Introducción
En entradas anteriores platicamos de propiedades aritméticas de los números enteros, del anillo de enteros módulo $n$ y de los números complejos. Vimos cómo pueden ser de utilidad para resolver problemas de matemáticas de distintos tipos. Ahora veremos temas de funciones continuas.
En esta entrada, y las subsecuentes, entraremos al mundo del cálculo y de la continuidad. En el transcurso de diez entradas veremos cómo aprovechar distintas herramientas de continuidad, cálculo diferencial e integral.
Seguiremos con la costumbre de no demostrar los teoremas principales que usemos, pero podemos recomendar al lector las siguientes fuentes para consultar los fundamentos
- El libro clásico Cálculo de Michael Spivak
- La serie de videos de Cálculo en Khan Academy
- La serie de videos de Cálculo en Khan Academy en español
El orden de presentación de los temas viene del libro Problem Solving Strategies de Loren Larson.
Recordatorio de límites y continuidad
Sea $A$ un subconjunto de $\mathbb{R}$ y $f:A\to \mathbb{R}$ una función. Intuitivamente, el límite de $f(x)$ cuando $x$ tiende a $a$ es $c$ si al acercarnos a $x$ en $A$ tenemos que $f(x)$ se acerca a $c$.
De manera formal, tenemos que $$\lim_{x\to a} f(x) = c$$ si para todo $\epsilon>0$ tenemos que existe un $\delta >0$ tal que si $x\in A$ y $|x-a|<\delta$, entonces $|f(x)-c|<\epsilon$. Esta es la definición épsilon-delta. Otra forma de denotar lo mismo es decir que $f(x)\to c$ cuando $x\to a$. Los límites se comportan bien con las operaciones.
Proposición. Sean $f:A\to \mathbb{R}$ y $g:A\to \mathbb{R}$ funciones. Sea $a\in A$. Si $f(x)\to c$ y $g(x)\to d$ cuando $x\to a$, entonces
- $f(x)+g(x)\to c+d$ cuando $x\to a$
- $f(x)g(x)\to cd$ cuando $x\to a$
- Si $d\neq 0$, $f(x)/g(x)\to c/d$ cuando $x\to a$
Definición. Sea $f:A\to \mathbb{R}$ una función real y $a\in A$. Decimos que $f$ es continua
- en $a$ si $f(x)\to f(a)$ cuando $x\to a$.
- en $S\subset A$ si es continua en todo $a\in S$.
Si $f$ es continua en $A$, simplemente decimos que es continua.
Como los límites se comportan bien con las operaciones, tenemos que las funciones continuas también se comportan bien con las operaciones.
Proposición. Sean $f:A\to \mathbb{R}$ y $g:A\to \mathbb{R}$ funciones. Sea $a\in A$. Si $f$ y $g$ son continuas en $a$, entonces
- $f+g$ es continua en $a$
- $fg$ es continua en $a$
- Si $g(a)\neq 0$, $f/g$ es continua en $a$
Ejercicio. Muestra que $\frac{x^2+3x+1}{x+1}$ es continua para todo $x\neq -1$.
Sugerencia. No uses la definición épsilon-delta directamente en la función, pues será complicado. Demuestra que $f(x)=x$ es continua con la definición epsilon-delta y de ahí usa las demás propiedades enunciadas en las proposiciones.
Funciones continuas y sucesiones
Las funciones continuas y las sucesiones están cercanamente relacionadas. Recuerda que una sucesión de reales es un conjunto ordenado de reales, uno por cada entero positivo, al cual denotaremos así: $$\{x_n\}=\{x_1,x_2,x_3,x_4,\ldots\}.$$
Decimos que la sucesión $\{x_n\}$ converge a $c$, en símbolos $$\lim_{n\to \infty} x_n = c$$ si para cada $\epsilon >0$ existe un natural $N$ tal que si $n\geq N$, entonces $|x_n-c|<\epsilon$. También decimos esto como $x_n\to c$ cuando $n\to \infty$, o simplemente $x_n\to c$.
Teorema. La función $f:A\to \mathbb{R}$ es continua en $a\in A$ si y sólo si para toda sucesión de reales $\{x_n\}$ en $A$ tal que $\{x_n\}\to a$ se tiene que $f(x_n)\to f(a)$.
Este teorema tiene múltiples usos. Nos dice que para verificar que una sucesión sea continua en un punto $a$, nos basta ver qué le hace a todas las sucesiones que convergen a $a$. Si alguna de ellas no converge a $f(a)$, entonces la función no es continua. Si todas ellas convergen a $f(a)$, entonces la función sí es continua. Veamos un ejemplo de su aplicación
Problema. Considera la función $f:[0,1]\to \mathbb{R}$ la función tal que a cada irracional le asigna $0$ y a cada racional $p/q$ (expresado con $p$ y $q$ positivos y primos relativos) le asigna $1/q$. Estudia la continuidad de esta función.
Sugerencia pre-solución. La continuidad de la función se comporta distinto para los racionales y para los irracionales. Para ver qué sucede en los racionales, acércate con una sucesión de irracionales.
Solución. Demostraremos que $f$ es continua en los irracionales y no es continua en los racionales.
Tomemos un racional $r=p/q<1$. Observa que la sucesión $x_n=r+\frac{\sqrt{3}}{n}$ para $n$ suficientemente grande cae en $[0,1]$ y $x_n\to r$. Cada término de la sucesión es irracional. Así, $f(x_n)=0$ para todo término, de modo que $f(x_n)\to 0\neq 1/q = f(r)$. Esto muestra que $f$ no es continua en $r$. Para $r=1$ podemos hacer el mismo truco con $x_n=r-\frac{\sqrt{3}}{n}$ para ver que no es continua.
Tomemos ahora un número irracional $r\in[0,1]$. Tenemos que $f(r)=0$. Mostraremos que para toda sucesión $\{x_n\}$ tal que $x_n\to r$, tenemos que $f(x_n)\to 0$. Tomemos $M$ un entero positivo. Consideremos el conjunto $A_M$ de todos los números racionales en $[0,1]$ con denominador a lo más $M$.
Como $r$ es irracional, las distancias de $r$ a los números de $A_M$ son todas positivas, así que su mínimo es un real positivo $\epsilon$. Como $x_n\to r$, existe un $N$ tal que si $n\geq N$, entonces $|x_n-r|<\epsilon$. Así, para $n\geq N$, no se puede que $x_n$ esté en $A_M$. De este modo, para $n\geq N$ tenemos que $|f(x_n)|<1/M$. Esto muestra que $f(x_n)\to 0$. Así, $f$ es continua en los irracionales.
$\square$
Por supuesto, algunas veces es útil regresar a la definición epsilon-delta para funciones continuas.
Problema. Sea $f:\mathbb{R}\to\mathbb{R}$ una función inyectiva y continua tal que $f(2x-f(x))=x$ y tal que tiene por lo menos un punto fijo. Muestra que $f(x)=x$ para todo $x\in \mathbb{R}$.
Sugerencia pre-solución. Antes de intentar cualquier idea de cálculo, hay que demostrar que si se cumple $f(y)=y+r$, entonces $f(y+nr)=(y+nr)+r$. Para demostrar esto para $n$ negativa, usa inducción. Para $n$ positiva necesitarás jugar un poco con la hipótesis. Aplica la hipótesis $f(2x-f(x))=x$ para $x=f(z)$ y usa la inyectividad. De ahí obtendrás una igualdad que te servirá para encontrar $f(y+nr)$ para $n$ positivas.
Solución. La primera observación es que el conjunto de puntos fijos de una función continua es cerrado, pues si $\{x_n\}$ es una sucesión de puntos fijos que converge a un punto $c$, entonces por un lado $\{f(x_n)\}=\{x_n\}$ también converge a $c$, y por otro por continuidad converge a $f(c)$. Como los límites, cuando existen, son únicos, tenemos que $f(c)=c$.
Si $f(y)\neq y$ para alguna $y\in \mathbb{R}$, entonces tendremos $f(y)=y+r$ para alguna $r\neq 0$. Mostraremos que $f(y+nr)=(y+nr)+r$ para todo entero $n$. Aplicando la hipótesis $f(2x-f(x))=x$ para $x=y$, obtenemos que $f(y-r)=y=(y-r)+r$, de modo que inductivamente tenemos $f(y-nr)=(y-nr)+r$ para $n$ entero positivo.
Aplicando la hipótesis $f(2x-f(x))=x$ para $x=f(x)$ obtenemos $f(2f(z)-f(f(z)))=f(z)$, de modo que por inyectividad tenemos $2f(z)-f(f(z))=z$. Usando esta ecuación para $z=y$ obtenemos que $2f(y)-f(f(y))=y$, de donde $f(y+r)=2(y+r)-y=(y+r)+r$, y de aquí inductivamente $f(y+nr)=(y+nr)+r$ para $n$ enteros positivos. De esta forma, $f(y+nr)=(y+nr)+r$ para todo entero.
Ahora sí viene la parte en la que usamos la continuidad. Supongamos que $f(x)\neq x$. Sea $\epsilon=|f(x)-x|>0$. Como $f$ es continua en $x$, existe un $\delta>0$ que podemos suponer menor a $\frac{\epsilon}{4}$ tal que si $|z-x|<\delta$, entonces $|f(z)-f(x)|<\frac{\epsilon}{4}$.
Sea $x_0$ un punto frontera del conjunto de puntos fijos. Como $f$ es continua en $x_0$, podemos encontrar un $\alpha>0$ y $\alpha<\delta$ tal que si $|w-x_0|<\alpha$, entonces $|f(w)-f(x_0)|<\delta$. Como el conjunto de puntos fijos es cerrado, $x_0$ está en él. Ya que $x_0$ es punto frontera, existe un $y$ tal que $f(y)\neq y$ y $|x_0-y|\leq \alpha$. Para este $y$ tenemos por las cotas que hemos encontrado y la desigualdad del triángulo que $$|f(y)-y|\leq |f(y)-f(x_0)|+|x_0-y|\leq \delta +\alpha <2\delta.$$
Así, $r=f(y)-y$ es un número de norma entre $0$ y $2\delta$, de modo que existe una $n$ para la cual $y+nr \in (x-\delta,x+\delta)$. Por lo que probamos previamente, $f(y+nr)=(y+nr)+r$. A partir de todo esto concluimos que:
\begin{align*}
\epsilon&=|f(x)-x|\\
&\leq |f(x)-f(y+nr)|+|f(y+nr)-x|\\
&<\frac{\epsilon}{4}+|(y+nr)-x|+|r|\\
&<\frac{\epsilon}{4}+3\delta\\
&<\frac{\epsilon}{4}+\frac{3\epsilon}{4}=\epsilon.
\end{align*}
Esto es una contradicción, así que todos los reales deben ser puntos fijos de $f$.
$\square$
Dos teoremas importantes de continuidad
Las funciones continuas satisfacen dos propiedades muy importantes.
Teorema (teorema del valor intermedio). Sea $f:[a,b]\to \mathbb{R}$ una función continua. Entonces para todo $y$ entre $f(a)$ y $f(b)$ existe un real $c \in [a,b]$ tal que $f(c)=y$.
Aquí, si $f(a)\leq f(b)$ entonces «entre $f(a)$ y $f(b)$» quiere decir en el intervalo $[f(a),f(b)]$ y si $f(b)\leq f(a)$, quiere decir en el intervalo $[f(b),f(a)]$. Dicho en otras palabras, si una función continua toma dos valores, entonces toma todos los valores entre ellos.
Teorema (teorema del valor extremo). Sea $f:[a,b] \to \mathbb{R}$ una función continua. Entonces existen números $c$ y $d$ en $[a,b]$ para los cuales $f(c)\leq f(x) \leq f(d)$ para todos los $x$ en $[a,b]$.
Dicho de otra forma, una función continua definida en un intervalo cerrado «alcanza su máximo y su mínimo».
En siguientes entradas hablaremos de aplicaciones de estos teoremas. Por el momento sólo los enunciamos, y en la siguiente sección demostraremos uno de ellos.
El método de la bisección de intervalos
Una de las herramientas más útiles para trabajar con reales y con funciones continuas es el método de la bisección de intervalos. Se trata a grandes rasgos de lo siguiente:
- Se comienza con un intervalo $[a,b]$. Definimos $a_0=a$ y $b_0=b$.
- Partimos ese intervalo por su punto medio $m_0=m$ en dos intervalos $[a,m]$ y $[m,b]$. En alguno de esos dos pasa algo especial. Si es en el primero, definimos $a_1=a$, $b_1=m$. Si es en el segundo, definimos $a_1=m$, $b_1=b$, para conseguir un intervalo $[a_1,b_1]\subset [a_0,b_0]$ especial.
- Continuamos recursivamente. Ya que definimos al intervalo $[a_n,b_n]$, consideramos a su punto medio $m_n$. De entre los intervalos $[a_n,m_n]$ y $[m_n,b_n]$ elegimos a uno de ellos que sea «especial» para definir $[a_{n+1},b_{n+1}]$.
Los $a_i$ forman una sucesión no decreciente acotada superiormente por $b$ y los $b_i$ una sucesión no creciente acotada inferiormente por $a$. De esta forma, ambas sucesiones tienen un límite. Además, notemos que $|b_n-a_n|=|b-a|/2^n$, de modo que $|b_n-a_n|\to 0$, por lo que ambas situaciones convergen al mismo límite $L$, y este límite está en todos los intervalos $[a_n,b_n]$. Si elegimos a los intervalos $[a_n,b_n]$ de manera correcta, podemos hacer que este límite $L$ tenga propiedades especiales.
Veamos cómo aplicar esta idea para demostrar el teorema del valor extremo.
Demostración (teorema del valor extremo). Comenzamos con una función contínua $f:[a,b]\to \mathbb{R}$. Basta con probar que $f$ alcanza su máximo, pues para ver que alcanza su mínimo basta aplicar las siguientes ideas a $-f$.
Usaremos el método de bisección de intervalos. Definimos $a_0=a$ y $b_0=b$. Suponiendo que ya definimos $a_n$ y $b_n$, consideremos el punto medio $m_n$ del intervalo $[a_n,b_n]$.
- Si algún $x$ en $[a_n,m_n]$ cumple que $f(x)\geq f(y)$ para todo $y\in [m_n,b_n]$, elegimos $a_{n+1}=a_n$ y $b_{n+1}=m_n$.
- En otro caso, para todo $x$ en $[a_n,m_n]$ tenemos algún $y\in [m_n,b_n]$ que cumple $f(x)<f(y)$ y elegimos $a_{n+1}=m_n$ y $b_{n+1}=b_n$.
En cualquier caso, notemos que se cumple que «para cualquier $x$ en el intervalo no elegido hay una $y$ en el intervalo sí elegido tal que $f(y)\geq f(x)$».
Como discutimos anteriormente, las sucesiones $\{a_n\}$ y $\{b_n\}$ convergen a un mismo límite $d$. Afirmamos que $f(d)\geq f(x)$ para todo $x$ en $[a,b]$. Si $x=d$, esto es claro. Si no, $x\neq d$ y definimos $x_0=x$.
Vamos a definir recursivamente una sucesión $\{x_n\}$ para la cual $$f(x_0)\leq f(x_1)\leq f(x_2)\leq f(x_3)\leq \ldots$$ mediante un proceso que haremos mientras $x_n\neq d$.
Ya que definimos $x_n$ tal que $x_n\neq d$, notemos que $d$ y $x_n$ están en el mismo intervalo $[a_0,b_0]$, pero como son distintos existe un primer $m\geq 1$ tal que en el intervalo $[a_m,b_m]$ está $d$ pero $x_n$ no. Como es la menor $m$, sí están ambos en el intervalo $[a_{m-1},b_{m-1}]$.
Por cómo definimos la elección de intervalos, hay un $y$ en el intervalo $[a_m,b_m]$ tal que $f(y)\geq f(x_n)$. Si $y=d$, terminamos (por la cadena de desigualdades). Si no, definimos $x_{n+1}$ como este $y$. Así, cuando el proceso se detiene, terminamos por la cadena de desigualdades. Si el proceso no se detiene, tenemos una sucesión infinita $\{x_n\}$ que converge a $d$, de modo que $f(d)=\lim{f(x_n)}\geq f(x_0)=f(x)$, pues cada término es mayor o igual a $f(x_0)$. Esto muestra la desigualdad $f(d)\geq f(x)$ que queríamos.
$\square$
Más problemas
Se pueden encontrar más problemas de este tema en la Sección 6.1 del libro Problem Solving through Problems de Loren Larson.