Funciones en espacios topológicos compactos

Por Lizbeth Fernández Villegas

Introducción

En esta entrada conoceremos más propiedades de los espacios métricos compactos. Veremos qué ocurre cuando les es aplicada una función continua. Esto nos relacionará dos espacios métricos entre sí a través de los subconjuntos. Podremos concluir información acerca de la imagen de una función cuando ciertas condiciones se cumplen. Comencemos con la siguiente:

Proposición: Sean $(X,d_X)$ y $(Y,d_Y)$ espacios métricos. Si $\phi:X \to Y$ es una función continua y $A \subset X$ es compacto, entonces la imagen de $A$ bajo $\phi$, es decir, $\phi(A),$ es un conjunto compacto en $(Y,d_Y).$

La imagen continua de un compacto es compacta

Demostración:
Sea $\mathcal{C}= \{A_i: i \in \mathcal{I}\}$ una cubierta abierta de $\phi (A)$. Como $\phi$ es continua entonces la imagen inversa de $A_i,$ es decir, el conjunto $\phi ^{-1}(A_i), i \in \mathcal{I}$ es un conjunto abierto en $X$. No es difícil probar que $\{\phi ^{-1}(A_i):i \in \mathcal{I}\}$ es una cubierta abierta de $A.$ (Ejercicio).

La imagen inversa define una cubierta abierta en $X$

Como $A$ es compacto, entonces existe una subcubierta finita $\{\phi ^{-1}(A_{i_1}),\phi ^{-1}(A_{i_2}),…,\phi ^{-1}(A_{i_m}) \}$ con $m \in \mathbb{N}$ tal que $A \subset \underset{1\leq j \leq m}{\bigcup}\phi ^{-1}(A_{i_j}).$ Esto significa que $\{A_{i_1},A_{i_2},…,A_{i_m}\}$ es una subcubierta en $Y$ de $\mathcal{C}$ para $\phi (A)$. (¿Por qué?) Por lo tanto $\phi (A)$ es compacto.

Los conjuntos correspondientes en $X$ definen una cubierta finita en $Y$

Ejemplos

La función valor absoluto en un intervalo cerrado

Considera $\mathbb{R}$ con la métrica euclidiana y la función $f:[-1,1] \to \mathbb{R}$ donde $f(x)= |x|.$ Entonces $f$ es una función continua y $f([-1,1]) = [0,1]$ es compacto en $\mathbb{R}.$

La función $sen(4x)$

Considera $\mathbb{R}$ con la métrica euclidiana y la función $f:[0, \pi ] \to \mathbb{R}$ donde $f(x)= sen(4x).$ Entonces $f$ es una función continua y $f([0, \pi]) = [-1,1]$ es compacto en $\mathbb{R}.$

La función $e^x$

Considera $\mathbb{R}$ con la métrica euclidiana y la función $f:[0, 2 ] \to \mathbb{R}$ donde $f(x)= e^x .$ Entonces $f$ es una función continua y $f([0, 2]) = [1,e^2]$ es compacto en $\mathbb{R}.$

Es resultado conocido que si $\phi: [0,1] \to \mathbb{R}$ es una función continua, entonces $\phi([0,1])= [a,b]$ donde $a = min \{f(x)|0 \leq x \leq 1 \} \, $ y $ \, b = max \{f(x)|0 \leq x \leq 1 \}.$ (Ver Teorema del máximo-mínimo). En efecto $[a,b]$ es un intervalo cerrado en $\mathbb{R}$ y por tanto es compacto.

Bajo la misma idea podemos considerar a la función $\psi: \mathbb{R} \to \mathbb{R}^2$ dada por $\psi(t)=(t,\phi(t))$. Entonces, la curva de esta función es un conjunto compacto en $\mathbb{R}^2$

En la entrada anterior vimos que un conjunto compacto es cerrado y acotado. Podemos concluir el siguiente:

Corolario: Sea $A$ compacto. Entonces una función continua $\phi:A \subset X \to Y$ es acotada, pues la imagen bajo $\phi$ en el compacto es compacta y, por lo tanto, acotada. También podemos concluir que $\phi(A)$ es cerrada.

$\phi$ es acotada

Este resultado nos permite delimitar una función en el espacio euclidiano de $\mathbb{R}$ con dos puntos importantes en el contradominio de la función: el máximo y el mínimo.

Probablemente este resultado te sea familiar de los cursos de cálculo:

Proposición: Sea $f:A\subset \mathbb{R}^n \to \mathbb{R}$ una función continua con $A$ cerrado y acotado (y por tanto compacto en $\mathbb{R}^n$). Entonces $f \,$ alcanza su mínimo y máximo en $A.$

En otros espacios métricos puede generalizarse como sigue:

Proposición: Sea $f:A \to \mathbb{R}$ una función continua con $A$ espacio métrico compacto y $\mathbb{R}$ con la métrica usual. Entonces $f$ alcanza su mínimo y máximo en $A$, es decir, existen puntos $x_1$ y $x_2$ en $A$ tales que para toda $x \in A$ se cumple que:
$$f(x_1) \leq x \leq f(x_2)$$

Demostración:
Si $A$ es compacto, la proposición anterior nos muestra que $f(A)$ es cerrado y acotado. Sea $m_0= inf\{f(x):x \in A\}$. Entonces $m_0 \in \overline{f(A)}$ y como $f(A)$ es cerrado, se concluye que $m_0 \in f(A)$, de modo que existe $x_1 \in A$ tal que $f(x_1)=m_0 \, $ por lo tanto $f$ alcanza su mínimo en $A$.

La demostración de que $f$ alcanza su máximo es análoga y se deja como ejercicio.

Proposición: Sean $(X,d_X)$ y $(Y,d_Y)$ espacios métricos con $X$ compacto y $\phi:X \to Y$ inyectiva y continua. Entonces existe la función inversa $\phi^{-1}$ en $\phi(X)$ y es continua en $\phi(X)$.

Demostración:
Para demostrar que $\phi^{-1}:\phi(X) \to X$ es una función continua, basta probar que la imagen inversa de esta función aplicada en conjuntos cerrados en $X$, es un conjunto cerrado en $Y$. Si $A$ es cerrado en $X$ entonces la imagen inversa respecto a la función $\phi^{-1}$ está dada por $\phi(A)$. Como $A$ es cerrado en un compacto entonces es compacto, de modo que $\phi(A)$ también es compacto y, por lo tanto, es cerrado en $Y$. Esto prueba que $\phi^{-1}$ es continua.

Finalizaremos esta entrada presentando un resultado que se deduce del anterior. La solución se propone como ejercicio al lector:

Proposición: Si $\phi:X \to Y$ es una función biyectiva y continua entre espacios métricos compactos, entonces es un homeomorfismo.

$\phi$ es un homeomorfismo

Más adelante…

Continuaremos visualizando aplicaciones de funciones continuas sobre conjuntos compactos, pero esta vez bajo una nueva definición: la continuidad uniforme.

Tarea moral

  1. Como parte de la prueba de la primera proposición, muestra que en efecto $\{\phi ^{-1}(A_i):i \in \mathcal{I}\}$ es una cubierta abierta de $A$.
  2. Argumenta la parte de la demostración de la primera proposición, en la que se afirma que si $A \subset \underset{1\leq j \leq m}{\bigcup}\phi ^{-1}(A_{i_j}),$ entonces $\{A_{i_1},A_{i_2},…,A_{i_m}\}$ es una subcubierta en $Y$ de $\mathcal{C}$ para $\phi (A)$.
  3. Prueba que si $f:A \to \mathbb{R}$ es una función continua con $A \subset \mathbb{R}^n$ cerrado y acotado, entonces $f$ alcanza su máximo en $A.$
  4. Prueba que si $X$ y $Y$ son homeomorfos, entonces $X$ es compacto si y solo si $Y$ es compacto.
  5. Demuestra que si $\phi:X \to Y$ es una función biyectiva y continua entre espacios métricos compactos, entonces es un homeomorfismo.

Enlaces

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.