Completación de un espacio métrico

Por Lizbeth Fernández Villegas

$ \textit{ MATERIAL EN REVISIÓN}$

Introducción

En secciones anteriores vimos que las sucesiones de Cauchy no siempre son convergentes en un espacio métrico, pero cuando todas lo son decimos que el espacio es completo.

Si tenemos un espacio que no es completo, intuitivamente podemos pensar en agregar puntos a los que las sucesiones de Cauchy converjan, produciendo así, un espacio métrico más grande que sí sea completo. Habrá que tener cuidado en definir adecuadamente las distancias con los nuevos elementos. Podríamos preguntarnos entonces si dicha completación es posible, y más aún, si es única.

Comencemos con la siguiente:

Definición. Completación de un espacio métrico: Sea $(X,d)$ un espacio métrico. Diremos que un espacio métrico completo $(X^*,d^*)$ es una completación del espacio $X$ si cumple que:

  1. $X$ es subespacio métrico de $X^*.$ Así $d$ es la métrica restringida en $X.$
  2. $X$ es denso en $X^*,$ es decir $\overline{X}=X^*.$

Ejemplo: El espacio métrico $(\mathbb{R},|\cdot|)$ es completación de $(\mathbb{Q},|\cdot|).$

Proposición: Todo espacio métrico $(X,d)$ tiene una completación y esta completación es única, salvo una aplicación isométrica que envía los puntos de $X$ en sí mismos. (Aquí vimos la definición de isometría).

Prueba unicidad

Considera $X$ un espacio métrico y dos completaciones $(X^*,d^*)$ y $(X^{**},d^{**})$ de este espacio. Para probar que son iguales salvo isometrías debemos demostrar que existe una isometría biyectiva entre ambas completaciones. La isometría se construye como sigue:

Sea $x^* \in X^*,$ como $X^*$ es completación de $X$ entonces, de acuerdo con la definición $\overline{X}=X^*,$ en consecuencia $x^* \in \overline{X}$ y existe una sucesión $(x_n)_{n \in \mathbb{N}}$ de puntos en $X,$ que converge a $x^*.$ (Resultado visto en Convergencia). Nota que la convergencia permite concluir que $(x_n)$ es de Cauchy en $X^*$ (pues $X \subset X^*$) y por tanto también lo es en $X,$ debido a que la completación debe preservar las distancias para cualesquiera dos puntos de $X.$

$(x_n)_{n \in \mathbb{N}}$ es de Cauchy en $X \subset X^*$ y converge a $x^*$ en $X^*.$

Como también $X \subset X^{**}$ se sigue que los términos de $(x_n)$ también pertenecen a $X^{**}$ que, al ser completo, implica que $x_n \to x^{**}$ para algún $x^{**} \in X^{**},$ (pues si la sucesión es de Cauchy en $X$ también lo es en la completación $X^{**}$).

La misma sucesión $(x_n)_{n \in \mathbb{N}}$ converge también en algún punto $x^{**}$ en $X^{**}$

Afirmación: El punto $x^{**}$ no depende de la sucesión elegida $(x_n)$ que converge en $x^*.$ Esto es, cualquier otra que también converja en $x^*$ en el espacio $X^*,$ igualmente convergerá a $x^{**}$ en el espacio $X^{**}.$ ¿Por qué? $\textcolor{orange}{\text{(Ejercicio como tarea moral).}}$
Para cada $x^* \in X^*$ sea $\phi(x^*)=x^{**}.$ Demostraremos que $\phi$ es la isometría buscada:

Se cumple que para todo $x \in X, \, \phi(x)=x.$ ¿Por qué? $\textcolor{orange}{\text{(Ejercicio como tarea moral).}}$ Por otra parte, si suponemos que tenemos sucesiones $(x_n), (y_n)$ cuyos términos están en $X,$ tales que:

$x_n \to x^*$ en $X^*\, $ y $\, x_n \to x^{**}$ en $X^{**};$
$y_n \to y^*$ en $X^*\, $ y $\, y_n \to y^{**}$ en $X^{**}$

entonces:

$d^*(x^*,y^*)=\underset{n \to \infty}{lim}\, d^*(x_n,y_n)=\underset{n \to \infty}{lim}\, d(x_n,y_n)$

así mismo

$d^{**}(x^{**},y^{**})=\underset{n \to \infty}{lim}\, d^{**}(x_n,y_n)=\underset{n \to \infty}{lim}\, d(x_n,y_n)$ ¿Por qué? $\textcolor{orange}{\text{(Ejercicio como tarea moral).}}$

Por lo tanto,

\begin{align*}
d^*(x^*,y^*)&=d^{**}(x^{**},y^{**})\\
&=d^{**}(\phi(x^*),\phi(y^*)).
\end{align*}

Lo cual demuestra que $\phi$ es una isometría. ¿Por qué se le puede considerar biyectiva? $\textcolor{orange}{\text{(Ejercicio como tarea moral).}}$

Prueba existencia

Antes de probar la existencia veamos la siguiente:

Definición. Sucesiones equivalentes: Sean $(x_n)_{n \in \mathbb{N}}\,$ y $\,(x’_n)_{n \in \mathbb{N}}$ sucesiones de Cauchy en el espacio métrico $X.$ Si ocurre que $\underset{n \to \infty}{lim} \, d(x_n,x’_n)=0$ diremos que las sucesiones son equivalentes y lo denotaremos como:
$$(x_n)\sim (x’_n)$$

Dos sucesiones equivalentes se acercan conforme $n \to \infty$

Se deja como $\textcolor{orange}{\text{ejercicio como tarea moral}}$ probar que esta relación es de equivalencia (reflexiva, simétrica y transitiva). Para recordar, te recomendamos visitar Álgebra Superior I: Relaciones de equivalencia y clases de equivalencia.

Con esto se define un conjunto de clases de equivalencia, agrupando según la relación, las sucesiones de Cauchy en $X.$ Veremos que es una completación de $X.$ Probablemente esto cause confusión en este momento, pues mientras $X$ es un conjunto de puntos, la completación que proponemos tiene como elementos conjuntos de sucesiones de Cauchy. No obstante, aunque el tipo de elementos entre ambos conjuntos parezcan muy diferentes, en las próximas líneas veremos que la magia del isomorfismo admitirá considerarlos equivalentes.

Espacio $X$ y espacio de clases de equivalencia.

Sean $[(x_n)] \,$ y $\, [(y_n)]$ dos clases de equivalencia y sean $(x_n)$ y $(y_n)$, respectivamente, representantes de clase. Definimos la distancia entre ambas clases como:
$$d^*([(x_n)],[(y_n)])=\underset{n \to \infty}{lim} \, d(x_n,y_n).$$

Entonces se considera la distancia entre un término de la sucesión $(x_n)$ y el término correspondiente en $(y_n).$ Hablar de que existe el límite de las distancias cuando $n \to \infty$ indica que en algún momento, la distancia entre pares de términos se estabiliza.

Representación distancia entre clases

Por supuesto que habrá que demostrar que este límite existe y que esta distancia es invariante, no depende del representante de clase elegido en cada clase de equivalencia.

Probemos primero que la sucesión dada por $(d(x_n,y_n))_{n \in \mathbb{N}}$ es convergente en $\mathbb{R}$. Bastará con demostrar que es de Cauchy.

Sea $\varepsilon >0.$ Como $(x_n),(y_n)$ son de Cauchy, existen $N_1$ y $N_2 \in \mathbb{N}$ tales que

\begin{align}
\text{si } \, n,m \geq N_1 \text{ entonces } d(x_n,x_m) < \dfrac{\varepsilon}{2}\\
\text{si } \, n,m \geq N_2 \text{ entonces } d(y_n,y_m) < \dfrac{\varepsilon}{2}.
\end{align}

Sea $N=\text{máx} \, \{N_1,N_2\}.$ Se sigue que $\forall \, n,m \geq N$ se cumple que:
\begin{align*}
|d(x_n,y_n)-d(x_m,y_m)|&=|d(x_n,y_n) \textcolor{magenta}{- d(x_n,y_m)+ d(x_n,y_m)}-d(x_m,y_m)| &\textcolor{gray}{\text{(sumando un cero estratégico)}}\\
&\leq |d(x_n,y_n)- d(x_n,y_m)|+ |d(x_n,y_m)-d(x_m,y_m)| &\textcolor{gray}{\text{(desigualdad del triángulo)}}
\end{align*}

Es sencillo probar que si $u,v,w$ son elementos de un espacio métrico $(Y,d_Y)$ se satisface que

\begin{align}
|d_Y(u,v)-d_Y(u,w)|\leq d_Y(v,w). \, \textcolor{orange}{\text{ (Ejercicio como tarea moral).}}
\end{align}

Con este resultado es posible continuar con la cadena de igualdades:

\begin{align*}
|d(x_n,y_n)- d(x_n,y_m)|+ |d(x_n,y_m)-d(x_m,y_m)|&\leq d(y_n,y_m) + d(x_n,x_m) \\
&\leq \frac{\varepsilon}{2}+ \frac{\varepsilon}{2} &\textcolor{gray}{\text{(desigualdades (1) y (2) )}}\\
&= \varepsilon
\end{align*}

Entonces la sucesión $(d(x_n,y_n))_{n \in \mathbb{N}}$ es de Cauchy en $\mathbb{R}$ y converge cuando $n \to \infty.$

Ahora demostremos que la distancia entre clases no depende del representante elegido. Sean $(x_n) \sim (x’_n)$ y sean $(y_n) \sim (y’_n)$. En efecto
$$d^*([(x_n)],[(y_n)])\, \textbf{=} \, d^*([(x’_n)],[(y’_n)])$$
pues al calcular la diferencia entre estas magnitudes tenemos:

\begin{align*}
|d^*([(x_n)],[(y_n)]) \, \textbf{-} \, d^*([(x’_n)],[(y’_n)])|&=|\underset{n \to \infty}{lim} \, d(x_n,y_n)-\underset{n \to \infty}{lim} \,d(x’_n,y’_n)| &\textcolor{gray}{\text{(por definición)}}\\
&=|\underset{n \to \infty}{lim} \, (d(x_n,y_n)- \,d(x’_n,y’_n))| &\textcolor{gray}{\text{(propiedad de límites)}}\\
&=|\underset{n \to \infty}{lim}(d(x_n,y_n)\textcolor{magenta}{- d(x_n,y’_n)+ d(x_n,y’_n)}-d(x’_n,y’_n))|&\textcolor{gray}{\text{(sumando un cero estratégico)}} \\
&=|\underset{\textcolor{ForestGreen}{n \to \infty}}{\textcolor{ForestGreen}{lim}}(d(x_n,y_n)- d(x_n,y’_n))+ \underset{\textcolor{RoyalBlue}{n \to \infty}}{\textcolor{RoyalBlue}{lim}}(d(x_n,y’_n)-d(x’_n,y’_n))| &\textcolor{gray}{\text{(propiedad de límites)}}\\
&\leq |\underset{\textcolor{ForestGreen}{n \to \infty}}{\textcolor{ForestGreen}{lim}} (d(x_n,y_n)- d(x_n,y’_n))| + |\underset{\textcolor{RoyalBlue}{n \to \infty}}{\textcolor{RoyalBlue}{lim}} (d(x_n,y’_n)-d(x’_n,y’_n))| &\textcolor{gray}{\text{(desigualdad del triángulo)}}\\
&\leq \underset{\textcolor{ForestGreen}{n \to \infty}}{\textcolor{ForestGreen}{lim}} |(d(x_n,y_n)- d(x_n,y’_n))| + \underset{\textcolor{RoyalBlue}{n \to \infty}}{\textcolor{RoyalBlue}{lim}} |(d(x_n,y’_n)-d(x’_n,y’_n))| &\textcolor{gray}{\text{(propiedad de límites y $|\cdot|$)}}\\
&\leq \underset{\textcolor{ForestGreen}{n \to \infty}}{\textcolor{ForestGreen}{lim}} d(y_n,y’_n) + \underset{\textcolor{RoyalBlue}{n \to \infty}}{\textcolor{RoyalBlue}{lim}} d(x_n,x’_n) &\textcolor{gray}{\text{(desigualdad (3) )}}\\
&= 0+0 &\textcolor{gray}{\text{(por ser sucesiones equivalentes)}}\\
&= 0
\end{align*}

Por lo tanto la distancia entre clases está bien definida.

El conjunto de clases de equivalencias de sucesiones es un espacio métrico

Sean $[(x_n)], [(y_n)], [(z_n)]$ clases de equivalencia de la relación descrita arriba. Se satisfacen los axiomas:

  1. $d^*([(x_n)], [(y_n)])=0$ si y solo si $[(x_n)]= [(y_n)]$
  2. $d^*([(x_n)], [(y_n)])=d^*([(y_n)], [(x_n)])$
  3. $d^*([(x_n)], [(y_n)]) \leq d^*([(x_n)], [(z_n)]) +d^*([(z_n)], [(y_n)])$

Dejaremos como $\textcolor{orange}{\text{ejercicio como tarea moral}}$ probar $1)$ y $2)$
Para probar $3)$ partimos de tomar representantes de clase $(x_n) \in [(x_n)], \, (y_n) \in [(y_n)] \text{ y } \,(z_n) \in [(z_n)].$ Lo siguiente es consecuencia de la desigualdad del triángulo en $d$ y la distancia entre clases definida.

\begin{align*}
&&d(x_n,y_n) &\leq d(x_n,z_n) + d(z_n,y_n)\\
&\Rightarrow & \underset{n \to \infty}{lim}d(x_n,y_n) &\leq \underset{n \to \infty}{lim}d(x_n,z_n) + \underset{n \to \infty}{lim}d(z_n,y_n)\\
&\Rightarrow& d^*([(x_n)], [(y_n)]) &\leq d^*([(x_n)], [(z_n)]) +d^*([(z_n)], [(y_n)]).
\end{align*}

Que es lo que queríamos demostrar.

Representación de la partición creada por la relación $\sim.$

En el dibujo cada clase de equivalencia está representada por sucesiones de colores similares. Al ser de Cauchy y tener distancias entre ellas que “se reducen a cero” podemos pensar en que todas las sucesiones de una clase convergen a un punto del espacio $X$ cuando de hecho son convergentes;

o bien, si no convergen en $X$ lo harán en un punto “afuerita” de $X,$ (en la cerradura respecto al espacio completo que lo contiene). Esta misma idea nos deja imaginar la distancia entre clases como la distancia entre esos “puntos de convergencia.”

El conjunto de clases de equivalencia es una completación de $X$

Sea $X^*$ el conjunto de clases de equivalencia de sucesiones de Cauchy en $X.$ Definimos $\phi:X \to X^*$ tal que para cada punto $x \in X, \,$ $\phi(x)$ es la clase de sucesiones de Cauchy que convengen en $x.$

Representación $\phi:X \to X^*.$

Sean $x,y \in X$ y dos sucesiones $(x_n), (y_n)$ en $X$ tales que:
$$\underset{n \to \infty}{lim}x_n=x \, \text{ y } \, \underset{n \to \infty}{lim}y_n =y.$$
Entonces se cumple que:
\begin{align*}
d(x,y)&=\underset{n \to \infty}{lim}d(x_n,y_n) &\textcolor{orange}{\text{(ejercicio)}}\\
&=d^*([(x_n)], [(y_n)]).
\end{align*}

Distancia entre puntos en $X$ y distancia entre las clases que convergen en ellos.

Por lo tanto $\phi$ es una isometría entre $X$ y $X^*$

Ahora que podemos considerar a $X$ como $\phi(X),$ demostremos que $\overline{\phi(X)}=X^*.$ En consecuencia, el espacio métrico $(X^*, d^*)$ será isométrico al espacio métrico $(\overline{\phi(X)}, d^*).$

Sea $[(x_n)] \in X^*$ y sea $\varepsilon>0.$
Buscamos demostrar que existe un elemento de $\phi(X)$ en la bola de radio $\varepsilon$ con centro en $[(x_n)],$ es decir, que su distancia a $[(x_n)]$ sea menor que $\varepsilon.$

Sea $(x_n)$ un representante de clase de $[(x_n)]$. Como es de Cauchy, existe $N \in \mathbb{N}$ tal que $\forall \, n,m \geq N$ se cumple que
$$d(x_n,x_m)< \varepsilon.$$

Entonces si consideramos la sucesión constante $(x_N),$ donde todos sus términos son $x_N,$ se sigue:
$$d^*([(x_N)],[(x_n)])= \underset{k \to \infty}{lim} \, d(x_N,x_k)< \varepsilon$$
Lo cual demuestra que $[(x_N)] \in \phi(X)$ está en la bola de radio $\varepsilon$ con centro en $[(x_n)].$ Por lo tanto $\overline{\phi(X)}$ es denso en $X^*.$

$X^*$ es completo

Sea $(x_n)_{n \in \mathbb{N}}$ una sucesión de Cauchy en $X^*.$ Si todos los términos de la sucesión están en $\phi(X)$ entonces cada una de las clases, términos de $(x_n),$ converge en puntos de $X$ formando así una sucesión de Cauchy en $X.$

Luego, por como fue construido $X^*,$ la sucesión converge a su clase de equivalencia $[(x_n)]$ en $X^*.$
En el caso general, si la sucesión en $X^*$ es de la forma $(x^*_n)_{n \in \mathbb{N}}$ donde cada $(x^*_n)$ es una clase de equivalencia que no necesariamente tiene una sucesión constante de puntos en $X$, dada la densidad de $X$ (visto como $\phi(X)),$ para cada $n \in \mathbb{N}$ es posible elegir $x_n \in X$ tal que $x_n \in B(x^*_n,\frac{1}{n}).$ Queda como $\textcolor{orange}{\text{ ejercicio }}$ argumentar que la sucesión $(x_n)$ es de Cauchy y por tanto, vista como sucesión de clases, converge a algún $x^* \in X^*$. $\textcolor{orange}{\text{ Argumenta también }}$ por qué podemos concluir que $(x^*_n)$ también converge a $x^*.$

Con esto queda demostrada la proposición.

Más adelante…

Seguiremos trabajando con la convergencia de sucesiones, pero ahora tendrán, como términos, los valores asignados en un punto por una sucesión de funciones. Hablaremos de los valores a los que una sucesión de funciones converge y veremos los términos de límite puntual y límite uniforme.

Tarea moral

  1. Argumenta los detalles que quedaron pendientes en la demostración de la completación de un espacio métrico.

Enlaces

Teorema de Baire

Por Lizbeth Fernández Villegas

$ \textit{ MATERIAL EN REVISIÓN}$

Introducción

Dedicaremos esta entrada a la presentación de un teorema que ha dado resultados importantes en el estudio de los espacios métricos completos. Para comenzar, necesitamos imaginar la pertenencia de los elementos de un conjunto cuando seleccionamos, arbitrariamente, bolas abiertas en el espacio métrico. El primer concepto dice lo siguiente:

Definición. Conjunto denso. Sean $(X,d)$ un espacio métrico y $A \subset X.$ Decimos que $A$ es un conjunto denso en $X$ si $\overline{A}=X.$

La intersección de las bolas abiertas con $A$ es no vacía

Nota que esto es equivalente a decir que todas las bolas abiertas de $X$ tienen puntos en $A.$

Ejemplo: En el espacio métrico euclidiano de los números reales, el conjunto $\mathbb{Q}$ es denso.

$\mathbb{Q}$ es denso en $\mathbb{R}$

Aunque basta con encontrar una bola abierta en $X$ ajena al conjunto $A$ para demostrar que $A$ no es denso, presentamos un tipo de conjunto que no solo no lo es sino que no lo es en «ninguna parte» de $A.$

El conjunto de puntos es denso a la izquierda del dibujo pero no a la derecha

Definición. Conjunto nunca denso. Sean $(X,d)$ un espacio métrico y $A \subset X.$ Si para toda bola abierta $B \subset X$ existe una bola abierta contenida $B’ \subset B$ que no tiene puntos de $A$ diremos que $A$ es un conjunto nunca denso (o denso en ninguna parte).

El conjunto de puntos es nunca denso

Con estos conceptos ya podemos entender el teorema prometido.

Teorema de Baire. Si $(X,d)$ es un espacio métrico completo, entonces no puede representarse como la unión numerable de conjuntos nunca densos.

Demostración:
Sea $X$ un espacio métrico completo. Considera el conjunto $\underset{n \in \mathbb{N}}{\bigcup} \, A_n,$ donde para cada $n \in \mathbb{N}$ el conjunto $A_n \subset X$ es nunca denso en $X.$ Construiremos una sucesión de bolas cerradas encajadas como sigue: (Concepto visto en entrada anterior).
Sea $B_0$ una bola cerrada de radio $1.$ Como $A_1$ es nunca denso, existe una bola cerrada $B_1$ de radio menor que $\frac{1}{2}$ tal que $B_1 \subset B_0$ y $B_1 \cap A_1= \emptyset.$ Proponemos como ejercicio al lector argumentar por qué seleccionar dicha bola es posible.
De igual manera, como $A_2$ es nunca denso existe una bola cerrada $B_2$ de radio menor que $\frac{1}{3}$ tal que $B_2 \subset B_1$ y $B_2 \cap A_2= \emptyset.$

Si continuamos recursivamente, terminaremos construyendo una sucesión de bolas cerradas encajadas $(B_n)_{n \in \mathbb{N}}$ cuyos radios tienden a $0$. En la entrada anterior vimos que, al ser $X$ completo la intersección de estas bolas tiene un punto, de hecho $\underset{n \in \mathbb{N}}{\bigcap}A_n= \{x\}$ para algún $x \in X.$ Este punto no pertenece a ningún conjunto $A_k, \, k \in \mathbb{N},$ pues al estar en la intersección de todas las bolas cerradas, particularmente $x \in B_k$ que, recordemos es ajeno a $A_k,$ por lo tanto $x \notin A_k.$ Entonces tenemos un punto $x \in X$ tal que $x \notin \underset{n \in \mathbb{N}}{\bigcap}A_n$ concluyendo así que $X \neq \underset{n \in \mathbb{N}}{\bigcap}A_n.$

A partir de este teorema podemos concluir la siguiente:

Proposición: Todo espacio métrico completo $X$ sin puntos aislados es no numerable.

Demostración:
Recordemos que un punto aislado $x \in X$ es aquel que tiene una bola abierta cuyo único elemento de $X$ es $x.$ Si $X$ no tiene puntos aislados, entonces todos sus puntos son de acumulación. Es sencillo probar que para cada $x \in X$ el conjunto $\{x\}$ es nunca denso (ejercicio).

Toda bola abierta con $x$ tiene otro elemento en el interior

Si la unión de todos los conjuntos de puntos $\underset{x \in X}{\bigcup}\{x\}=X \,$ fuera numerable tendríamos un espacio completo que contradiga el teorema de Baire. Por lo tanto, si $X$ es completo y sin puntos aislados, entonces es no numerable.

Ejemplo: El espacio euclidiano $\mathbb{R}$ es completo y sin puntos aislados, por lo tanto es no numerable.

El teorema de Baire ha dado resultados fundamentales en el análisis. Los siguientes tres teoremas pueden consultarse en:
Kesavan, S., Functional Analysis (2a ed.). Chennai, India: Editorial Springer, 1996. Pág. 99 y 106.

Teorema de Banach-Steinhaus o de acotación uniforme. Sea $V$ un espacio de Banach y $W$ un espacio lineal normado. Sea $I$ un conjunto indexado para cada $i \in I$ sea $T_i \in \mathcal{L}(V,W).$ Entonces existe $M>0$ tal que

$\norm{T_i} \leq M$, para todo $i \in I$

o bien $\underset{i \in I}{sup} \, \norm{T_i(x)} = \infty$ para todo $x \in G_\delta \subset V.$

Teorema de la función abierta. Sean $V,W$ espacios de Banach y sea $T \in \mathcal{L}(V,W)$ suprayectivo. Entonces $T$ es una función abierta, esto es, si $A \subset V$ es abierto en $V$ entonces $T(A) \subset W$ es abierto en $W.$

Corolario. (También llamado teorema de la función inversa). Sean $V,W$ espacios de Banach y sea $T \in \mathcal{L}(V,W)$ biyectivo, entonces $T$ tiene inversa $T^{-1}$ y esta es continua.

El teorema de la función inversa también es conocido como el teorema de Banach sobre el operador inverso como puede observarse en el problema 3 de Kolmogorov, A.N., Fomin, S.V., Introductory Real Analysis. New York: Dover Publications Inc, 1975. Pág 238. En la página 229 del libro mencionado encontraremos también el:

Teorema Banach: Sea $A$ un operador lineal invertible y acotado que hace un mapeo de un espacio de Banach $E$ en otro espacio de Banach $E_1,$ entonces el operador inverso $A^{-1}$ también es acotado.

También recomendamos visualizar la conferencia
Pichardo, Roberto. «¿Teoría de Conjuntos?, ¡Pero si es bien fácil!». Instituto de Matemáticas de la UNAM. Publicado el 24 de marzo del 2017. YouTube video 59:57
https://www.youtube.com/watch?v=hLFit88zTYk

Roberto Pichardo comienza a describir la Hipótesis del Continuo en el minuto 14 hasta contarnos que esta es equivalente a la igualdad $c:=|\mathbb{R}| = \mathcal{N_1}.$ El teorema de Baire permite mostrar que

\begin{align*}
\mathcal{N_1} \leq cov(\mathcal{M}) \leq c \\
\mathcal{N_1} \leq non(\mathcal{M}) \leq c\\
\mathcal{N_1} \leq add(\mathcal{M}) \leq c
\end{align*}

Y en consecuencia, esos tres cardinales son iguales.

Más adelante…

Descubriremos que aunque un espacio no sea completo, es posible extenderlo a uno donde sí lo sea. tendremos así la llamada «completación de un espacio métrico.»

Tarea moral

  1. ¿Es un conjunto nunca denso un conjunto denso?
  2. Da un ejemplo de un conjunto denso que no sea nunca denso.
  3. En la demostración del teorema de Baire, argumenta por qué es posible elegir las bolas con el radio indicado.
  4. Demuestra que un conjunto $A$ es nunca denso, si y solo si $Int(\overline{A}) = \emptyset .$
  5. Prueba que si $x \in X$ con $X$ espacio métrico es un punto de acumulación, entonces $\{x\}$ es nunca denso.

Enlaces

Nota 18b. Demostraciones por inducción de las propiedades de las operaciones de los números naturales

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En esta nota se realizarán demostraciones de las propiedades de las operaciones que cumplen los números naturales. El objetivo de esta nota es hacer uso del quinto axioma de Peano, que estudiamos en este trabajo a partir de la construcción de los números naturales, para mostrar que estas operaciones cumplen con los principios que hemos estado utilizando desde nuestra educación inicial: existe un elemento neutro, las operaciones son asociativas, conmutativas, distributivas, entre otras.

Dado que el argumento fundamental en el que se basan las siguientes demostraciones se refiere al quinto axioma de Peano o principio de inducción, ver la nota 16, recordemos a qué se refiere. Este axioma nos dice que si un subconjunto $A$ de números naturales cumple que $0 \in A$ y que cada vez que $n \in A$, también $n^+ \in A$, entonces podemos afirmar que $A = \mathbb{N}$.

Dado que queremos demostrar que todos los naturales cumplen con alguna propiedad $P$, vamos a considerar el subconjunto $A \subseteq \mathbb{N}$ dado por $A = \set{n \in \mathbb{N} \mid n \text{ cumple la propiedad } P}$. Usaremos el quinto axioma de Peano o principio de inducción para demostrar que $A$ es el conjunto de números naturales, probando así que todos los naturales cumplen la propiedad $P$.

Estas pruebas entonces tienen dos momentos:

  1. Base de inducción: En este paso verificaremos que $0 \in A$, es decir, que $0$ cumple la propiedad $P$ que caracteriza a los elementos de $A$.
  2. Paso inductivo: En este paso supondremos que $n \in A$, es decir, que $n$ cumple la propiedad $P$ que caracteriza a los elementos de $A$ (a esta hipótesis se le llama la hipótesis de inducción (HI)). A partir de ello demostraremos que el sucesor de $n$, que es $n^+$ o $n+1$, también satisface la propiedad $P$ que caracteriza a los elementos de $A$, es decir, que $n+1 \in A$.

Habiendo realizado estos dos pasos podemos afirmar, gracias al quinto axioma de Peano, que $A = \mathbb{N}$ y, por lo tanto, todos los números naturales satisfacen la propiedad $P$.

Recordemos la definición de las dos operaciones básicas de los números naturales: la suma y la multiplicación, ver la nota 16.

Empecemos recordando la definición de la suma. Dado $n\in \mathbb N$ definimos:

$n+0=n$ y $n+m^+=(n+m)^+$ $\forall m\in \mathbb N$.

Definición. Suma en $\mathbb N$

Dado $n\in \mathbb N$ definimos:

$n+0=n$

$n+m^+=(n+m)^+$ $\forall m\in \mathbb N$

Propiedades de la suma

Sean $n,m,l\in \mathbb N.$

  1. $0+n=n$. Neutro aditivo.
  2. $(n+m)+l=n+(m+l)$. Asociatividad.
  3. Si $n+l=m+l$, entonces $n=m$. Cancelación.
  4. $n+m=m+n$. Conmutatividad.
  5. Si $n\neq 0$ o $m\neq 0$, entonces $n+m\neq 0$

Demostración.

Demostración de la propiedad 1. El neutro aditivo.

Veamos que para cualquier natural $n$ se cumple que $0+n=0$.

Sea $A = \set{n \in \mathbb{N} \mid 0+n=n}$ y veamos que $A = \mathbb{N}$.

Base de inducción.

Observa que $0\in A$ pues por definición de la suma $0+0=0.$

Paso Inductivo. (PI).

Supongamos que $m\in A$, es decir que $0+m=m.$

Ésta es la hipótesis de inducción.

Demostración de que $m^+\in A$ usando la HI.

Lo que queremos demostrar es que $0+m^+=m^+.$

\[
\begin{aligned}
0 + m^+ &= (0 + m)^+ & \text{(Por definición de la suma)} \\
&= m^+ & \text{(Por hipótesis de inducción)}
\end{aligned}
\]

Entonces $m^+ \in A$.

Así, por el quinto axioma de Peano, $A = \mathbb{N}$ y, por lo tanto, $\forall n \in \mathbb{N}, \, 0 + n = n$.

Observación 1. Notemos que, por la definición de la suma, $n + 0 = n$, y nosotros acabamos de mostrar que $0 + n = n$; por lo tanto, $n + 0 = 0 + n=n$, siendo así el cero el neutro de la suma en los naturales.

Demostración de la propiedad 2. Ley Asociativa de la suma.

Veamos que para cualesquiera $n,m,l\in \mathbb N$, se cumple que $(n+m)+l=n+(m+l)$.

Sean $n$ y $m$ cualesquiera naturales, considera el siguiente conjunto:

$A = \set{l \in \mathbb{N} \mid (n+m)+l=n+(m+l)}.$

Veamos que $A = \mathbb{N}$.

Base de inducción.

Observa que $0\in A$ pues por definición de la suma $(n+m)+0=n+m=n+(m+0)$.

Paso Inductivo. (PI).

Supongamos que $l\in A$, es decir que $(n+m)+l=n+(m+l)$.

Ésta es la hipótesis de inducción.

Demostración de que $l^+\in A$ usando la HI.

Lo que queremos demostrar es que $(n+m)+l^+=n+(m+l^+)$.

\[
\begin{aligned}
(n + m) + l^+ &= ((n + m) + l)^+ & \text{(Por definición de suma)} \\
&= (n + (m + l))^+ & \text{(Por hipótesis de inducción)} \\
&= n + (m + l)^+ & \text{(Por definición de la suma)} \\
&= n + (m + l^+) & \text{(Por definición de la suma)}
\end{aligned}
\]

De esta manera, $l^+ \in A$.

Por el quinto axioma de Peano, $A = \mathbb{N}$, lo que implica que todos los números naturales cumplen la ley asociativa.

Demostración de la propiedad 3. Ley de cancelación de la suma.

Veamos que para cualesquiera $n,m,l \in \mathbb{N}$, si $n+l=m+l$, entonces $n=m$.

Sea $A =\set { l \in \mathbb{N} \mid n+l=m+l \Longrightarrow n=m }$ y veamos que $A = \mathbb{N}$.

Base de inducción.

Observa que $0 \in A$, pues si $n+0 = m+0$, por definición de la suma, $n+0 = n$ y $m+0 = m$ teniendo entonces que $n = m$.

Paso Inductivo. (PI).

Supongamos que $l \in A$, es decir, que si $n+l = m+l$, entonces $n = m$.

Ésta es la hipótesis de inducción.

Demostración de que $l^+\in A$ usando la HI.

Lo que queremos demostrar es que $n+ l^+ = m + l^+$ implica que $n = m$.

\[
\begin{aligned}
n + l^+ &= m + l^+ & \text{(Partimos de esta hipótesis)} \\
(n+ l)^+ &= (m + l)^+ & \text{(Por definición de la suma)}\\
n + l &= m + l & \text{(Por el axioma 4 de Peano)}\\
n &= m & \text{(Por hipótesis de inducción)}
\end{aligned}
\]

De esta manera, $l^+ \in A$.

Por el quinto axioma de Peano, $A = \mathbb{N}$, lo que implica que todos los números naturales cumplen la ley de cancelación de la suma.

Observación: La demostración de la propiedad 4 requerirá de un lema que se muestra a continuación, cuya demostración se realiza a su vez por inducción.

Lema: Para cualesquiera $m,n \in \mathbb{N}$ se tiene que $m^+ + n = (m + n)^+$.

Demostración:

Sea $m\in\mathbb{N}$. Consideremos

$S = \set{ n \in \mathbb{N} \mid m^+ + n = (m + n)^+ }$ y veamos que $S=\mathbb{N}.$

Veamos que $S=\mathbb{N}$.

Base de inducción.

Observa que $0 \in S$, pues:

\[
m^+ + 0 = m^+ = (m + 0)^+.
\]

Paso Inductivo. (PI).

Supongamos que $n \in S$, es decir, que $m^+ + n = (m + n)^+$.

Ésta es la hipótesis de inducción.

Demostración de que $n^+\in S$ usando la HI.

Lo que queremos demostrar es que $m^+ + n^+ = (m + n^+)^+$.

\[
\begin{aligned}
m^+ + n^+ &= (m^+ + n)^+ & \text{(Por definición de la suma)} \\
&= ((m + n)^+)^+ & \text{(Por hipótesis de inducción)} \\
&= (m + n^+)^+ & \text{(Por definición de la suma)}.
\end{aligned}
\]

De esta manera, $n^+ \in S$.

Por el quinto axioma de Peano, $S = \mathbb{N}$.

En consecuencia, $m^+ + n = (m + n)^+$ para cualesquiera $m,n \in \mathbb{N}$.

Observa que, por definición, $(m + n)^+ = m + n^+$, y de acuerdo a lo que acabamos de probar $m^+ + n = (m + n)^+ = m + n^+$.

Demostración de la propiedad 4. Ley de conmutatividad de la suma.

Veamos que para cualesquiera naturales $n$ y $m$, $m+n=n+m$

Sea $m\in\mathbb{N}$. Consideremos

$A = \set{n \in \mathbb{N} \mid m+n=n+m}$ y veamos que $A = \mathbb{N}$.

Base de inducción.

Observa que $0\in A$ se da gracias a la propiedad 1, pues $m+0=m=0+m$.

Paso Inductivo. (PI).

Supongamos que $n\in A$, es decir que $m+n=n+m.$

Ésta es la hipótesis de inducción.

Demostración de que $n^+\in A$ usando la HI.

Lo que queremos demostrar es que $m+n^+=n^+ +m.$

\[
\begin{aligned}
m+n^+ &= (m + n)^+ & \text{(Por definición de la suma)} \\
&= (n+m)^+ & \text{(Por hipótesis de inducción)}\\
&= n^+ +m & \text{(Por el lema)}
\end{aligned}
\]

De esta manera, $n^+ \in A$

Por el quinto axioma de Peano, $A = \mathbb{N}$, lo que implica que todos los números naturales cumplen la ley de la conmutatividad de la suma.

Las pruebas para las propiedades de la multiplicación también se harán por inducción.

Empecemos recordando la definición de la multiplicación en $\mathbb N$.

Definición. Producto en $\mathbb N$

Dado $n\in \mathbb N$ definimos:

$n\cdot 0=0$

$n\cdot m^+=n \cdot m+n$ $\forall m\in\mathbb N.$

Recordemos también que podemos escribir $nm$ en lugar de $n\cdot m$.

Propiedades del producto

Sean $n,m,l\in \mathbb N.$

  1. $1\cdot n=n$. Neutro multiplicativo.
  2. $(n+m) \cdot l=n\cdot l+m\cdot l$. Distributividad.
  3. $n \cdot m=m\cdot n$. Conmutatividad.
  4. $(n\cdot m)\cdot l=n\cdot (m\cdot l)$. Asociatividad.
  5. Si $n\neq 0$ y $m\neq 0$, entonces $n\cdot m\neq 0$
  6. Si $l\neq 0$ y $n\cdot l=m\cdot l$ entonces $n=m$. Cancelación.

Demostración de la propiedad 1. Neutro multiplicativo.

Veamos que para cualquier natural $n$ se cumple que $1\cdot n=n$.

Sea $A = \set{n \in \mathbb{N} \mid 1\cdot n=n}$ y veamos que $A = \mathbb{N}$.

Base de inducción.

$0\in A$, pues por definición del producto $1\cdot 0=0.$

Paso Inductivo. (PI).

Supongamos que $m\in A$, es decir que $1\cdot m=m$.

Ésta es la hipótesis de inducción.

Demostración de que $m^+\in A$ usando la HI.

Lo que queremos demostrar es que $1\cdot m^+=m^+.$

\[
\begin{aligned}
1\cdot m^+ &= 1\cdot m+1 & \text{(Por definición del producto)} \\
&= m+1 & \text{(Por hipótesis de inducción)} \\
&= m^+ & \text{(Dado que $m+1=m^+$)}
\end{aligned}
\]

Entonces $m^+ \in A$.

Por el quinto axioma de Peano, $A = \mathbb{N}$, lo que implica el $1$ es el neutro multiplicativo.

Observación 2. Notemos que dado $n\in \mathbb{N}$ tenemos que $$n\cdot 1=n\cdot 0^+=n\cdot 0 +n=0+n=n,$$ y junto con lo anterior podemos afirmar que $1\cdot n=n=n\cdot 1$ para toda $n\in \mathbb{N}$. Así, $1$ es el neutro multiplicativo en los naturales.

Demostración de la propiedad 2. Ley distributiva del producto.

Veamos que para cualesquiera naturales $l,n,m$ se cumple que $(n+m)\cdot l=n\cdot l+m\cdot l$. Sean $n,m\in \mathbb{N}$ y consideremos el conjunto

$A = \set{l \in \mathbb{N} \mid (n+m)\cdot l=n\cdot l+m\cdot l}$.

Veamos que $A = \mathbb{N}$.

Base de inducción.

$0\in A$ pues:

\[
\begin{aligned}
(n+m)\cdot 0 &= 0 & \text{(Por definición del producto)} \\
&= n\cdot 0 & \text{(Por definición del producto)} \\
&= n\cdot 0+0 & \text{(Por definición de la suma)} \\
&= n\cdot 0+m\cdot 0 & \text{(Por definición del producto)}
\end{aligned}
\]

Paso Inductivo. (PI).

Supongamos que $l\in A$, es decir que $(n+m)\cdot l=n\cdot l+m\cdot l$

Ésta es la hipótesis de inducción.

Demostración de que $l^+\in A$ usando la HI.

Lo que queremos demostrar es que $(n+m)\cdot l^+=n\cdot l^+ + m\cdot l^+$

\[
\begin{aligned}
(n+m)\cdot l^+ &= (n+m)\cdot l + (n+m) & \text{(Por definición del producto)} \\
&= n\cdot l+m\cdot l +n+m & \text{(Por hipótesis de inducción)} \\
&= (n\cdot l+n)+(m\cdot l +m) & \text{(Por conmutatividad y asociatividad de la suma)}\\
&= n\cdot l^+ + m\cdot l^+ & \text{(Por definición del producto)}
\end{aligned}
\]

Entonces $l^+ \in A$.

Por el quinto axioma de Peano, $A = \mathbb{N}$, lo que implica que todos los números naturales cumplen la ley de distributividad del producto.

Demostración de la propiedad 3. Conmutatividad del producto.

Se deja de Tarea Moral.

Demostración de la propiedad 4. Asociatividad del producto.

Veamos que para cualesquiera naturales $l,n,m$ se cumple que $(n\cdot m)\cdot l=n\cdot( m\cdot l)$. Para ello sean $n,m\in \mathbb{N}$ y consideremos el conjunto

$A = \set{l \in \mathbb{N} \mid (n\cdot m)\cdot l=n\cdot( m\cdot l)}.$

Veamos que $A = \mathbb{N}$.

Base de inducción.

$0\in A$ pues:

\[
\begin{aligned}
(n\cdot m)\cdot 0 &= 0 & \text{(Por definición del producto)} \\
&= n\cdot 0 & \text{(Por definición del producto)} \\
&= n\cdot (m\cdot 0) & \text{(Por definición del producto)}
\end{aligned}
\]

Paso Inductivo. (PI).

Supongamos que $l\in A$, es decir que $(n\cdot m)\cdot l=n\cdot( m\cdot l)$.

Ésta es la hipótesis de inducción.

Demostración de que $l^+\in A$ usando la HI.

Lo que queremos demostrar es que $(n\cdot m)\cdot l^+=n\cdot( m\cdot l^+)$

\[
\begin{aligned}
(n\cdot m)\cdot l^+ &= (n\cdot m)\cdot l + (n\cdot m) & \text{(Por definición del producto)} \\
&= n\cdot (m\cdot l) + n\cdot m & \text{(Por hipótesis de inducción)} \\
&= (m\cdot l)\cdot n + m\cdot n & \text{(Por conmutatividad del producto)}\\
&= (m\cdot l + m)\cdot n & \text{(Por distributividad producto)} \\
&= (m\cdot l^+)\cdot n & \text{(Por definición del producto)} \\
&= n\cdot (m\cdot l^+) & \text{(Por conmutatividad del producto)}
\end{aligned}
\]

entonces $l^+ \in A$.

Por el quinto axioma de Peano, $A = \mathbb{N}$, lo que implica que todos los números naturales cumplen la ley de asociativa del producto.

Demostración de la propiedad 5.

Se deja de Tarea Moral.

Demostración de la propiedad 6. Cancelación del producto.

Veamos que para cualesquiera naturales $l,n,m$ se cumple que si $l\neq 0$, entonces, $n\cdot l=m\cdot l$ implica que $n=m.$ Dado que trabajaremos con $l\neq 0$ sabemos por un ejercicio en la nota 18 que $l$ es el sucesor de algún natural, por lo que $l=k^+$ para alguna $k$ natural. Así, el enunciado a probar se puede reescribir como: para cualesquiera naturales $k,n,m$ se cumple que $n\cdot k^+=m\cdot k^+$ implica que $n=m.$ Sean $n,m\in \mathbb{N}$ y consideremos el conjunto

$A = \set{k \in \mathbb{N} \mid n\cdot k^+= m\cdot k^+ \Longrightarrow n=m}$.

Veamos que $A=\mathbb{N}.$

Base de inducción.

$0\in A$ ya que si $n\cdot 0^+=m\cdot 0^+$, tenemos que $n\cdot 1=m\cdot 1$ y por la observación 2 sabemos $n\cdot 1=n$ y $m\cdot 1=m$, entonces $n=n\cdot 1=m\cdot 1=m$, concluyendo así que $n=m$.

Paso Inductivo. (PI).

Supongamos que $k\in A$, es decir que $n\cdot k^+= m\cdot k^+ \Longrightarrow n=m$.

Ésta es la hipótesis de inducción.

Demostración de que $k^+\in A$ usando la HI.

Lo que queremos demostrar es que $n\cdot (k^+)^+= m\cdot (k^+)^+ \Longrightarrow n=m$

\[
\begin{aligned}
n\cdot (k^+)^+&= m\cdot (k^+)^+ & \text{(Empezamos con esta hipótesis)} \\
n\cdot k^+ + k^+&= m\cdot k^+ + k^+ & \text{(Por definición del producto)} \\
n\cdot k^+ &= m\cdot k^+ & \text{(Por cancelación de la suma)}\\
n &= m & \text{(Por hipótesis de inducción)}
\end{aligned}
\]

entonces $k^+ \in A$.

Por el quinto axioma de Peano, $A = \mathbb{N}$, y así se vale la cancelación de factores no nulos en los naturales.

Tarea Moral

  1. Demostrar la propiedad 5 de la suma.
  2. Demostrar que para $n^+\cdot m=n \cdot m+m$ $\forall m\in \mathbb N.$
  3. Demostrar la propiedad 3 del producto.
  4. Demostrar la propiedad 5 del producto.
  5. Revisar la demostración de la propiedad de tricotomía del orden de los números naturales en el libro de Avella y Campero que se indica en la bibliografía del curso.

Más adelante

En la siguiente nota formalizaremos la noción intuitiva que tenemos acerca del tamaño de un conjunto usando para ello funciones. Veremos que la noción intuitiva de que dos conjuntos sean del mismo tamaño se formalizará pidiendo que exista una función biyectiva entre ambos.

Enlaces relacionados.

Página principal del curso.

Nota anterior. Nota 18. El principio de inducción matemática.

Nota siguiente. Nota 19. Conjuntos equivalentes y cardinalidad.

Conjuntos Convexos

Por Angélica Amellali Mercado Aguilar

Introducción

En esta sección estudiaremos los conjuntos convexos del espacio $\mathbb{R}^n$. Intuitivamente decimos que un conjunto convexo es aquel que dados dos puntos del conjunto, el segmento de linea que los une también pertenece a ese conjunto.

Definición. Dados $\overline{x},~\overline{y}~\in\mathbb{R}^{n}$, al segmento rectilineo que une dichos puntos lo denotamos
$$[\overline{x},\overline{y}]=\{t\overline{y}+(1-t)\overline{x}~|~t\in[0,1]\}$$

Definición. Sea $k\subset \mathbb{R}^{n}$. Se dice que $k$ es convexo si dados dos puntos de k, el segmento que los une está contenido en $k$ es decir
$$[\overline{x},\overline{y}]\subset k~~~~\forall~\overline{x},~\overline{y}\in k$$

Ejemplo. Una bola abierta es un conjunto convexo
Demostración. Sea $\overline{x}_{0}\in \mathbb{R}^{n}$ y consideremos $\overline{x},~\overline{y}~\in~B(\overline{x}_{0},\epsilon)$ vamos a ver que $[\overline{x},\overline{y}]\in~B(\overline{x}_{0}\epsilon)$ tenemos que

$$\overline{x} \in B(\overline{x}_{0},\epsilon)~\Rightarrow~|\overline{x}-\overline{x}_{0}|<\epsilon$$ y $$\overline{y}\in B(\overline{x}_{0},\epsilon) ~\Rightarrow~|\overline{y}- \overline{x}_{0} | <\epsilon$$ por lo tanto

$$|[\overline{x},\overline{y}]-\overline{x}_{0}|=|t\overline{y}+(1-t)\overline{x}-\overline{x}_{0}|=|t(\overline{y}-\overline{x}_{0})+(1-t)(\overline{x}-\overline{x}_{0})|\leq t|\overline{y}-\overline{x}_{0}|+(1-t)|\overline{x}-\overline{x}_{0}|<$$
$$t\epsilon+(1-t)\epsilon=\epsilon\therefore|[\overline{x},\overline{y}]-\overline{x}_{0}|<\epsilon$$ y de esta manera $$[\overline{x},\overline{y}]\in~B(\overline{x}_{0},\epsilon)$$

Ejemplo. El cuadrado $A=[-1,1]\times [-1,1]$ es un conjunto convexo
Demostración. Sean $\overline{x}=(x_{1},x_{2})$, $\overline{y}=(y_{1},y_{2})$ $\in A$ y $t\in [0,1]$ vamos a ver que $t\overline{y}+(1-t)\overline{x}\in A$, tenemos que
$$t\overline{y}+(1-t)\overline{x}=(ty_{1},ty_{2})+((1-t)x_{1},(1-t)x_{2})=(ty_{1}+(1-t)x_{1},ty_{2}+(1-t)x_{2})$$
como $x_{1},~x_{2},~y_{1},~y_{2}$ son tal que
$$-1\leq x_{1}\leq 1$$

$$-1\leq x_{2}\leq 1 $$

$$ -1\leq y_{1}\leq 1 $$

$$ -1\leq y_{2}\leq 1$$
entonces

$$-1\leq t(-1)+(1-t)(-1)\leq ty_{1}+(1-t)x_{1}\leq t(1)+(1-t)(1)\leq 1$$
$$1\leq t(-1)+(1-t)(-1)\leq ty_{2}+(1-t)x_{2}\leq t(1)+(1-t)(1)\leq 1$$
por lo que
$$(ty_{1}+(1-t)x_{1},ty_{2}+(1-t)x_{2})\in [-1,1]\times [-1,1]$$
por lo tanto
$$t\overline{y}+(1-t)\overline{x}\in A$$

Teorema. Si $\overline{x_{1}},\overline{x}{2},…,\overline{x}{n}\in \mathbb{R}^{n}$ son conjuntos convexos tales que $\displaystyle{\bigcap \overline{x_{i}}}\neq\emptyset~~\forall i=1,..,n$ entonces $\displaystyle{\bigcap \overline{x_{i}}}$ es un conjunto convexo.

Demostración. Sean $\overline{x},~\overline{y}\in \displaystyle{\bigcap \overline{x_{i}}}$ entonces para todo i se tiene que
$$\overline{x},~\overline{y}\in \overline{x}{i}$$ como $\overline{x}{i}$ es convexo entonces $[\overline{x},\overline{y}]\in \overline{x}{i}$ para todo i, por lo tanto $$[\overline{x},\overline{y}]\subset\displaystyle{\bigcap \overline{x{i}}}$$ por lo tanto $\displaystyle{\bigcap \overline{x_{i}}}$ es convexo.

Teorema. Un conjunto convexo es conexo

Demostración. Dado un conjnuto X convexo, si X no fuera conexo entonces existirian A,B conjnutos abiertos separados tales que $X=A\bigcup B$ y $A\bigcap B=\emptyset$ y si consideramos $\overline{x},~\overline{y}\in X$ entonces el segmento $[\overline{x},\overline{y}]$ se puede parametrizar
como $$f(t)=t\overline{y}+(1-t)\overline{x}~t\in [0,1]$$ y podríamos construir los abiertos $$\{t \in[0,1]~|~f(t)\in A \}$$ y $$\{t\in[0,1]~|~f(t)\in B \}$$
estos abiertos proporcionarían una disconexion para el segmento rectilineo $\underset{\circ}{\bigtriangledown}$ pues ya hemos probado que un segmento rectilineo es conexo, por lo tanto X es conexo.

Ejemplo. Un conjunto Conexo no es convexo, considere el conjunto
$$A=\mathbb{R}^{2}- \{(x,y)\in\mathbb{R}^{2}~|~x\leq 0,~y=0\}$$
Vamos a mostrar que A es conexo pero no convexo\
Dado $(x,y)\in~A$ tomamos tres casos\
Caso (1) y=0 y $x>0$\
Consideremos el segmento
$$[x,x_{0}]=[(x,x_{0}),(1,0)]$$
que esta dado por
$${(x+t(1-x),0)=((1-t)x+t,0)\in\mathbb{R}^{2}~|~t\in[0,1]}$$
y como $(1-t)x+t>0$ para todo $t\in[0,1]$. Se tiene que esta contenido en A.\
Caso (2) $y>0$ y $x\in\mathbb{R}$. En este caso el segmento
$$[x,x_{0}]=[(x,x_{0}),(1,0)]$$
que esta dado por
$${(x+t(1-x),y-ty)=((1-t)x+t,(1-t)y)\in\mathbb{R}^{2}~|~t\in[0,1]}$$
se tiene que
$$(1-t)y>0\forall~t\in[0,1)$$ para $t=1$ se tiene el punto $(1,0)=x_{0}$, entonces en este caso también dicho segmento esta contenido en A.\ Caso (3) $y<0$ y $x\in\mathbb{R}$. En este caso el segmento $$[x,x_{0}]=[(x,x_{0}),(1,0)]$$ que esta dado por $${(x+t(1-x),y-ty)=((1-t)x+t,(1-t)y)\in\mathbb{R}^{2}~|~t\in[0,1]}$$ se tiene que $$(1-t)y<0\forall~t\in[0,1)$$
para $t=1$ se tiene el punto $(1,0)=x_{0}$, entonces en este caso también dicho segmento esta contenido en A.
Solo falta ver que el conjnuto A no es convexo

Si consideramos el punto $x=(-1,1)$ y el punto $y=(-1,-1)$ se tiene que $x,y\in A$ y sin embargo el punto
$$(-1,0)=x+\left(\frac{1}{2}\right)(y-x)\in [x,y]$$
pero no pertenece a A, es decir $[x,y] \cancel{\subset}A$

Más adelante

Traea Moral

22.1. Material en revisión: De las coordenadas polares a las coordenadas rectangulares.

Por Mariana Perez

Dado un punto en coordenadas rectangulares $(x, y)$. ¿Cuáles son las coordenadas polares $( r, \theta)$? ¿Podemos despejar $(r, \theta)$ en función de $(x, y)$?

De $x^2 + y^2 = r ^2$, despejando $r$ se obtiene que $$r=\sqrt{x^2+y^2}$$

Para obtener el valor de $\theta$ tenemos dos maneras.

Una es usando la tangente $$\frac{y}{x} =\frac{r \sin \theta}{r \cos \theta} = \tan \theta$$ $$ \theta = \arctan \frac{y}{x}$$

Un detalle a tener en cuenta es que $x \neq 0$.

Además, podemos observar en la siguiente imagen que la función tangente $f(\theta) = \tan \theta$ tal que $f : \big(\frac{-\pi}{2}, \frac{\pi}{2}\big) \cup \big( \frac{\pi}{2}, \frac{3 \pi}{2}\big) \rightarrow \mathbb{R}$ no es inyectiva, y no tiene imagen inversa global, por lo que se debe elegir una rama, es decir un intervalo para el ángulo $\theta$.

Si consideramos la rama $\frac{- \pi}{2}< \theta < \frac{\pi}{2}$, $f : \big(\frac{- \pi}{2}, \frac{ \pi}{2}\big) \rightarrow \mathbb{R}$ entonces la función $f(\theta) = \tan \theta$ si tiene función inversa $f^{-1} : \mathbb{R} \rightarrow \big(\frac{- \pi}{2}, \frac{ \pi}{2}\big)$ y por tanto la función $\arctan \big( \frac{y}{x} \big)$ toma valores en $\big(\frac{- \pi}{2}, \frac{ \pi}{2}\big)$.

Es decir cuando $x > 0$.

De manera análoga, si consideramos la rama $\frac{\pi}{2}< \theta < \frac{3 \pi}{2}$, $f : \big(\frac{3 \pi}{2}, \frac{ \pi}{2}\big) \rightarrow \mathbb{R}$ entonces la función $f(\theta) = \tan \theta$ si tiene función inversa $f^{-1} : \mathbb{R} \rightarrow \big(\frac{3 \pi}{2}, \frac{ \pi}{2}\big)$ y por tanto la función $\arctan \big( \frac{y}{x} \big)$ toma valores en $\big(\frac{3 \pi}{2}, \frac{ \pi}{2}\big)$.

Es decir para cuando $x < 0$.

Otra manera es la siguiente.

Despejando $(r, \theta)$ en términos de $(x, y)$ de la ecuación $$x^2 + y^2 = r ^2$$

Obtenemos que $$r= \sqrt{x^2+y^2}$$

Sustituyendo el valor de $r$ obtenido, en la ecuación $\cos{\theta} = \frac{y}{x}$ obtenemos que $\cos{\theta} = \frac{x}{\sqrt{x^2+y^2}}$ por lo que el valor de $\theta$ está dado por $$\theta = \arccos\left( \frac{x}{\sqrt{x^2+y^2}}\right)$$

La función coseno tampoco es inyectiva sobre $\mathbb{R}$. Para poder hablar de la inversa hay que restringir el intervalo donde varia $\theta$.

Una opción es $0 < \theta < \pi$.

Es decir, se debe escoger el intervalo de $\theta$ que mejor nos permita calcular el ángulo dependiendo de donde se encuentre el punto $(x, y)$.

$$T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$ $$(r, \theta) \longrightarrow (x, y)$$

Mediante tabulación.

Si fijamos $r_0 = 1$ y variamos $\theta$, tenemos que $x = r_0 \cos \theta$ entonces $x = \cos \theta$ y para $y = r_0 \sin \theta$ se obtiene $y = \sin \theta$. Luego $(x, y) = ( \cos \theta, \sin \theta)$.

Analíticamente para $r_0 = 1$ $$x^2+y^2=\cos^2 \theta + \sin^2 \theta$$ $$x^2+y^2=1$$

Por lo que la recta $r = 1$ en coordenadas polares es la circunferencia unitaria en coordenadas cartesianas.

Si fijamos $r_0 = 2$ y variamos $\theta$ se obtiene $$x^2+y^2=(2 \cos \theta)^2 + (2 \sin \theta)^2 = 4 \cos^2 \theta + 4 \sin^2 \theta = 4 (\cos^2 \theta + \sin^2 \theta) = 4$$

$$x^2+y^2=4$$

Por lo que la recta $r = 2$ en coordenadas polares es la circunferencia de radio 2 en coordenadas cartesianas.

Además, la recta $r = 0$ en coordenadas polares, es el punto $(0, 0)$ en coordenadas cartesianas.

https://www.geogebra.org/classic/rhv8nvwx

Ahora consideremos una recta horizontal $\theta = \theta_0$

$x = r \cos \theta_0$

$y = r \sin \theta_0$

$(x, y) = (r \cos \theta_0, r \sin \theta_0)$

$(x, y ) = r ( \cos \theta_0, \sin \theta_0)$

El factor $ (\cos \theta_0, \sin \theta_0)$ es constante, si variamos $r$ tenemos que:

* Si $r > 0$ la recta horizontal en coordenadas polares es un rayo que parte del origen en coordenadas cartesianas; pero si $r \in \mathbb{R} $ se transforma en la recta generada por el vector unitario $\vec{u} = (\cos \theta_0, \sin \theta_0)$.

En la siguiente animación dejamos fijo el ángulo y variamos el valor de $r$.

https://www.geogebra.org/c

En la siguiente animación puedes variar al mismo tiempo $r, \Delta r, \theta$ y $\Delta \theta$ y observar las transformación en la segunda ventana.

https://www.geogebra.org/classic/kwbmfxfn