Archivo de la etiqueta: triangular inferior

Cálculo Diferencial e Integral III: Determinantes

Por Alejandro Antonio Estrada Franco

Introducción

El determinante de una matriz cuadrada es un número asociado a esta. Como veremos, los determinantes nos proporcionarán información de interés para varios problemas que se pueden poner en términos de matrices.

Recuerda que los temas de esta unidad son tratados a manera de repaso, por lo cual no nos detenemos en detallar las demostraciones, ni en extender las exposiciones de las definiciones. Para mayor detalle, te remitimos al curso de Álgebra Lineal I, específicamente comenzando con la entrada Transformaciones multilineales. Aún así, es recomendable que revises estas notas en el curso de Cálculo Diferencial e Integral III, pues sintetizamos los temas de tal manera que recuperamos los conceptos relevantes para el cálculo de varias variables. Así mismo, en ocasiones, abordamos las definiciones y resultados de manera un poco distinta, y es muy instructivo seguir los mismos conceptos abordados con un sabor ligeramente distinto.

Permutaciones

Recordemos que en la entrada anterior definimos para cada $n\in \mathbb{N}$ el conjunto $[n]=\{1, 2,\ldots, n\}$.

Definición. Una permutación del conjunto $[n]$ es una función biyectiva $\sigma :[n]\rightarrow [n]$. Una forma de escribir a $\sigma$ de manera más explícita es la siguiente:
\[ \sigma = \begin{pmatrix} 1 & 2 & \dots & n \\
\sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix} \]

Podemos pensar también a una permutación como un reacomodo de los números $1, 2, …, n$. Pensado de esta manera, escribimos $\sigma =\sigma(1) \sigma(2)\dots \sigma(n)$.

El conjunto de todas las permutaciones del conjunto $[n]$ se denota como $S_n$. Una observación interesante es que $S_{n}$ tiene $n!$ elementos.

Definición. Para $\sigma \in S_{n}$, una inversión en $\sigma$ consiste en un par $(i,k)\in [n]\times [n]$ tal que $i>k$ pero $i$ precede a $k$ en $\sigma$ cuando se considera $\sigma$ como una lista. Diremos que $\sigma$ es permutación par o impar según tenga un número par o impar de inversiones.

Ejemplo. Consideremos $\sigma=12354$ permutación en $[5]$. Tenemos que $(5,4)$ es una inversión en $\sigma$ pues $5>4$ pero en la permutación $5$ precede a $4$. Al tener $\sigma$ una sola inversión, es una permutación impar.

$\triangle$

Definición. El signo de $\sigma$, denotado $\text{sign}(\sigma)$ se define como:
\[
\text{sign}(\sigma )= \begin{cases} 1 & \text{si $\sigma$ es par} \\
-1 & \text{si $\sigma$ es impar.}\end{cases}
\]

Sea $A\in M_{n}(\mathbb{R})$. Pensemos en un producto de $n$ entradas de $A$ tomadas de tal manera que se eligió una y sólo una de cada fila y columna. Podemos reordenar los números para poner en orden la fila de la que tomamos cada uno, y escribir el producto como
\begin{equation}
a_{1j_{1}} a_{2j_{2}}\dots a_{nj_{n}}.
\label{eq:producto}
\end{equation}

Así, $a_{kj_{k}}$ nos dice que en la fila $k$ tomamos la entrada de la columna $j$. Como se eligió una y sólo una entrada por columna, tenemos que $j_1,\ldots,j_n$ es una permutación de $[n]$. Y viceversa, cada permutación $\sigma =j_{1}\dots j_{n} \in S_{n}$ determina un producto como en \eqref{eq:producto}. Por ello la matriz $A$ nos entrega $n!$ productos con esta característica.

Determinantes en términos de permutaciones

A partir de las permutaciones podemos definir a los determinantes.

Definición. El determinante de la matriz $A$, denotado por $\det(A)$, se define como:
\[
\det(A)=\sum_{\sigma \in S_{n}} \left(\text{sign}(\sigma)\prod_{i=1}^{n} a_{i\sigma (i)}\right)
\]
donde
\[
\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\
\sigma (1) & \sigma (2) & \dots & \sigma (n)
\end{pmatrix}
\]

Ejemplo. Para la matriz \[ A= \begin{pmatrix} 0 & 2 & 1 \\ 1 & 2 & 0 \\ 3 & 0 & 1 \end{pmatrix} \] tomemos en cuenta las permutaciones del conjunto $[3]$ las cuales son: \[ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \]

De acuerdo con la definición de determinante, tenemos:

\begin{align*}
\det(A)=&(1)a_{11}a_{22}a_{33}+(-1)a_{11}a_{23}a_{32}+(-1)a_{12}a_{21}a_{33}+\\
&(1)a_{12}a_{23}a_{31}+(1)a_{13}a_{22}a_{31}+(-1)a_{13}a_{21}a_{32}\\
=&0\cdot 2\cdot 1+(-1)0\cdot 0\cdot 0+(-1)2\cdot 1\cdot 1+\\
&(1)2\cdot 0\cdot 3+(1)1\cdot 2\cdot 3+(-1)1\cdot 1\cdot 0\\
=&4.
\end{align*}

$\triangle$

Propiedades de los determinantes

Veamos algunas de las propiedades que tienen los determinantes. Aprovecharemos para introducir algunas matrices especiales.

Definición. La matriz identidad $I\in M_{n}(\mathbb{R})$ es aquella que cumple que en las entradas de la forma $(i,i)$ son iguales a 1 y el resto de las entradas son iguales a 0.

Definición. Diremos que una matriz $A\in M_n(\mathbb{R})$ es una matriz triangular superior si cumple $a_{ij}=0$ para $i>j$. La llamaremos triangular inferior si cumple $a_{ij}=0$ para $i<j$. Finalmente, diremos que es diagonal si cumple $a_{ij}=0$ para $i\neq j$ (en otras palabras, si simultáneamente es triangular superior e inferior).

Definición. Sea $A\in M_{m,n}(\mathbb{R})$. La transpuesta de la matriz $A$, denotada por $A^t$, es la matriz en $M_{n,m}(\mathbb{R})$ cuyas entradas están definidas como $(a^{t})_{ij} =a_{ji}$.

El siguiente resultado enuncia algunas propiedades que cumplen los determinantes de la matriz identidad, de matrices transpuestas, y de matrices triangulares superiores, triangulares inferiores y diagonales.

Proposición. Sea $A\in M_{n}(\mathbb{R})$. Se cumple todo lo siguiente.

  1. $\det(A)=\det(A^{t})$.
  2. Si $A$ tiene dos filas iguales $\det(A)=0$.
  3. Si $A$ tiene dos columnas iguales $\det(A)=0$.
  4. Si $A$ es triangular superior, triangular inferior, o diagonal, $\det(A)=\prod_{i=1}^{n} a_{ii}$.
  5. $\det(I_n)=1$.

Demostración.

  1. Notemos que (tarea moral) $\text{sign}( \sigma )= \text{sign}( \sigma ^{-1})$, así tenemos que
    \begin{align*}
    \det(A^{t})&=\sum_{\sigma \in S_{n}} \text{sign}(\sigma)a_{\sigma (1) 1}\dots a_{\sigma (n) n}\\
    &=\sum_{\sigma \in S_{n}} \text{sign}(\sigma ^{-1})a_{1\sigma (1)}\dots a_{n\sigma (n)}\\
    &= \sum_{\sigma \in S_{n}} \text{sign}(\sigma)a_{1\sigma (1)}\dots a_{n\sigma (n)}\\&= \det(A).
    \end{align*}
  2. Si tenemos dos filas iguales, en cada producto $a_{1\sigma (1)}\cdots a_{n\sigma (n)}$ tenemos dos factores de la misma fila, por tanto para cada producto tenemos otro igual en la suma solo que con signo contrario (signo de la permutación correspondiente); al hacer la suma estos sumandos se anularán por pares resultando en cero.
  3. Mismo argumento que en el inciso anterior.
  4. Si tenemos una matriz triangular, ya sea superior, o inferior $\prod_{i=1}^{n} a_{i\sigma (i)}\neq 0$ sólo cuando $\sigma(i)=i$ ya que en otro caso este producto siempre tendrá algún factor cero.
  5. Es un corolario de la propiedad anterior, pues la matriz identidad es una matriz diagonal con unos en la diagonal.

$\square$

Otra propiedad muy importante del determinante es que es multiplicativo. A continuación enunciamos el resultado, y referimos al lector a la entrada Propiedades de determinantes para una demostración.

Teorema. Sean $A$ y $B$ matrices en $M_n(\mathbb{R})$. Se tiene que $$\det(AB)=\det(A)\det(B).$$

Mas adelante

En la siguiente entrada revisaremos la teoría de sistemas de ecuaciones lineales. Comenzaremos definiéndolos, y entendiéndolos a partir de las operaciones elementales que definimos en la entrada anterior. Hablaremos un poco de cómo saber cuántas soluciones tiene un sistema de ecuaciones. Así mismo veremos que en ciertos sistemas de ecuaciones lineales, podemos asociar una matriz cuyo determinante proporciona información relevante para su solución.

Un poco más adelante también hablaremos de diagonalizar matrices. A grandes rasgos, esto consiste en encontrar representaciones más sencillas para una matriz, pero que sigan compartiendo muchas propiedades con la matriz original. El determinante jugará de nuevo un papel muy importante en esta tarea.

Tarea moral

  1. Sea $\sigma \in S_{n}$. Muestra que su inversa, $\sigma ^{ -1}$ también es una permutación. Después, muestra que
    \[\text{sign}(\sigma)= \text{sign}(\sigma ^{-1}).\]
    Sugerencia: no es difícil hacerlo por inducción sobre el número de inversiones.
  2. Encuentra explícitamente cuántas inversiones tiene la permutación $\sigma$ en $S_n$ dada por $S(j)=n-j+1$.
  3. Escribe con más detalle la demostración de que una matriz y su transpuesta tienen el mismo determinante. Puedes pensarlo como sigue. Toma \[ \det(A)=\sum_{\sigma \in S_{n}} \text{sign}(\sigma)a_{1\sigma(1)}\cdot \dots \cdot a_{n\sigma (n)}.\] Supón que las filas $s$ y $t$ son iguales; para cada factor argumenta por qué \[ a_{1\sigma (1)}\cdots a_{s\sigma (s)} \cdots a_{t\sigma (t)}\cdots a_{n\sigma (n)} \] el factor \[ a_{1\sigma (1)}\cdots a_{t\sigma (t)}\cdots a_{s\sigma (s)} \cdots a_{n\sigma (n)} \] donde permutamos el $t$-ésimo factor con el $s$-ésimo también está en la suma, y por qué ambos son de signos contrarios.
  4. Demuestra que el producto de una matriz triangular superior con otra matriz triangular superior también es una matriz triangular superior. Enuncia y demuestra lo análogo para matrices triangulares inferiores, y para matrices diagonales.
  5. Argumenta con más detalle por qué el determinante de una matriz triangular superior es el produto de las entradas en su diagonal. Específicamente, detalla el argumento de las notas que dice que «en otro caso, este producto siempre tendrá algún factor cero».

Entradas relacionadas