Propiedades de la integral de Riemann-Stieltjes. Parte 1

Por Lizbeth Fernández Villegas

$\textit{MATERIAL EN REVISIÓN}$

Introducción

El contenido de esta sección corresponde al libro
Wheeden, R.L., Zygmund, A., Measure and Integral. An Introduccion to Real Analysis. (2da ed.). New York: Marcel Dekker, 2015, págs 26-30.

Mostraremos resultados formales de la integral de Riemann-Stieltjes. Recordemos que en la entrada anterior partimos de dos funciones acotadas $f:[a,b] \to \mathbb{R}$ y $\alpha:[a,b] \to \mathbb{R}$ y una partición $P=\{x_0 = a,…,x_n =b\}$ en $[a,b]$ con puntos $\xi_i \in [x_{i-1}, x_i].$ Definimos la suma de Riemann-Stieltjes como

$$S(P,f,\alpha) = \sum_{i=1}^{n}f(\xi_i)(\alpha(x_i) \, – \, \alpha(x_{i-1})).$$

Este resultado depende de $P, \, f$ y $\alpha.$ En esta ocasión, más que hacer $n \to \infty$ haremos que la norma de la partición tienda a cero. Cuando existe $I \in \mathbb{R}$ tal que para cada $\varepsilon >0,$ existe $\delta >0$ tal que si $|P|< \delta$
entonces $|I \, – \, S(P,f,\alpha)|< \varepsilon,$ diremos que
$$I := \underset{|P| \to 0}{lim} \, S(P,f,\alpha).$$
Si es finito lo llamamos integral de Riemann-Stieltjes de $f$ con respecto a $\alpha$ en $[a,b].$ El valor de $I \,$ se denota como:
$$\int_{a}^{b}f(x) \, d\alpha = \int_{a}^{b}f \, d\alpha.$$

Por supuesto que este límite no siempre existe en $\mathbb{R}.$ Conozcamos una equivalencia que muestra cuando sí.

Proposición. Criterio de Cauchy para la integral de Riemann-Stieltjes: La integral $\int_{a}^{b}f \, d\alpha$ existe si y solo si para cada $\varepsilon>0$ existe $\delta>0$ tal que si $|P|, \, |Q|< \delta$ entonces
$$|S(P,f,\alpha) \, – \, S(Q,f,\alpha)|< \varepsilon.$$

La demostración se propone como tarea moral.

Ejemplos

  • Sean $f, \alpha :[a,b] \to \mathbb{R}$ con $f$ continua y $\alpha$ continuamente diferenciable, entonces
    $$\int_{a}^{b}f \, d\alpha = \int_{a}^{b}f \, \alpha’ \, dx$$
    De hecho, por el teorema del valor medio aplicado en $\alpha,$ para cada $i = 1,2,..,n$ existen $\eta_i \in [x_{i-1}, x_i]$ tales que
    \begin{align}
    S(P,f,\alpha) &= \sum_{i=1}^{n}f(\xi_i)(\alpha(x_i) \, – \, \alpha(x_{i-1})) \\
    &= \sum_{i=1}^{n}f(\xi_i)\alpha'(\eta_i)(x_i \, – \, x_{i-1}).
    \end{align}
Teorema del valor medio en $\alpha.$

Usando la continuidad uniforme de $\alpha’$ podemos asumir que, en intervalos muy pequeños, $\alpha'(\eta_i)= \alpha'(\xi_i),$ en consecuencia

$$\sum_{i=1}^{n}f(\xi_i)\alpha'(\eta_i)(x_i \, – \, x_{i-1})= \sum_{i=1}^{n}f(\xi_i)\alpha'(\xi_i)(x_i \, – \, x_{i-1})$$

Nota que esto ya es la común suma de Riemann y así:
$$\underset{|P| \to 0}{lim} \, S(P,f,\alpha)= \int_{a}^{b} f \, \alpha’ \, dx,$$

o bien

$$\int_{a}^{b}f \, d\alpha = \int_{a}^{b}f \, \alpha’ \, dx.$$

  • Ahora considera $f, \alpha: [a,b] \to \mathbb{R}$ donde

\begin{equation*}
\alpha(x) = \begin{cases}
1 \text{ si $x \geq 0$} \\
\\
0 \text{ si $x < 0$}
\end{cases}
\end{equation*}

Gráfica de $\alpha.$

y $f$ es una función continua en $0.$ Es sencillo demostrar que
$$\int_{-1}^{1}f \, d\alpha = f(0).$$

A continuación enunciaremos algunas propiedades de la integral de Riemann-Stieltjes. Las demostraciones las dejaremos como ejercicio.

Proposición: Sean $f, f_1, f_2, \alpha, \alpha_1$ y $\alpha_2$ funciones de $[a,b] \to \mathbb{R}$ y $c \in \mathbb{R},$ entonces se satisfacen:

a) Si $\int_{a}^{b} f \, d\alpha$ existe, entonces también existen tanto $\int_{a}^{b}cf \, d\alpha$ como $\int_{a}^{b}f \, d(c\alpha)$ y además
$$\int_{a}^{b}cf \, d\alpha = \int_{a}^{b}f \, d(c\alpha) = c \int_{a}^{b}f \, d\alpha.$$

b) Si tanto $\int_{a}^{b} f_1 \, d\alpha$ como $\int_{a}^{b} f_2 \, d\alpha$ existen, entonces también
$\int_{a}^{b} (f_1 + f_2) \, d\alpha$ existe y
$$\int_{a}^{b} (f_1 + f_2) \, d\alpha = \int_{a}^{b} f_1 \, d\alpha + \int_{a}^{b} f_2 \, d\alpha.$$

c) Si tanto $\int_{a}^{b} f \, d\alpha_1$ como $\int_{a}^{b} f \, d\alpha_2$ existen, entonces también
$\int_{a}^{b} f \, d(\alpha_1+ \alpha_2)$ existe y
$$\int_{a}^{b} f \, d(\alpha_1+ \alpha_2) = \int_{a}^{b} f \, d\alpha_1 + \int_{a}^{b} f \, d\alpha_2.$$

Para finalizar esta sección, veremos que es posible obtener la integral de Riemann-Stieltjes como equivalencia de la suma de integrales correspondientes a cada división del intervalo, como muestra la siguiente:

Proposición: Si $\int_{a}^{b} f \, d\alpha$ existe y $a \leq c \leq b,$ entonces

a) Tanto $\int_{a}^{c}f \, d\alpha$ como $\int_{c}^{b}f \, d\alpha$ existen y

b) $\int_{a}^{b}f \, d\alpha = \int_{a}^{c}f \, d\alpha + \int_{c}^{b} f \, d\alpha.$

Demostración:
Para simplificar la notación, hagamos $S_P[a,b] = S(P,f,\alpha)$ donde $P \in \mathcal{P}_{[a,b]}.$

Para mostrar que $\int_{a}^{c} f \, d\alpha$ existe, de acuerdo con el criterio de Cauchy para la integral de Riemann-Stieltjes encunciado arriba, será suficiente probando que para todo $\varepsilon>0$ existe $\delta>0$ tal que si $P_1, \, P_2 \in \mathcal{P}_{[a,c]}$ con $|P_1|, \, |P_2|< \delta,$ entonces

\begin{align}
(S_{P_1}[a,c] \, – \, S_{P_2}[a,c]) < \varepsilon.
\end{align}

Como $\int_{a}^{b}f \, d\alpha \,$ existe entonces dada $\varepsilon>0$ existe $\delta>0$ tal que para cualesquiera $P’_1, \, P’_2 \in \mathcal{P}_{[a,b]}$ con $|P’_1|, \, |P’_2|< \delta, \,$ tenemos
\begin{align}
(S_{P’_1}[a,b] \, – \, S_{P’_2}[a,b]) < \varepsilon.
\end{align}

Sean $P_1, \, P_2 \in \mathcal{P}_{[a,c]}$ tales que $|P_1|, \, |P_2|< \delta$ y toma $P \in \mathcal{P}_{[c,b]}$ tal que también $|P|< \delta.$

Definimos $P’_1 = P_1 \cup P \, $ y $\, P’_2 = P_2 \cup P.$ Nota que ambas son particiones de $[a,b]$ cuya norma es menor que $\delta$ y por tanto satisfacen (4).

Notemos que

\begin{align}
S_{P’_1}[a,b] &= S_{P_1}[a,c]+ S_{P}[c,b] \\
\text{y } S_{P’_2}[a,b] &= S_{P_2}[a,c]+ S_{P}[c,b]
\end{align}

así, restando (5) de (6)

\begin{align}
S_{P_1}[a,c] \, – \, S_{P_2}[a,c] + \cancel{S_{P}[c,b] \, – \, S_{P}[c,b]} = S_{P’_1}[a,b] \, – \, S_{P’_2}[a,b]
\end{align}

De (7) y (4) se cumple (3), por lo tanto

$\int_{a}^{c}f \, d\alpha$ existe.

Análogamente se puede probar que $\int_{c}^{b}f \, d\alpha$ existe, mientras que (5) y (6) permiten concluir que
$$\int_{a}^{b}f \, d\alpha = \int_{a}^{c}f \, d\alpha + \int_{c}^{b}f \, d\alpha$$
que es lo que queríamos demostrar.

Más adelante…

Veremos algunas propiedades más de la integral de Riemann-Stieltjes, por lo pronto desarrolla las ideas con los siguientes ejercicios.

Tarea moral

  1. Prueba el Criterio de Cauchy para la integral de Riemann-Stieltjes: La integral $\int_{a}^{b}f \, d\alpha$ existe si y solo si para cada $\varepsilon>0$ existe $\delta>0$ tal que si $|P|, \, |Q|< \delta$ entonces
    $$|S(P,f,\alpha) \, – \, S(Q,f,\alpha)|< \varepsilon.$$
  2. Considera $f, \alpha: [a,b] \to \mathbb{R}$ donde
    \begin{equation*}
    \alpha(x) = \begin{cases}
    1 \text{ si $x \geq 0$} \\
    0 \text{ si $x < 0$}
    \end{cases}
    \end{equation*}
    y $f$ es una función continua en $0.$ Prueba que
    $$\int_{-1}^{1}f \, d\alpha = f(0).$$
  3. Sean $f, f_1, f_2, \alpha, \alpha_1$ y $\alpha_2$ funciones de $[a,b] \to \mathbb{R}$ y $c \in \mathbb{R}. \,$ Demuestra que se satisfacen:
    a) Si $\int_{a}^{b} f \, d\alpha$ existe, entonces también existen tanto $\int_{a}^{b}cf \, d\alpha$ como $\int_{a}^{b}f \, d(c\alpha)$ y además
    $$\int_{a}^{b}cf \, d\alpha = \int_{a}^{b}f \, d(c\alpha) = c \int_{a}^{b}f \, d\alpha.$$
    b) Si tanto $\int_{a}^{b} f_1 \, d\alpha$ como $\int_{a}^{b} f_2 \, d\alpha$ existen, entonces también
    $\int_{a}^{b} (f_1 + f_2) \, d\alpha$ existe y
    $$\int_{a}^{b} (f_1 + f_2) \, d\alpha = \int_{a}^{b} f_1 \, d\alpha + \int_{a}^{b} f_2 \, d\alpha.$$
    c) Si tanto $\int_{a}^{b} f \, d\alpha_1$ como $\int_{a}^{b} f \, d\alpha_2$ existe, entonces también
    $\int_{a}^{b} f \, d(\alpha_1+ \alpha_2)$ existe y
    $$\int_{a}^{b} f \, d(\alpha_1+ \alpha_2) = \int_{a}^{b} f \, d\alpha_1 + \int_{a}^{b} f \, d\alpha_2.$$
  4. Sean $f, \alpha:[a,b] \to \mathbb{R}$ funciones acotadas. Demuestra que si $[a’,b’] \subset [a,b]$ y $\int_{a}^{b} f \, d\alpha$ existe entonces también $\int_{a’}^{b’} f \, d\alpha$ existe.

Enlaces

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.