Fubini sobre subconjuntos

Por César Mendoza

MATERIAL EN REVISIÓN

Introducción

Anteriormente, enunciamos el Teorema de Fubini y vimos un par de consecuencias de este. En esta entrada nos centraremos en el problema de integrar sobre productos cartesianos de conjuntos $$A\times B \subseteq \mathbb{R}^n=\mathbb{R}^l\times \mathbb{R}^m; \ \ \ \ A\subseteq \mathbb{R}^l, B\subseteq \mathbb{R}^m.$$ Un caso bastante común en la práctica.

Productos de conjuntos medibles

Antes de empezar, veamos un resultado bastante intuitivo pero no trivial que es esencial para justificar nuestros desarrollos más adelante.

Proposición. Sean $A\subseteq \mathbb{R}^l$ y $B\subseteq \mathbb{R}^m$ y consideremos $A\times B\subseteq \mathbb{R}^l\times \mathbb{R}^m=\mathbb{R}^n$. Si $A\in \mathcal{L}^n$ y $B\in \mathcal{L}^m$, entonces $$A\times B \in \mathcal{L}^n.$$ Y además $$\lambda(A\times B)=\lambda(A)\lambda(B.)$$

Demostración. El teorema es inmediato cuando $A$ y $B$ son ambos abiertos (o ambos cerrados), pues en este caso $A\times B$ es abierto (o cerrado) y en automático medible. Y por Fubini:

\begin{align*}
\lambda(A\times B) &= \int_{\mathbb{R}^n}\chi_{A\times B} (x,y) \ \mathrm{d}x \mathrm{d}y \\
&= \int_{\mathbb{R}^n}\chi_A (x) \cdot \chi_B(y) \ \mathrm{d}x \mathrm{d}y \\
&= \int_{\mathbb{R}^m}\left (\int_{\mathbb{R}^l}\chi_A (x)\cdot \chi_B(y) \ \mathrm{d}x \right) \mathrm{d}y \\
&= \int_{\mathbb{R}^m} \chi_B(y) \left (\int_{\mathbb{R}^l}\chi_A (x) \ \mathrm{d}x \right) \mathrm{d}y \\
&= \left( \int_{\mathbb{R}^l}\chi_A (x) \ \mathrm{d}x \right) \left( \int_{\mathbb{R}^m} \chi_B(y) \ \mathrm{d}x\right) \\
&= \lambda(A)\lambda(B).
\end{align*}

De hecho, este último argumento es válido siempre que $A\times B\in \mathcal{L}^n$, así que sólo necesitamos probar que $A\times B$ es medible.

Más aún, basta probar el caso en el que $A$ y $B$ son medibles y de medida finita, pues cualesquiera $A’\in \mathcal{L}^l$ y $B’\in \mathcal{L}^m$ se pueden escribir como
$$A’=\bigcup_{k=1}^{\infty} A_k; \ \ \ \ \ \ \ \ \ B’=\bigcup_{k=1}^{\infty} B_k;$$ Donde los $A_k$ y $B_k$ son conjuntos de medida finita (en $\mathbb{R}^l$ y $\mathbb{R}^l$ respectivamente). Y $$A’\times B’ = \bigcup_{j,k=1}^{\infty} A_k\times B_k.$$

Supongamos entonces que $A$ y $B$ son de medida finita. Por el teorema de caracterización de conjuntos medibles [ENLACE], podemos encontrar subconjuntos $F_1\subseteq \mathbb{R}^l$, $F_2\subseteq \mathbb{R}^m$ cerrados y $G_1\subseteq \mathbb{R}^l$, $G_2\subseteq \mathbb{R}^m$ abiertos tales que:
$$F_1\subseteq A \subseteq G_1,$$ $$F_2\subseteq B \subseteq G_2,$$
Y: $$\lambda(G_1\setminus F_1)<\varepsilon,$$ $$\lambda(G_2\setminus F_2)<\varepsilon.$$

De manera que $F_1\times F_2$ es cerrado (en $\mathbb{R}^n$) y $G_1\times G_2$ es abierto (en $\mathbb{R}^n$), con $$F_1\times F_2 \subseteq A\times B \subseteq G_1\times G_2.$$

Ahora, notemos que

\begin{align*}
(G_1\times G_2)\setminus (F_1\times F_2) &= [(G_1\setminus F_1)\times G_2]\cup [F_1\times(G_2\setminus F_2)] \\
&\subseteq [(G_1\setminus F_1)\times G_2]\cup [G_1\times (G_2\setminus F_2)].
\end{align*}

Notemos que éste último conjunto es unión de productos de abiertos. Así que podemoes estimar:

\begin{align*}
\lambda((G_1\times G_2)\setminus (F_1\times F_2)) &\leq \lambda([(G_1\setminus F_1)\times G_2]\cup [G_1\times (G_2\setminus F_2)]) \\
&\leq \lambda([(G_1\setminus F_1)\times G_2]) + \lambda( [G_1\times (G_2\setminus F_2)]) \\
&\leq \varepsilon \lambda(G_2)+\lambda(G_1)\varepsilon \\
&\leq \varepsilon( \lambda(B)+\varepsilon )+\varepsilon(\lambda(A)+\epsilon) \\
&= \varepsilon(\lambda(A)+\lambda(B)) +2\varepsilon ^2.
\end{align*}

En resúmen, podemos encontrar $F’=F_1\times F_2$ cerrado y $G’=G_1\times G_2$ abierto tales que $$F’\subseteq A\times B \subseteq G’$$ y $$\lambda(G’\setminus F’)$$ sea tan pequeño como queramos, lo que implica que $A\times B$ es medible (teorema de caracterización).

Con el resultado anterior en mente, es fácil establecer una versión del teorema de Fubini para productos de conjuntos.

Teorema (Fubini para productos de conjuntos). Sean $A\in \mathcal{L}^l$ y $B\in \mathcal{L}^m$ con juntos medibles en $\mathbb{R}^l$ y $\mathbb{R}^m$ respectivamente. Sea $f:\mathbb{R}^n=\mathbb{R}^l\times \mathbb{R}^m\to [-\infty,\infty]$ una función medible que satisface cualquiera de las hipótesis del teorema de Fubini ($f\geq 0$ o $f\in L^1(\mathbb{R}^n)$). Entonces: $$\int_{A\times B}f(x,y) \ \mathrm{d}x\mathrm{d}y=\int_B \left( \int_A f(x,y) \ \mathrm{d}x \right) \mathrm{d}y=\int_A \left( \int_B f(x,y) \ \mathrm{d}y \right) \mathrm{d}x.$$

Demostración. Por simplicidad, probaremos solamente la primera igualdad. La segunda es completamente análoga.

Por la proposición anterior, $A\times B\in \mathcal{L}^n$ es un conjunto medible, por lo que $f\chi_{A\times B}$ es una función medible. Como $f\chi_{A\times B}\geq 0$ si $f\geq 0$ o bien $|f\chi_{A\times B}|\in L^1$ si $|f|\in L^1$, concluimos que $f\chi_{A\times B}$ satisface las hipótesis del teorema de Fubini. Luego:

\begin{align*}
\int_{A\times B}f(x,y) \ \mathrm{d}x\mathrm{d}y &= \int_{\mathbb{R}^n}f(x,y)\chi_{A\times B}(x,y) \ \mathrm{d}x \mathrm{d}y \\
&= \int_{\mathbb{R}^m} \left( \int_{\mathbb{R}^l}f(x,y)\chi_A(x)\chi_B(y) \ \mathrm{d}x \right)\mathrm{d}y \\
&=\int_{\mathbb{R}^m} \chi_B(y) \left( \int_{\mathbb{R}^l}f(x,y)\chi_A(x) \ \mathrm{d}x \right)\mathrm{d}y \\
&= \int_B \left( \int_{A}f(x,y) \ \mathrm{d}x \right)\mathrm{d}y.
\end{align*}

Veamos un ejemplo sencillo para fijar ideas.

Ejercicio. Calcular $$\int_{[0,1]\times [1,2]}x-2y \ \mathrm{d}x\mathrm{d}y.$$

Solución. Antes de aplicar el teorema de Fubini, hay que asegurarnos que la función $(x,y)\to x-2y$ es $L^1([0,1]\times [1,2])$. En este caso es sencillo (aunque no siempre lo es):

$$|x-2y|\leq |x|+2|y|\leq (1)+2(2)\leq 5 \ \ \ \ \forall (x,y)\in [0,1]\times[1,2].$$

$$\implies \int_{[0,1]\times[1,2]}|x-2y| \ \mathrm{d}x\mathrm{d}y\leq 5\int_{[0,1]\times[1,2]}1 \ \mathrm{d}x\mathrm{d}y=5\lambda([0,1]\times[1,2])=5<\infty.$$

Por lo que $f\in L^1([0,1]\times [1,2])$. Entonces, aplicando el teorema de Fubini (para productos de conjuntos):

\begin{align*}
\int_{[0,1]\times [1,2]} x-2y \ \mathrm{d}x\mathrm{d}y &= \int_1^2\left( \int_0^1 x-2y \ \mathrm{d}x \right) \mathrm{d}y \\ &= \int_1^2 \left( \left[ \frac{x^2}{2}\right]_{x=0}^{x=1}-2y(1-0) \right)\mathrm{d}y \\
&= \int_1^2 \left( \frac{1}{2}-2y \right)\mathrm{d}y \\
&= \frac{1}{2}(2-1)-2\left[ \frac{y^2}{2} \right]_{y=1}^{y=2} \\
&= 1-2(\frac{3}{2}) \\
&= -2
\end{align*}

Más adelante…

Hemos enunciado el Teorema de Fubini junto con algunas de sus consecuencias.

En la siguiente entrada veremos un par de ejercicios resueltos para ver algunas aplicaciones del teorema de Fubini.

Tarea moral

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.