 1\end{pmatrix} \begin{pmatrix}a\\b\\c\end{pmatrix} = \begin{pmatrix}5\\3\\1\end{pmatrix}.\]

Ahora consideramos la matriz extendida del sistema y la reducimos

    \[\begin{pmatrix}1 & 1 & 1 & 5\\0 & 1 & 1 & 3\\0 & 0 & 1 & 1\end{pmatrix} \longrightarrow \begin{pmatrix}1 & 0 & 0 & 2\\0 & 1 & 1 & 3\\0 & 0 & 1 & 1\end{pmatrix} \longrightarrow \begin{pmatrix}1 & 0 & 0 & 2\\0 & 1 & 0 & 2\\0 & 0 & 1 & 1\end{pmatrix}\]


Así, a=2, b=2, c=1.

Finalmente, usando que T es transformación lineal,

    \begin{align*}T(5,3,1)&=T(2(1,0,0)+2(1,1,0)+(1,1,1))\\&=2T(1,0,0)+2T(1,1,0)+T(1,1,1)\\&=2(3,2)+2(-1,2)+(0,1)\\&=(6,4)+(-2,4)+(0,1)\\&=(4,9).\end{align*}

\square

Problema 2. Sea P_n(\mathbb{R}) el espacio de los polinomios de grado a los más n con coeficientes reales.

Considera la transformación lineal T:P_3(\mathbb{R})\longrightarrow P_2(\mathbb{R}) dada por T(p(x))=p'(x).

Sean \beta=\{1,x,x^2,x^3\} y \gamma=\{1,x,x^2\} las bases canónicas de P_3(\mathbb{R}) y P_2(\mathbb{R}), respectivamente. Encuentra la representación matricial de la transformación T.

Solución. Primero le aplicamos T a cada uno de los elementos de \beta

T(1)=0\cdot 1 + 0\cdot x + 0\cdot x^2
T(x)=1\cdot 1 + 0\cdot x + 0\cdot x^2
T(x^2)=0\cdot 1 + 2\cdot x + 0\cdot x^2
T(x^3)=0\cdot 1 + 0\cdot x + 3\cdot x^2

Así,

    \[\begin{pmatrix}0 & 1 & 0 & 0\\0 & 0 & 2 & 0\\0 & 0 & 0 & 3\end{pmatrix}\]


es la representación matricial de T con respecto a las bases canónicas.

\square

Problema 3. Sea V=P_2(\mathbb{R}). Considera las transformaciones

T:\mathbb{R}^3\longrightarrow V, T(a,b,c)=a+2bx+3cx^2

y

S:V\longrightarrow M_2(\mathbb{R}), S(a+bx+cx^2)=\begin{pmatrix}a & a+b\\a-c & b\end{pmatrix}.

Consideramos las bases B_1=\{1,x,x^2\} de V, B_2 la base canónica de \mathbb{R}^3 y B_3=\{E_{11}, E_{12}, E_{21}, E_{22}\} de M_2(\mathbb{R}).

  1. Verifica que T y S son transformaciones lineales.
  2. Escribe las matrices asociadas a T y S con respecto a las bases anteriores.
  3. Encuentra la matriz asociada a la composición S\circ T con respecto a las bases anteriores.
  4. Calcula explícitamente S\circ T, después encuentra directamente su matriz asociada con respecto a las bases anteriores y verifica que el resultado obtenido aquí es el mismo que en el inciso anterior.

Solucion. 1. Sea u\in \mathbb{R} y (a,b,c), (a',b',c')\in \mathbb{R}^3.
Entonces

T(u(a,b,c)+(a',b',c'))=T(au+a',bu+b',cu+c')

=(au+a')+2(bu+b')x+3(cu+c')x^2
=u(a+2bx+3cx^2)+(a'+2b'x+3c'x^2)=uT(a,b,c)+T(a',b',c')

Así, T es lineal.

Ahora, sea u\in \mathbb{R} y a+bx+cx^2, a'+b'x+c'x^2\in V.
Entonces

S(u(a+bx+cx^2)+(a'+b'x+c'x^2))=S(ua+a'+(ub+b')x+(uc+c')x^2)
=\begin{pmatrix}ua+a' & (ua+a')+(ub+b')\\ua+a'-(uc+c') & ub+b'\end{pmatrix}
=u\begin{pmatrix}a & a+b\\a-c & b\end{pmatrix} + \begin{pmatrix}a' & a'+b'\\a'-c' & b'\end{pmatrix}
=uS(a+bx+cx^2)+S(a'+b'x+c'x^2)

Así, S es lineal.

2. Empezamos calculando la matrix Mat_{B_1,B_2}(T) de T con respecto de B_1 y B_2.
Sea B_2=\{e_1,e_2,e_3\} la base canónica de \mathbb{R}^3, entonces

T(e_1)=T(1,0,0)=1=1\cdot 1 + 0\cdot x + 0\cdot x^2,
T(e_2)=T(0,1,0)=2x= 0\cdot 1 + 2\cdot x + 0 \cdot x^2,
T(e_3)=T(0,0,1)=3x^2= 0\cdot 1 + 0\cdot x + 3 \cdot x^2,

Así,

Mat_{B_1,B_2}(T)=\begin{pmatrix}1 & 0 & 0\\0 & 2 & 0\\0& 0 & 3\end{pmatrix}.

De manera análoga, calculamos

S(1)=\begin{pmatrix}1 & 1\\1 & 0\end{pmatrix} = 1 \cdot E_{11} + 1 \cdot E_{12} + 1 \cdot E_{21} + 0\cdot E_{22},
S(x)=\begin{pmatrix}0 & 1\\0 & 1\end{pmatrix} = 0 \cdot E_{11} + 1 \cdot E_{12} + 0 \cdot E_{21} + 1\cdot E_{22},
S(x^2)=\begin{pmatrix}0 & 0\\-1 & 0\end{pmatrix} = 0 \cdot E_{11} + 0 \cdot E_{12} + (-1) \cdot E_{21} + 0\cdot E_{22},

Por lo tanto

Mat_{B_3,B_1}(S)=\begin{pmatrix}1 & 0 & 0\\1 & 1 & 0\\1 & 0 & -1\\0 & 1 & 0\end{pmatrix}.

3. Usando el teorema visto en la entrada del viernes pasado 

Mat_{B_3,B_2}(S\circ T)=Mat_{B_3,B_1}(S)\cdot Mat_{B_1,B_2}(T)


=\begin{pmatrix}1 & 0 & 0\\1 & 1 & 0\\1 & 0 & -1\\0 & 1 & 0\end{pmatrix} \begin{pmatrix}1 & 0 & 0\\0 & 2 & 0\\0 & 0 & 3\end{pmatrix} = \begin{pmatrix}1 & 0 & 0\\1 & 2 & 0\\1 & 0 & -3\\0 & 2 & 0\end{pmatrix}.

4. Calculamos

(S\circ T)(a,b,c)=S(T(a,b,c))= S(a+2bx+3cx^2)=\begin{pmatrix}a & a+2b\\a-3c & 2b\end{pmatrix}.

Luego,

(S\circ T)(e_1)=\begin{pmatrix}1 & 1\\1 & 0\end{pmatrix} = 1\cdot E_{11} + 1 \cdot E_{12} + 1 \cdot E_{21} + 0 \cdot E_{22}
(S\circ T)(e_2)=\begin{pmatrix}0 & 2\\0 & 2\end{pmatrix} = 0\cdot E_{11} + 2 \cdot E_{12} + 0 \cdot E_{21} + 2 \cdot E_{22}

y

(S\circ T)(e_2)=\begin{pmatrix}0 & 0\\-3 & 0\end{pmatrix} = 0 \cdot E_{11} + 0 \cdot E_{12} + -3 \cdot E_{21} + 0 \cdot E_{22}

Así, la matriz asociada a S\circ T es

Mat_{B_3,B_2}(S\circ T)= \begin{pmatrix}1 & 0 & 0\\1 & 2 & 0\\1 & 0 & -3\\0 & 2 & 0\end{pmatrix}

Que es justo lo que se obtuvo en el inciso 3.

\square

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.