Ecuaciones Diferenciales I: Sistemas lineales homogéneos con coeficientes constantes – Valores propios complejos

Por Omar González Franco

Un matemático que no es también algo de poeta
nunca será un matemático completo.
– Karl Weierstrass

Introducción

Ya vimos cómo obtener la solución general de sistemas lineales homogéneos con coeficientes constantes en el caso en el que los valores propios son todos reales y distintos. En esta entrada desarrollaremos el caso en el que los valores propios son complejos.

Valores propios complejos

Vimos que para un sistema lineal

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{1} \tag{1}$$

con $\mathbf{A}$ una matriz de $n \times n$ con componentes reales

$$\mathbf{A} = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \label{2} \tag{2}$$

siempre se puede encontrar una solución de la forma

$$\mathbf{Y}(t) = \begin{pmatrix}
k_{1} \\ k_{2} \\ \vdots \\ k_{n}
\end{pmatrix}e^{\lambda t} = \mathbf{K}e^{\lambda t} \label{3} \tag{3}$$

Ahora sabemos que $\lambda$ y $\mathbf{K}$ corresponden a un valor y vector propio respectivamente. Como los valores propios se obtienen de encontrar las raíces del polinomio característico, entonces es posible que los valores propios sean números complejos, digamos de la forma

$$\lambda = \alpha + i \beta \label{4} \tag{4}$$

Con $\alpha$ y $\beta$ reales. Veremos más adelante que este tipo de valores propios generarán también vectores propios con componentes complejos que podremos escribir como

$$\mathbf{K} = \mathbf{U} + i \mathbf{V} \label{5} \tag{5}$$

Con estos resultados la solución (\ref{3}) se puede escribir como

$$\mathbf{Y}(t) = \begin{pmatrix}
u_{1} + i v_{1} \\ u_{2} + i v_{2} \\ \vdots \\ u_{n} + i v_{n}
\end{pmatrix}e^{(\alpha + i \beta)t} = (\mathbf{U} + i \mathbf{V}) e^{(\alpha + i \beta)t} \label{6} \tag{6}$$

Un resultado interesante es que los valores y vectores propios conjugados de (\ref{4}) y (\ref{5}) también son valores y vectores propios de la misma matriz $\mathbf{A}$. Demostremos este hecho.

Recordemos que estamos denotando con $M_{n \times n}$ al conjunto de todas las matrices cuadradas de $n \times n$ con componentes reales y constantes.

Demostración: Por hipótesis $\lambda$ es un valor propio de $\mathbf{A}$, lo que significa que se cumple la relación

$$\mathbf{AK} = \lambda \mathbf{K} \label{7} \tag{7}$$

Con $\mathbf{K}$ el vector propio asociado a $\lambda$. Si tomamos el conjugado de la ecuación anterior, tenemos

$$\overline{\mathbf{AK}} = \overline{\lambda \mathbf{K}}$$

o bien,

$$\mathbf{\bar{A}} \mathbf{\bar{K}} = \bar{\lambda} \mathbf{\bar{K}} \label{8} \tag{8}$$

Pero como $\mathbf{A} \in M_{n \times n}$, es decir, $\mathbf{A}$ es una matriz con componentes reales constantes, entonces $\mathbf{\overline{A}} = \mathbf{A}$. La ecuación (\ref{8}) queda como

$$\mathbf{A} \mathbf{\overline{K}} = \bar{\lambda} \mathbf{\overline{K}} \label{9} \tag{9}$$

Lo que muestra que $\overline{\lambda}$ es también un valor propio de $\mathbf{A}$ y el vector propio asociado es $\mathbf{\overline{K}}$.

$\square$

Como $\lambda$ y $\overline{\lambda}$ son valores propios, con vectores propios asociados $\mathbf{{K}}$ y $\mathbf{\overline{K}}$ respectivamente, de la misma matriz $\mathbf{A}$, por el último teorema de la entrada correspondiente podemos deducir que la solución conjugada de (\ref{6})

$$\mathbf{\overline{Y}}(t) = \begin{pmatrix}
u_{1} -i v_{1} \\ u_{2} -i v_{2} \\ \vdots \\ u_{n} -i v_{n}
\end{pmatrix}e^{(\alpha -i \beta)t} = (\mathbf{U} -i \mathbf{V}) e^{(\alpha -i \beta)t} \label{10} \tag{10}$$

es también una solución del sistema lineal (\ref{1}) y además las soluciones (\ref{6}) y (\ref{10}) son linealmente independientes por el mismo teorema.

A continuación enunciamos un teorema que establece que una solución como (\ref{6}) da lugar a dos soluciones con valores reales.

Demostración: Supongamos que la solución del sistema lineal $\mathbf{Y}^{\prime} = \mathbf{AY}$ es de la forma

$$\mathbf{Y} = \mathbf{W}_{1} + i \mathbf{W}_{2} \label{11} \tag{11}$$

Donde $\mathbf{W}_{1}$ y $\mathbf{W}_{2}$ son vectores con componentes reales.

Queremos probar que

$$\mathbf{W}_{1} = Re \{ \mathbf{Y} \} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2} = Im \{ \mathbf{Y} \}$$

también son soluciones del sistema lineal.

Por una lado, como $\mathbf{Y}$ es solución, entonces

$$\mathbf{Y}^{\prime} = \mathbf{AY} = \mathbf{A} (\mathbf{W}_{1} + i \mathbf{W}_{2}) = \mathbf{AW}_{1} + i \mathbf{AW}_{2} \label{12} \tag{12}$$

Por otro lado, notemos que

$$\mathbf{Y}^{\prime} = (\mathbf{W}_{1} + i \mathbf{W}_{2})^{\prime} = \mathbf{W}_{1}^{\prime} + i \mathbf{W}_{2}^{\prime} \label{13} \tag{13}$$

De (\ref{12}) y (\ref{13}), se tiene que

$$\mathbf{W}_{1}^{\prime} + i \mathbf{W}_{2}^{\prime} = \mathbf{AW}_{1} + i \mathbf{AW}_{2} \label{14} \tag{14}$$

Igualando las partes reales e imaginarias de (\ref{14}), se obtiene

$$\mathbf{W}_{1}^{\prime} = \mathbf{AW}_{1} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2}^{\prime} = \mathbf{AW}_{2}$$

Lo que muestra que las funciones $\mathbf{W}_{1}$ y $\mathbf{W}_{2}$ son soluciones con valores reales del sistema lineal (\ref{1}).

$\square$

Ahora que conocemos este resultado veamos que forma tienen las funciones $\mathbf{W}_{1}$ y $\mathbf{W}_{2}$.

Demostración: Sabemos que una solución del sistema lineal (\ref{1}), en el caso en el que el valor y el vector propio son complejos, es

$$\mathbf{Y}(t) = e^{(\alpha + i \beta)t} (\mathbf{U} + i \mathbf{V})$$

Esta función la podemos escribir como

$$\mathbf{Y}(t) = e^{\alpha t} e^{i \beta t} \mathbf{U} + i e^{\alpha t} e^{i \beta t} \mathbf{V} \label{17} \tag{17}$$

Usando la identidad de Euler

$$e^{i \beta t} = \cos(\beta t) + i \sin(\beta t) \label{18} \tag{18}$$

podemos escribir la función (\ref{17}) como

\begin{align*}
\mathbf{Y} &= e^{\alpha t} [\cos(\beta t) + i \sin(\beta t)] \mathbf{U} + i e^{\alpha t}[\cos(\beta t) + i \sin(\beta t)] \mathbf{V} \\
&= e^{\alpha t} [\mathbf{U} \cos(\beta t) + i \mathbf{U} \sin(\beta t)] + i e^{\alpha t}[\mathbf{V} \cos(\beta t) + i \mathbf{V} \sin(\beta t)]
\end{align*}

Si reescribimos este resultado en una parte real y una imaginaria se tiene lo siguiente.

$$\mathbf{Y} = e^{\alpha t} [\mathbf{U} \cos(\beta t) -\mathbf{V} \sin(\beta t)] + i e^{\alpha t} [\mathbf{U} \sin(\beta t) + \mathbf{V} \cos(\beta t)] \label{19} \tag{19}$$

En esta forma podemos definir

$$\mathbf{W}_{1} = Re \{ \mathbf{Y} \} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2} = Im \{ \mathbf{Y} \}$$

entonces,

$$\mathbf{W}_{1}(t) = e^{\alpha t} [\mathbf{U} \cos(\beta t) -\mathbf{V} \sin(\beta t)]$$

y

$$\mathbf{W}_{2}(t) = e^{\alpha t} [\mathbf{U} \sin(\beta t) + \mathbf{V} \cos(\beta t)]$$

Por el teorema anterior concluimos que ambas son soluciones del sistema lineal (\ref{1}). Para mostrar que son soluciones linealmente independientes probemos que se cumple

$$c_{1} \mathbf{W}_{1}(t) + c_{2} \mathbf{W}_{2}(t) = 0 \label{20} \tag{20}$$

sólo si $c_{1} = c_{2} = 0$. Para ello consideremos la solución

$$\mathbf{Y} = \mathbf{W}_{1} + i \mathbf{W}_{2}$$

Por el primer teorema visto sabemos que el conjugado de la función anterior es también una solución del sistema.

$$\mathbf{\overline{Y}} = \mathbf{W}_{1} -i \mathbf{W}_{2} \label{21} \tag{21}$$

Y además ambas soluciones son linealmente independientes, lo que significa que si se satisface la ecuación

$$C_{1} \mathbf{Y} + C_{2} \mathbf{\overline{Y}} = 0 \label{22} \tag{22}$$

es porque $C_{1} = C_{2} = 0$.

Sustituyamos $\mathbf{Y}$ y $\mathbf{\overline{Y}}$ en (\ref{22}).

$$C_{1} [\mathbf{W}_{1} + i \mathbf{W}_{2}] + C_{2} [\mathbf{W}_{1} -i \mathbf{W}_{2}] = 0$$

Factorizando $\mathbf{W}_{1}$ y $\mathbf{W}_{2}$, se tiene

$$(C_{1} + C_{2}) \mathbf{W}_{1} + i(C_{1} -C_{2}) \mathbf{W}_{2} = 0 \label{23} \tag{23}$$

Si definimos

$$c_{1} = C_{1} + C_{2} \hspace{1cm} y \hspace{1cm} c_{2} = i(C_{1} -C_{2})$$

podemos escribir

$$c_{1} \mathbf{W}_{1}(t) + c_{2} \mathbf{W}_{2}(t) = 0$$

Pero como $C_{1} = C_{2} = 0$, entonces

$$C_{1} + C_{2} = 0 \hspace{1cm} y \hspace{1cm} C_{1} -C_{2} = 0$$

es decir, $c_{1} = c_{2} = 0$, lo que muestra que las soluciones $\mathbf{W}_{1}$ y $\mathbf{W}_{2}$ son linealmente independientes.

$\square$

Solución general de un sistema lineal con valores propios complejos

Nosotros ya sabemos que todos los vectores propios de una matriz $\mathbf{A}$, reales o complejos, son linealmente independientes, entonces un conjunto fundamental de soluciones de (\ref{1}) consiste de soluciones de la forma (\ref{15}) y (\ref{16}) en el caso en el que se obtienen valores propios complejos y soluciones de la forma (\ref{3}) cuando los valores propios son reales.

Por ejemplo, supongamos que $\lambda_{1} = \alpha + i \beta$, $\lambda_{2} = \alpha -i \beta$ son valores propios complejos de un sistema lineal y que $\lambda_{3}, \lambda_{4}, \cdots, \lambda_{n}$ son valores propios reales distintos del mismo sistema lineal. Los correspondientes vectores propios serían $\mathbf{K}_{1} = \mathbf{U} + i \mathbf{V}$, $\mathbf{K}_{2} = \mathbf{U} -i \mathbf{V}$, $\mathbf{K}_{3}, \mathbf{K}_{4}, \cdots, \mathbf{K}_{n}$. Entonces la solución general del sistema lineal será

$$\mathbf{Y}(t) = c_{1} \mathbf{W}_{1}(t) + c_{2} \mathbf{W}_{2}(t) + c_{3} e^{\lambda_{3} t} \mathbf{K}_{3} + c_{4} e^{\lambda_{4} t} \mathbf{K}_{4} + \cdots + c_{n} e^{\lambda_{n} t} \mathbf{K}_{n} \label{24} \tag{24}$$

Donde $\mathbf{W}_{1}(t)$ y $\mathbf{W}_{2}(t)$ son los vectores dados en (\ref{15}) y (\ref{16}), respectivamente.

Es importante mencionar que esta teoría se aplica sólo para el caso en que la matriz (\ref{2}) es una matriz con componentes reales.

Para concluir con esta entrada realicemos un ejemplo.

Ejemplo: Resolver el siguiente problema con valores iniciales.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1
\end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
1 \\ 1 \\ 1
\end{pmatrix}$$

Solución: En este caso la matriz $\mathbf{A}$ es

$$\mathbf{A} = \begin{pmatrix}
1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 1
\end{pmatrix}$$

La ecuación característica la obtenemos de calcular el determinante

$$\begin{vmatrix}
1 -\lambda & 0 & 0 \\ 0 & 1- \lambda & -1 \\ 0 & 1 & 1 -\lambda
\end{vmatrix} = 0$$

De donde se obtiene que

$$(1 -\lambda)^{3} + (1 -\lambda) = (1 -\lambda)(\lambda^{2} -2 \lambda + 2) = 0$$

Al resolver para $\lambda$ se obtienen las siguientes tres raíces.

$$\lambda_{1} = 1, \hspace{1cm} \lambda_{2} = 1 + i \hspace{1cm} y \hspace{1cm} \lambda_{3} = 1 -i$$

Estos valores corresponden a los valores propios de la matriz del sistema. Determinemos los vectores correspondientes.

Caso 1: $\lambda_{1} = 1$.

Buscamos un vector $\mathbf{K}_{1} \neq \mathbf{0}$, tal que

$$(\mathbf{A} -1 \mathbf{I}) \mathbf{K}_{1} = \mathbf{0}$$

$$\begin{pmatrix}
1 -1 & 0 & 0 \\ 0 & 1 -1 & -1 \\ 0 & 1 & 1 -1
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}$$

Es claro que $k_{2} = k_{3} = 0$ y $k_{1}$ al ser libre lo elegimos como $k_{1} = 1$, entonces el primer vector propio es

$$\mathbf{K}_{1} = \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix}$$

Caso 2: $\lambda_{2} = 1 + i$.

Buscamos un vector $\mathbf{K}_{2}$ no nulo, tal que

$$(\mathbf{A} -(1 + i) \mathbf{I}) \mathbf{K}_{2} = \mathbf{0}$$

$$\begin{pmatrix}
1 -(1 + i) & 0 & 0 \\ 0 & 1 -(1 + i) & -1 \\ 0 & 1 & 1 -(1 + i)
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
-i & 0 & 0 \\ 0 & -i & -1 \\ 0 & 1 & -i
\end{pmatrix} \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}$$

El sistema de ecuaciones que se obtiene es

\begin{align*}
-i k_{1} &= 0 \\
-i k_{2} -k_{3} &= 0 \\
k_{2} -i k_{3} &= 0
\end{align*}

De la primera ecuación se obtiene que $k_{1} = 0$, y de la segunda o tercera se obtiene que $k_{2} = i k_{3}$. Elegimos $k_{3} = 1$, así $k_{2} = i$, entonces el segundo vector propio es

$$\mathbf{K}_{2} = \begin{pmatrix}
0 \\ i \\ 1
\end{pmatrix}$$

Este vector al ser complejo lo podemos escribir como

$$\mathbf{K}_{2} = \mathbf{U} + i \mathbf{V} = \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} + i \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \label{25} \tag{25}$$

Caso 3: $\lambda_{3} = 1 -i$.

Este caso, como ya vimos en la teoría, corresponde al conjugado del caso anterior, así que el vector propio para este caso es

$$\mathbf{K}_{3} = \begin{pmatrix}
0 \\ -i \\ 1
\end{pmatrix}$$

que también se puede escribir como

$$\mathbf{K}_{3} = \mathbf{U} -i \mathbf{V} = \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} -i \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \label{26} \tag{26}$$

Por lo tanto, una forma de la solución general del sistema es

$$\mathbf{Y}(t) = c_{1} e^{t} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} + c_{2} e^{(1 + i)t} \begin{pmatrix}
0 \\ i \\ 1
\end{pmatrix} + c_{3} e^{(1 -i)t} \begin{pmatrix}
0 \\ -i \\ 1
\end{pmatrix} \label{27} \tag{27}$$

Sin embargo, es conveniente tener la solución real dada en (\ref{24}). De los resultados (\ref{25}) y (\ref{26}) sabemos que

$$\mathbf{U} = \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{V} = \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix}$$

Si sustituimos en (\ref{15}) y (\ref{16}) con $\alpha = \beta = 1$, obtenemos lo siguiente.

$$\mathbf{W}_{1}(t) = e^{t} \begin{pmatrix}
0 \\ -\sin(t) \\ \cos(t)
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(t) \\ \sin(t)
\end{pmatrix} \label{28} \tag{28}$$

Por su puesto, lo ideal es no memorizar las ecuaciones (\ref{15}) y (\ref{16}). Lo que se debe de hacer es tomar el caso en el que el vector propio es complejo, en este caso $\lambda_{2} = 1 + i$ y el vector propio correspondiente $\mathbf{K}_{2} = \begin{pmatrix} 0 \\ i \\ 1 \end{pmatrix}$, tal que una solución del sistema es

$$\mathbf{Y}_{2}(t) = e^{(1 + i)t} \begin{pmatrix}
0 \\ i \\ 1
\end{pmatrix}$$

y usamos la identidad de Euler (\ref{18}).

\begin{align*}
e^{(1 + i)t} \begin{pmatrix}
0 \\ i \\ 1
\end{pmatrix} &= e^{t} [\cos(t) + i \sin(t)] \left[ \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} + i \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \right] \\
&= e^{t} \left[ \cos(t) \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} -\sin(t) \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} + i \sin(t) \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} + i \cos(t) \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} \right] \\
&= e^{t} \begin{pmatrix}
0 \\ -\sin(t) \\ \cos(t)
\end{pmatrix} + i e^{t} \begin{pmatrix}
0 \\ \cos(t) \\ \sin(t)
\end{pmatrix}
\end{align*}

De donde podemos definir las funciones anteriores (\ref{28}).

$$\mathbf{W}_{1}(t) = e^{t} \begin{pmatrix}
0 \\ -\sin(t) \\ \cos(t)
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{W}_{2}(t) = e^{t} \begin{pmatrix}
0 \\ \cos(t) \\ \sin(t)
\end{pmatrix}$$

Por lo tanto, de acuerdo a (\ref{24}), la solución general $\mathbf{Y}(t)$ del sistema lineal homogéneo dado debe tener la forma

$$\mathbf{Y}(t) = c_{1} e^{t} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} + c_{2} e^{t} \begin{pmatrix}
0 \\ -\sin(t) \\ \cos(t)
\end{pmatrix} + c_{3} e^{t} \begin{pmatrix}
0 \\ \cos(t) \\ \sin(t)
\end{pmatrix} \label{29} \tag{29}$$

Apliquemos los valores iniciales. Tomando $t = 0$, se ve que

$$\mathbf{Y}(0) = \begin{pmatrix}
1 \\ 1 \\ 1
\end{pmatrix} = c_{1} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} + c_{2} \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix} + c_{3} \begin{pmatrix}
0 \\ 1 \\ 0
\end{pmatrix} = \begin{pmatrix}
c_{1} \\ c_{3} \\ c_{2}
\end{pmatrix}$$

De modo que, $c_{1} = c_{2} = c_{3} = 1$. Por lo tanto, la solución particular del problema de valores iniciales es

$$\mathbf{Y}(t) = e^{t} \begin{pmatrix}
1 \\ 0 \\ 0
\end{pmatrix} + e^{t} \begin{pmatrix}
0 \\ -\sin(t) \\ \cos(t)
\end{pmatrix} + e^{t} \begin{pmatrix}
0 \\ \cos(t) \\ \sin(t)
\end{pmatrix} = e^{t} \begin{pmatrix}
1 \\ \cos(t) -\sin(t) \\ \cos(t) + \sin(t)
\end{pmatrix} \label{30} \tag{30}$$

$\square$

Hemos concluido esta entrada. En la siguiente revisaremos el último caso que corresponde a la situación en la que tenemos valores propios que se repiten, es decir, que tienen multiplicidad $r > 1$.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver los siguientes sistemas lineales homogéneos.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -3 & 2 \\ -1 & -1
    \end{pmatrix}\mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & 0 & 1 \\ 0 & 1 & -1 \\ -2 & 0 & -1
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -7 & 6 & -6 \\ -9 & 5 & -9 \\ 0 & -1 & -1
    \end{pmatrix} \mathbf{Y}$
  1. Resolver los siguientes problemas con valores iniciales.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -3 & 0 & 2 \\ 1 & -1 & 0 \\ -2 & -1 & 0
    \end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    0 \\ -1 \\ -2
    \end{pmatrix}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    0 & 2 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 3 & 0
    \end{pmatrix} \mathbf{Y}, \hspace{1cm} \mathbf{Y}(0) = \begin{pmatrix}
    1 \\ 1 \\ 1 \\ 0
    \end{pmatrix}$

Más adelante…

Ya conocemos la forma de las soluciones generales de sistemas lineales homogéneos en los que los valores propios de la matriz del sistema son reales y distintos y en los que son números complejos. El caso en el que son repetidos se presentará en la siguiente entrada.

Cuando los valores propios son repetidos el método se puede complicar un poco, sin embargo existe una alternativa bastante ingeniosa que nos permite obtener $n$ soluciones linealmente independientes de un sistema lineal de $n$ ecuaciones. ¡Dicha alternativa involucra la utilidad de la exponencial de una matriz $e^{\mathbf{A} t}$!.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.