Archivo de la categoría: Sin clasificar

Nota 6. Conjunto potencia y el producto cartesiano

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Las matemáticas nos ofrecen herramientas sorprendentes para explorar combinaciones y posibilidades, en esta sección daremos la definición del conjunto potencia y del producto cartesiano. En el primero formaremos un conjunto cuyos elementos sean los subconjuntos de un conjunto dado, en el segundo consideraremos parejas formadas con los elementos de dos conjuntos cualesquiera.

Definición

Sea $A$ un conjunto, la potencia de $A$ es la colección de todos los subconjuntos de $A$ y la denotaremos por $\mathcal{P}(A)$, es decir

$\mathcal{P}(A)=\set{S\mid S\subseteq A}.$

Aunque $\mathcal{P}(A)$ es una colección que tiene en general más elementos que $A$, no habrá problema en considerarlo también como un conjunto y lo establecemos así en el siguiente axioma:

Axioma del conjunto potencia

Dado un conjunto $A$, $\mathcal{P}(A)$ también es un conjunto.

Ejemplos

  • Si $A=\set{a,b}$, entonces
    $\mathcal{P}(A)=\set{\emptyset,\set{a},\set{b},\set{a,b}}.$
  • Si $B=\set{a,\set{b},\set{a,b}}$, entonces
    $\mathcal{P}(B)=\set{\emptyset,\set{a},\set{\set{b}},\set{\set{a,b}},\set{a,\set{b}},\set{a,\set{a,b}}, \set{\set{b},\set{a,b}},B}.$

Observa que:

Para cualquier conjunto $A$, $\emptyset \in \mathcal{P}(A)$ y $A\in \mathcal{P}(A)$.

Definición

Sea $X$ un conjunto universo, $a,b\in X$.

El par ordenado de los objetos $a$ y $b$ es:

$(a,b)=\set{\set{a}, \set{a,b}}$

Observa que:

  1. $(b,a)=\set{\set{b},\set{b,a}}.$
  2. $(a,a)=\set{\set{a},\set{a,a}}=\set{\set{a}, \set{a}}=\set{\set{a}}.$

Proposición

Sea $X$ un conjunto universo, $a,b,c,d\in X$. Tenemos que

$(a,b)=(c,d) \Longleftrightarrow a=c\, \, \,y \, \, \, b=d$

Demostración

La siguiente demostración es la que se presenta en el Apartado 2.10 del libro Curso introductorio de Álgebra I de Avella y Campero que se encuentra en la bibliografía de este curso.

$\Longrightarrow $ Demostración de la implicación de ida

Supongamos que $(a,b)=(c,d)$, con la intención de mostrar que $a=c\, \, \,y \, \, \, b=d$.

Como $(a,b)=(c,d)$ entonces por definición de par ordenado:

$\set{\set{a}, \set{a,b}}=\set{\set{c}, \set{c,d}}$

La demostración se hace por casos.

Caso 1

Si $\set{a}= \set{c}$, entonces $a=c$. Como $\set{a,b}\in \set{\set{c}, \set{c,d}}$ tenemos que $\set{a,b}=\set{c},$ o $\set{a,b}=\set{c,d}$. Si $\set{a,b}=\set{c},$ entonces $a=b=c$, por lo que $\set{\set{c}}=\set{\set{a}, \set{a,b}}=\set{\set{c}, \set{c,d}}$ de lo que se sigue que $\set{c}=\set{c,d}$ y por lo tanto $c=d$. Por otro lado, en el caso en que $\set{a,b}=\set{c,d}$, como $a=c$ tenemos que $b=d$. En ambos casos fíjate que demostramos que $a=c$ y $b=d$, que es lo que queríamos.

Caso 2

Si $\set{a}= \set{c,d}$, entonces $a=c=d$. Como $\set{a,b}\in \set{\set{c}, \set{c,d}}$ tenemos que $\set{a,b}=\set{c},$ o $\set{a,b}=\set{c,d}$. Si $\set{a,b}=\set{c},$ entonces $a=b=c$, por lo que $a=b=c=d$. Por otro lado , en el caso en que $\set{a,b}=\set{c,d}$, como además $a=c=d$ tenemos que $\set{a,b}=\set{c,d}=\set{a}$, entonces $a=b$ y así $a=b=c=d$. ambos casos hemos demostrado que $a=c$ y $b=d$, que es lo que queríamos.

$\Longleftarrow $ Demostración de la implicación de regreso

Supongamos que $a=c$ y que $b=d$, por demostrar que $(a,b)=(c,d)$.

Por definición de par ordenado:

$(a,b)=\set{\set{a}, \set{a,b}}$

$(c,d)=\set{\set{c}, \set{c,d}}$

si $a=c$ y que $b=d$ entonces $\{a\}=\{c\}$ y $\{a,b\}=\{c,d\}$, por lo tanto $(a,b)=\set{\set{a}, \set{a,b}}= \set{\set{c}, \set{c,a}}=(c,d)$, que es lo que queríamos demostrar.

Como se cumplen las dos implicaciones la prueba está completa.

$\square$

Generalizando:

La terna $(a,b,c)$, es por definición el par $((a,b),c)$. En general si $(a_1,…,a_n)$ está definido, se define $(a_1,…a_{n+1})$ como: $( (a_1,…,a_n),a_{n+1})$. Notemos que tanto la terna como la n-ada son un par ordenado. Usando la proposición anterior y la definición de n-ada se puede probar con la técnica de inducción que se verá más adelante que:

$(a_1,…,a_n)=(b_1,…,b_n)$ $ \Longleftrightarrow $ $a_i=b_i$, $\forall i$, $1\leq i\leq n$.

Definición

Sean $A$, $B$ conjuntos. El producto cartesiano de $A$ con $B$ es:

$A\times B=\set{(a,b)\mid a\in A,b\in B}$

Ejemplos

  • Sean $A=\set{\pi,2}, B=\set{3,4,5}$, entonces
    $A\times B=\set{(\pi,3), (\pi,4), (\pi,5),(2,3),(2,4),(2,5)}$, y
    $B\times A=\set{(3,\pi), (4,\pi), (5,\pi),(3,2),(4,2),(5,2)}$.
  • Sea $\mathbb N=\set{0,1,2,4,\dotsi}$, y $\set{1,2}$
    $\set{1,2}\times \mathbb N =\set{(1,0),(1,1),(1,2),(1,3),\dotsc ,(2,0),(2,1),(2,2),(2,3)\dotsc }$}
  • $\mathbb R\times \mathbb R=\set{(x,y)\mid x,y\in \mathbb R}$, y se denota por $\mathbb R^2$, que son las parejas ordenadas del plano cartesiano.

En el siguiente recurso de Geogebra da los conjuntos $A$ y $B$ y obtén una representación gráfica de los mismos.

Generalizando:

Si $A_1,\dotsi,A_n$ son conjuntos, $A_1\times \dotsi \times A_n = \set{(a_1,\dotsi,a_n)\mid a_i\in A_i,1\leq i\leq n)}$.

Si $A_1=\dotsi =A_n=A$, para algún conjunto $A$, el producto de esos $n$ conjuntos $A\times \dotsi \times A$ se denota como $ A^n$.

Tarea moral

  1. Sean $A$ y $B$ conjuntos. Si $A\subseteq B$, ¿existe alguna relación de contención entre $\mathcal{P}(A)$ y $\mathcal{P}(B)$?.
  2. Sean $A$ y $B$ conjuntos. Responde y justifica:
    a) ¿Son iguales $\mathcal{P}(A)\cup \mathcal{P}(B)$ y $\mathcal{P}(A\cup B)$?
    b) ¿Son iguales $\mathcal{P}(A)\cap \mathcal{P}(B)$ y $\mathcal{P}(A\cup B)$?
  3. Sea $A=\set{5,\emptyset,\set{\emptyset},\set{\emptyset,4},\set{\pi}}$
    $B_1=\set{2,\set{5,\set{\emptyset}}}$
    $B_2=\set{\set{\pi},\set{5,\emptyset}}$
    $B_3=\set{5,\emptyset}$
    Encuentra al siguiente conjunto: $\mathcal{P}(A)\cap (B_1\cup (B_2\cup B_3))$
  4. Dados $a$,$b$,$c$ objetos define la terna $(a,b,c)$ como el conjunto $\set{\set{a},\set{a,b},\set{a,b,c}}$.
    ¿Con esta definición de terna se cumple que $(a,b,c)=(d,e,f)$ si y sólo si $a=d$, $b=e$ y $c=f\text{?}$ Justifica tu respuesta.

Más adelante

En la nota siguiente definiremos lo que es una relación entre dos conjuntos, encaminados a dar una definición formal del concepto de función ampliamente usado en el mundo de las matemáticas.

Enlaces relacionados

Página principal del curso.

Este recurso de GeoGebra fue elaborado por el profesor Lenin Paulino, a quien agradezco por permitir su uso y adaptación. Considero que los recursos educativos libres fortalecen el aprendizaje y que el conocimiento debe ser compartido sin fronteras. https://www.geogebra.org/m/thurzdus

Nota 4. Unión e intersección de Conjuntos.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción.

En esta nota veremos que hay dos operaciones binarias que podemos considerar en los conjuntos. Dados dos conjuntos, podemos formar por un lado la unión de ellos, que resulta ser un nuevo conjunto y consta de los elementos de ambos conjuntos, y por otro lado la intersección que es el conjunto que consiste de los elementos comunes a ambos.

Definición:

Sea $X$ un conjunto universo, $A$, $B$ subconjuntos de $X$.

La unión de $A$ con $B$ es:

$A\cup B=\set{x\in X\mid x\in A \, \, o \, \, x\in B}.$

La intersección de $A$ con $B$ es:

$A\cap B=\set{x\in X\mid x\in A \, \, y \, \, x\in B}.$

Diremos que $A$ y $B$ son ajenos o disjuntos cuando $A\cap B=\emptyset$.

Corrobora con el siguiente recurso de Geogebra que entiendes la definición de unión e intersección de conjuntos, escribe en las barras en blanco separados por comas, los elementos de $A\cup B$ y $A\cap B$, no es necesario poner las llaves de los conjuntos, sólo los elementos.

Ejemplos:

  1. $A=\set{-2,-1,0,1,2}$ y $B=\set{0,2,4,6}$
    $A\cup B=\set{-2,-1,0,1,2,4,6}$
    $A\cap B=\set{0,2}.$
  2. $A=\set{x\in \mathbb Z\mid x>0}$ y $B=\set{x\in \mathbb Z\mid x\,es\,múltiplo\,de\,tres}$
    $A\cup B=\set{x\in \mathbb Z\mid x>0\,o\,x\,es\,múltiplo\,de\,tres}$
    $A\cup B=\set{…,-12,-9,-6,-3,0,1,2,3,4,…}$
    $A\cap B=\set{x\in \mathbb Z\mid\,x>0\,\,y\,\,x\,\,es\,\,múltiplo\,\,de\,\,3}$
    $A\cap B=\set{3,6,9,12,…}.$

Propiedades

Sean $X$ un conjunto universo, $A$,$B$,$C$, subconjuntos de $X$. Se cumplen las siguientes afirmaciones:

1. $A\subseteq A\cup B.$5. $A\cap B\subseteq A.$
2. $(A\cup B) \cup C=A\cup (B\cup C).$Asociatividad6. $(A\cap B) \cap C=A\cap (B\cap C).$
3. $A\cup B=B\cup A.$Conmutatividad7. $A\cap B=B\cap A.$
4. $A\cup \emptyset=A.$8. $A\cap X=A.$

Además se tienen las siguientes propiedades distributivas:

9. $A\cup (B\cap C)=(A\cup B)\cap (A\cup C).$
10. $A\cap (B\cup C)=(A\cap B)\cup (A\cap C).$

Se harán las demostraciones de las propiedades 1,3,6,8 y 10, las demás se dejan como ejercicio.

Demostración de la propiedad 1, $A\subseteq A\cup B$.

Sea $z\in A$, veamos que $z\in A\cup B$. Como $z\in A$, entonces es cierto que $z\in A$ o $z\in B$. Además, como $A\subseteq X$ (por ser $X$ el conjunto universo) tenemos que $z\in X$. Así, $z\in \set{x\in X\mid x\in A\,\,o\,\,x\in B}$ por lo tanto $A\subseteq A\cup B$.

Demostración de la propiedad 3, $A\cup B=B\cup A.$

$z\in A\cup B \Longleftrightarrow z\in A \, \, \, o \, \, \, z\in B \Longleftrightarrow z\in B \, \, \, o \, \, \, z\in A \Longleftrightarrow z\in B\cup A.$

Por lo tanto $A\cup B= B\cup A.$

Demostración de la propiedad 6, $(A\cap B) \cap C=A\cap (B\cap C).$

Tenemos que:

$z\in A\cap (B\cap C)$$\Longleftrightarrow$ $z\in A$ y $z\in B\cap C$

$\phantom{z\in A\cap (B\cap C)}$ $\Longleftrightarrow$ $z\in A$ y $z\in B$ y $z\in C$

$\phantom{z\in A\cap (B\cap C)}$$\Longleftrightarrow$ $z\in A\cap B$ y $z\in C$

$\phantom{z\in A\cap (B\cap C)}$$\Longleftrightarrow$ $z\in (A\cap B) \cap C $

$\therefore$ $(A\cap B) \cap C=A\cap (B\cap C).$

Demostración de la propiedad 8, $A\cap X=A.$

La demostración se hará por doble contención.

Primera contención, veamos que $A\cap X\subseteq A.$

Sea $z\in A\cap X$, entonces $z\in A$ y $z\in X$, en particular $z\in A$. Así, $A\cap X\subseteq A$ (o bien se puede usar la propiedad 5 si ésta se ha demostrado antes).

Segunda contención, veamos ahora que $A\subseteq A \cap X. $

Sea $z\in A$, como $A\subseteq X$, también $z\in X$, así $z\in A$ y $z\in X$, entonces $z\in A\cap X$.

Como se cumplen las dos contenciones, tenemos que $A\cap X=A$ .

Demostración de la propiedad 10, $A\cap (B\cup C)=(A\cap B)\cup (A\cap C).$

La demostración se hará por doble contención:

Primera contención, veamos que $A\cap (B\cup C)\subseteq (A\cap B)\cup (A\cap C).$

Tenemos que:

$z\in A\cap (B\cup C)$ $\Longrightarrow$ $z\in A$ y $z\in B\cup C$ $\Longrightarrow$ $z\in A$, y además $z\in B$ o $z\in C$.

Si $z\in B$, como $z\in A$, entonces $z\in A\cap B.$

Si $z\in C$, como $z\in A$, entonces $z\in A\cap C.$

Así $z\in A\cap B$ o $z\in A\cap C$, de donde concluimos que $z\in (A\cap B)\cup (A\cap C) .$

Segunda contención, veamos ahora que $ (A\cap B)\cup (A\cap C) \subseteq A\cap (B\cup C). $

Sea $z\in (A\cap B)\cup (A\cap C)$ $\Longrightarrow$ $z\in A\cap B$ o $z\in A\cap C$.

Si $z\in A\cap B$, entonces $z\in A$ y $z\in B$, por lo que $z\in A$ y $z\in B\cup C$. En este caso tendríamos que $z\in A\cap (B\cup C)$.

Si $z\in A\cap C$, entonces $z\in A$ y $z\in C$, por lo que $z\in A$ y $z\in B\cup C$. En este caso tendríamos también que $z\in A\cap (B\cup C)$.

Asi, $ (A\cap B)\cup (A\cap C) \subseteq A\cap (B\cup C) .$

Dado que se cumplen las dos contenciones, se cumple la igualdad, y entonces:

$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$ .

Tarea Moral.

Demuestra las propiedades $2,4,5,7$ y $9$.

Más adelante.

En la siguiente nota hablaremos de las leyes De Morgan que garantizan cierta relación entre el complemento y la unión e intersección de conjuntos, así mismo daremos la definición y propiedades de la diferencia simétrica.

Entradas relacionadas.

Página principal del curso.

Nota. Las imágenes mostradas para ilustrar los conjuntos no fueron de diseño propio, y se da las gracias a: https://www.spanish.cl/ por sus divertidos dibujos. Se deja el link de donde se obtuvieron: https://www.spanish.cl/vocabulario/animales-de-la-granja.htm.

Este recurso de GeoGebra fue elaborado por Omar G. Monteagudo , a quien agradezco por permitir su uso y adaptación. https://www.geogebra.org/m/rrb8zv9n

Nota 5. Leyes de De Morgan y la diferencia simétrica.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción.

En este capítulo veremos las leyes de De Morgan, que nos hablan de cómo es el complemento de una unión o de una intersección de conjuntos. Para ello usaremos los resultados adquiridos en notas anteriores, observando que cuando un elemento del conjunto universo no es parte de un conjunto, es por que no cumple con la propiedad que caracteriza sus elementos, y por tanto cumple la negación de esa propiedad.

Una vez que tengamos las leyes de De Morgan en nuestro repertorio de proposiciones adquiridas, junto con algunas propiedades de la diferencia de conjuntos, definiremos la diferencia simétrica y usaremos los resultados previos para obtener algunas de sus propiedades.

Teorema. Leyes de De Morgan.

Sea $X$ un conjunto universo, $A$ y $B$ subconjuntos de $X$.

  1. $(A\cup B)^c=A^c\cap B^c$
  2. $(A\cap B)^c=A^c\cup B^c$

Demostración

Demostración de la propiedad 1.

Por demostrar que $(A\cup B)^c=A^c\cap B^c$.

Esta prueba la haremos por doble contención, la cadena de implicaciones de ida y regreso nos dará la prueba por doble contención.

Prueba condensada.
Explicación de las implicaciones de ida que probarán la primera contención
$(A\cup B)^c\subseteq A^c\cap B^c$
Explicación de las implicaciones de regreso que probarán la segunda contención
$(A\cup B)^c\supseteq A^c\cap B^c$
$z\in (A\cup B)^c$ Empezamos la prueba tomándonos un elemento en el conjunto $(A\cup B)^c$ , con la intención de mostrar que también está en $A^c\cap B^c$ Por definición de complemento.
$\Longleftrightarrow$ $z\notin A\cup B$Esto es por la definición de complemento.Los elementos que no están ni en $A$ ni en $B$ son precisamente los que no están en la unión.
$\Longleftrightarrow$ $z\notin A$ y $z\notin B$ $\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, $Si $z$ no está en la unión, no cumple con la propiedad que caracteriza a los elementos de la unión, es decir $z$ no cumple que $z\in A$ o $z\in B$, por lo que $z$ no puede estar ni en $A$ ni en $B$, es decir $z\notin A$ y $z\notin B$. Nota cómo la negación de la disyunción es la conjunción. Por definición de complemento.
$\Longleftrightarrow$ $z\in A^c$ y $z\in B^c$Si $z$ no está en $A$, está en su complemento, y lo mismo pasa con $B$.Por definición de intersección.
$\Longleftrightarrow$ $z\in A^c\cap B^c$Por definición de intersección. Empezamos la prueba tomándonos un elemento en el conjunto $A^c\cap B^c$, con la intención de mostrar que también está en $(A\cup B)^c$.

Las explicaciones de la prueba en la tabla se leen de arriba a abajo para la primera contención y de abajo a arriba en el caso de la segunda contención, para saber cómo cambiamos de paso, o empezamos la prueba, atendemos a la explicación, cada columna nos da una contención, la primera nos muestra que $(A\cup B)^c\subseteq A^c\cap B^c$, y la segunda nos muestra que $A^c\cap B^c\subseteq (A\cup B)^c$, lo que nos garantiza según el axioma de extensionalidad lo que queríamos probar: $(A\cup B)^c=A^c\cap B^c$. De esta manera, al hacer la equivalencia en cada paso no es necesario escribir por separado la prueba de cada contención. Sin embargo, debes tener cuidado porque no siempre es posible realizar este proceso y hay igualdades de conjuntos en las que sí es necesario desarrollar por separado cada contención.

En muchas ocasiones y sobre todo cuando se adquiere más habilidad haciendo demostraciones se puede dar la demostración condensada sin escribir todas las explicaciones de las equivalencias:

$z\in (A\cup B)^c \Longleftrightarrow z\notin A\cup B \Longleftrightarrow z\notin A\,\, y \,\,z\notin B \Longleftrightarrow z\in A^c\,\, y \,\, z\in B^c \Longleftrightarrow z\in A^c\cap B^c$

$\square$

Demostración de la propiedad 2.

Por demostrar que $(A\cap B)^c=A^c\cup B^c$

Prueba condensada.
Explicación de las implicaciones de ida que probarán la primera contención
$(A\cap B)^c\subseteq A^c\cup B^c$
Explicación de las implicaciones de regreso que probarán la segunda contención
$(A\cap B)^c\supseteq A^c\cup B^c$

$z\in (A\cap B)^c$ Empezamos la prueba tomándonos un elemento en el conjunto $(A\cap B)^c$, con la intención de mostrar que también está en $A^c\cup B^c.$ Por definición de complemento.
$\Longleftrightarrow$ $z\notin A\cap B$ Por definición de complemento. Si el elemento cumple con no estar en $A$ o en $B$ entonces no está en la intersección.
$\Longleftrightarrow$ $z\notin A$ o $z\notin B$ $\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, $Si $z$ no está en la intersección, no cumple con la propiedad que cumplen los elementos de la intersección, es decir $z$ no cumple que $z\in A$ y $z\in B$, por lo que debe fallar al menos una de ambas condiciones, es decir $z\notin A$ o $z\notin B$. Nota cómo la negación de la conjunción $y$ es la disyunción $o$. Por definición de complemento.
$\Longleftrightarrow$ $z\in A^c$ o $z\in B^c$Si no está en $A$, está en su complemento, y lo mismo pasa con $B$.Por definición de unión.
$\Longleftrightarrow$ $z\in A^c\cup B^c$Por definición de unión. Empezamos la prueba tomándonos un elemento en el conjunto $A^c\cup B^c$, con la intención de mostrar que también está en $(A\cap B)^c$

Igual que en la primera demostración las dos contenciones nos dan la igualdad y así:

$(A\cap B)^c=A^c\cup B^c$, que es lo queríamos demostrar.

$\square$

Hay que estar atentos pues usaremos el resultado anterior para probar algunas propiedades de una operación destacable, la diferencia simétrica, pero antes de llegar a ello, definamos una operación más.

Definición

Sea $X$ un conjunto universo, $A$,$B$, subconjuntos de $X$.

La diferencia de $A$ con $B$ es el conjunto de los elementos que están en $A$, pero no están en $B$.

$A \setminus B = \set{x\in A\mid x\notin B}$

Cabe observar que esta notación ya se había introducido en la Nota 3 para definir el complemento de un conjunto $B$ con respecto a un conjunto universo $X$, es decir el conjunto $X \setminus B$ formado por todos los $x$ que son elementos de $X$ pero no de $B$, por lo que el uso de esta notación resulta consistente y extiende la que se tenía para el complemento.

Proposición

Sea $X$ un conjunto universo, $A$,$B$, subconjuntos de $X$.

  1. $A\setminus B=A\cap B^c$
  2. $A\setminus (B\cap C)=(A\setminus B)\cup (A\setminus C)$
  3. $A\setminus (B\cup C)=(A\setminus B)\cap (A\setminus C)$

Demostración

Demostración de 1

Tenemos que:

$z\in A\setminus B = \set{x\in A\mid x\notin B}$ $\Longleftrightarrow$ $z\in A$ y $z\notin B$ $\Longleftrightarrow$ $z\in A$ y $z\in B^c$ $\Longleftrightarrow$ $z\in A\cap B^c$.

Nota que ésta es una prueba por doble contención, la cadena de si y sólo si ($\Longleftrightarrow$) nos da las dos contenciones.

$\square$

Demostración de 2

De nuevo recurriremos a una tabla para ir mostrando los pasos, esta vez entre igualdades.

Prueba condensadaExplicación
$A\setminus (B\cap C)=$ Empezamos considerando
este conjunto.
$A\cap (B\cap C)^c=$ Por lo mostrado en la proposición anterior
$A\setminus B=A\cap B^c$.
$A\cap (B^c\cup C^c)=$ Observa que en este paso nos valimos
de las leyes de De Morgan y utilizamos
que $(B\cap C)^c= B^c\cup C^c $.
$(A\cap B^c)\cup (A\cap C^c)=$Esta igualdad es por la propiedad distributiva
de la intersección.
$(A\setminus B)\cup (A\setminus C)$ Por lo mostrado en la proposición anterior
$A\setminus B=A\cap B^c$ y $A\setminus C=A\cap C^c$.

Por lo tanto $A\setminus (B\cap C)=(A\setminus B)\cup (A\setminus C)$.

$\square$

Demostración de 3

Prueba condensadaExplicación
$A\setminus (B\cup C)=$ Empezamos considerando
este conjunto.
$A\cap (B\cup C)^c=$ Por lo mostrado en la propiedad 1
$A\setminus B=A\cap B^c$.
$A\cap (B^c\cap C^c)=$ Observa que en este paso nos valimos
de las leyes de De Morgan y utilizamos
que $(B\cup C)^c= B^c\cap C^c $.
$A\cap A\cap B^c \cap C^c=$ Como $ A\cap A=A$, simplente reescribimos a $A$ de esta forma.
$(A\cap B^c)\cap (A \cap C^c)=$ Por las propiedades de asociatividad y conmutatividad de la
intersección.
$(A\setminus B)\cap (A\setminus C)$ Por lo mostrado en la propiedad 1
$A\setminus B=A\cap B^c$.

Por lo tanto $A\setminus (B\cup C)=(A\setminus B)\cap (A\setminus C)$.

$\square$

Con estas herramientas estamos listos para dar la definición de diferencia simétrica.

Definición

Sea $X$ un conjunto universo, $A$, $B$, subconjuntos de $X$, la diferencia simétrica de $A$ con $B$ es la diferencia de la unión de los dos conjuntos con su intersección:

$A\vartriangle B=(A\cup B)\setminus (A\cap B).$

Proposición

Sea $X$ un conjunto universo, $A$,$B$, subconjuntos de $X$.

  1. $A\vartriangle B=B\vartriangle A$
  2. $A\vartriangle B=(A\setminus B)\cup (B\setminus A)$

Demostración de 1

$A\vartriangle B= (A\cup B)\setminus (A\cap B) = (B\cup A)\setminus (B\cap A) =B\vartriangle A$, nota que en la prueba se está usando la conmutatividad de la unión y de la intersección.

$\square$

Demostración de 2

Prueba condensadaExplicación
$A\vartriangle B=$Empezamos con este conjunto.
$(A\cup B)\setminus (A\cap B)=$Por definición de diferencia simétrica.
$(A\cup B)\cap (A\cap B)^c=$Por lo mostrado en la propiedad 1
$A\setminus B=A\cap B^c$.
$(A\cup B)\cap (A^c\cup B^c)=$Por las leyes de De Morgan.
$[(A\cup B)\cap A^c]\cup [(A\cup B) \cap B^c]=$Por la propiedad distributiva
de la intersección sobre la unión.
$[(A\cap A^c)\cup (B\cap A^c)]\cup [(A\cap B^c)\cup (B\cap B^c)]=$ Por la propiedad distributiva
de la intersección sobre la unión.
$[\emptyset\cup (B\cap A^c)]\cup [(A\cap B^c)\cup \emptyset ]=$La intersección de un conjunto con su complemento es el vacío.
$(B\cap A^c)\cup (A\cap B^c)=$El vacío unión cualquier conjunto nos deja
el mismo conjunto.
$(B\setminus A)\cup (A\setminus B)$ Por lo mostrado en la proposición anterior
$A\setminus B=A\cap B^c$.

Esto muestra que $A\vartriangle B=(A\setminus B)\cup (B\setminus A)$.

$\square$

Tarea Moral

En los siguientes incisos el conjunto universo a considerar es $X$, $A\subseteq X$, $B\subseteq X$.

i) Encuentra: $A^c$, $B^c$, $A^c\cup B^c$, $A^c\cap B^c$, $(A\cup B)^c$, $(A\cap B)^c$.

  1. $X=\mathbb{N}$
    $A=\set{x\in \mathbb{N}\mid x\,\,es\,\,un\,\,primo}$
    $B=\set{x\in \mathbb{N}\mid x\,\,es\,\,un\,\,impar}$
  2. $X=\mathbb{Z}$
    $A=\set{x\in \mathbb{Z}\mid x=4k+1,para\,\,alguna\,\,k\in \mathbb{Z}}$
    $B=\set{x\in \mathbb{N}\mid x\,\,es\,\,negativo}$
  3. $X=\mathbb{N}$
    $A=\set{x\in \mathbb{N}\mid x\,\,es\,\,un\,\,irracional}$
    $B=\set{x\in \mathbb{N}\mid x>3}$
  4. $X=\mathbb{N}$
    $A=\set{x\in \mathbb{N}\mid x\leq 5 }$
    $B=\set{x\in \mathbb{N}\mid 1\leq x<11}$

ii) Sean $A$ y $B$ conjuntos, demuestra las siguientes igualdades entre conjuntos.

  • $A\cup (B\setminus A)=A\cup B$
  • $A\cap (B\setminus A)=\emptyset$
  • $(B\setminus A)\cup (A\cap B)=B$
  • $(B\setminus A)\cap (A\cap B)=\emptyset$

iii) Prueba que $A\vartriangle B\subseteq (A\vartriangle C)\cup (C\vartriangle B)$. Encuentra un ejemplo donde la contención sea propia y otro donde se dé la igualdad.

Más adelante

En la siguiente nota definiremos una manera de crear un nuevo subconjunto, estableceremos como un axioma que el conjunto de los subconjuntos de un conjunto dado $A$ también es un subconjunto y lo llamaremos el conjunto potencia. Iremos encaminando nuestros esfuerzos a definir una de las mas útiles maneras de estudiar los distintos conjuntos, el concepto de función, pero para ello hablaremos de algo más primitivo, las relaciones entre conjuntos, que caracterizaremos y para las cuales deduciremos propiedades.

Entradas Relacionadas

Página principal del curso.

Nota Anterior del curso. Nota 4. Unión e intersección de conjuntos.

Nota siguiente del curso. Nota 6. Conjunto potencia y el producto cartesiano.

Integrales iteradas, Teorema de Fubini para rectángulos

Por Ruben Hurtado

Dada una función de dos variables que está
definida sobre el rectángulo cerrado
$$R=[a,b]\times[c,d]={(x,y)\in\mathbb{R}^{2}\mid a\leq x\leq b,
c\leq y \leq d}$$ suponiendo que $f(x,y)\geq 0$. La gráfica de f es
una superfície con ecuación $z=f(x,y)$. Sea S el sólido que esta
encima de R y debajo de la gráfica de f, es decir
$$S={(x,y,z)\in \mathbb{R}^{3}\mid 0\leq z\leq f(x,y),(x,y)\in R}$$

Si cortamos nuestra región por un plano paralelo al plano YZ

a la altura del punto $x_{0}\in [a, b]$ del eje X, la figura que se obtiene es la misma que obtenemos al considerar aquella que está por debajo de la gráfica de la función $f_{x_{0}}: [c, d] \rightarrow\mathbb{R}$ definida como
$$f_{x_{0}}(y)=f(x_{0},y)$$
de esta forma, el área de la figura correspondiente al corte realizado a la altura $x_{0}$ que podemos denotar $\alpha(x_{0})$ coincide con ser
$$\alpha(x_{0})=\int_{c}^{d}f(x_{0})(y)dy=\int_{c}^{d}f(x_{0},y)dy$$
También podemos hacer cortes con planos paralelos al plano XZ; así si cortamos a la altura del punto $y_{0}\in [c, d]$ del eje Y

se obtiene es la misma que obtenemos al considerar aquella que está por debajo de la gráfica de la función $f_{y_{0}}: [a, b] \rightarrow\mathbb{R}$ definida como
$$f_{y_{0}}(x)=f(x,y_{0})$$
de esta forma, el área de la figura correspondiente al corte realizado a la altura $y_{0}$ que podemos denotar $\beta(y_{0})$ coincide con ser
$$\beta(y_{0})=\int_{a}^{b}f_{y_{0}}(x)dx=\int_{a}^{b}f(x,y_{0})dx$$
En este caso $\beta$ es una función definida sobre el intervalo $[c, d]$.
Por tanto el volumen del sólido entre la superfície y el rectángulo R estará dado por
$$\int_{R}\alpha(x)dx=\int_{a}^{b}\left(\int_{c}^{d}f(x,y)dy\right)dx$$
o por
$$\int_{R}\beta(x)dy=\int_{c}^{d}\left(\int_{a}^{b}f(x,y)dx\right)dy$$
$\boxed{\Large{\textcolor{red}{Teorema~de~Fubini}}}$
El teorema de Fubini nos va a dar una técnica para el cálculo de integrales de funciones de varias variables mediante el cálculo de varias integrales de funciones de una variable. A partir de ahí se podrán utilizar todas las técnicas conocidas del Análisis de una variable para el cálculo de integrales mediante cálculo de primitivas y el teorema fundamental del cálculo (Regla de Barrow): cambios de variables, integración por partes, etc.
$\boxed{\textcolor{red}{Teorema:}}$
Sean $[a,b]\subset\mathbb{R}$ y $[c,d]\subset \mathbb{R}$ dos intervalos tal que, $R= [a,b]\times [c,d]$, y $f: R\subset\mathbb{R}\rightarrow\mathbb{R}^{2}$ una función integrable.

Para cada $\hat{y}$ fijo en $[c,d]$ definimos $f_{\hat{y}}:[t_{i-1},t_{i}]\subset\mathbb{R}\rightarrow\mathbb{R}$ como
$$f_{\hat{y}}=f(x,\hat{y})$$
y definimos
$$\phi(\hat{y})=\underline{\int_{t_{i-1}}^{t_{i}}}f_{\hat{y}}(x)dx$$
$$\psi(\hat{y})=\overline{\int_{t_{i-1}}^{t_{i}}}f_{\hat{y}}(x)dx$$
Si f es integrable sobre R entonces $\phi, \psi$ son integrables sobre $[c,d]$ y además
$$\int_{R}f=\int_{c}^{d}\phi(y)dy=\int_{c}^{d}\psi(y)dy$$
$\boxed{\textcolor{red}{Demostración:}}$
Observemos en primer lugar que una partición de $R = [a,b]\times [c,d]$ esta formada por una partición de $[a,b]$ y otra de $[c,d]$. Sea $$P_{1}\in P_{[a,b]}=\{a=t_{0},t_{1},…,t_{n}=b\}$$ y sea
$$P_{2}\in P_{[c,d]}=\{c=t_{0},t_{1},…,t_{m}=d\}$$
$$P=P_{1}\times P_{2}\in P_{R} $$
Y cualquier rectángulo de la partición P tiene área $|t_{i}-t_{i-1}|\cdot|t_{j}-t_{j-1}|$,

Para cada $\hat{y}$ fijo en $[c,d]$ definimos
\begin{align*}
m_{j}(\phi)&=\inf\{\phi(\hat{y})~\Big{|}~\hat{y}\in[t_{j-1},t_{j}]\}\\
M_{j}(\phi)&=\sup\{\phi(\hat{y})~\Big{|}~\hat{y}\in[t_{j-1},t_{j}]\}\\
m_{j}(\psi)&=\inf\{\psi(\hat{y})~\Big{|}~\hat{y}\in[t_{j-1},t_{j}]\}\\
M_{j}(\psi)&=\sup\{\psi(\hat{y})~\Big{|}~\hat{y}\in[t_{j-1},t_{j}]\}\\
m_{i}(f_{\hat{y}})&=\inf\{f_{\hat{y}}(x)~\Big{|}~x\in[t_{i-1},t_{i}]\}\\
M_{i}(f_{\hat{y}})&=\sup\{f_{\hat{y}}(x)~\Big{|}~x\in[t_{i-1},t_{i}]\}\\
m_{ij}(f)&=\inf\{f(x,y)~\Big{|}~(x,y)\in R_{ij}\}\\
M_{ij}(f)&=\sup\{f(x,y)~\Big{|}~(x,y)\in R_{ij}\}
\end{align*}
De lo anterior tenemos que se cumple
$$m_{ij}(f)\leq m_{i}(f_{\hat{y}})\leq M_{i}(f_{\hat{y}})\leq M_{ij}(f)$$
Multiplicando por $(t_{i} − t_{i−1}) > 0$ se tiene
$$m_{ij}(f)(t_{i} − t_{i−1}) \leq m_{i}(f_{\hat{y}})(t_{i} − t_{i−1}) \leq M_{i}(f_{\hat{y}})(t_{i} − t_{i−1}) \leq M_{ij}(f)(t_{i} − t_{i−1}) $$
Sumando sobre i
$$\sum_{i=1}^{n}m_{ij}(f)(t_{i} − t_{i−1}) \leq \sum_{i=1}^{n}m_{i}(f_{\hat{y}})(t_{i} − t_{i−1}) \leq \sum_{i=1}^{n}M_{i}(f_{\hat{y}})(t_{i} − t_{i−1}) \leq \sum_{i=1}^{n}M_{ij}(f)(t_{i} − t_{i−1}) $$
se tiene entonces
$$\sum_{i=1}^{n}m_{ij}(f)(t_{i} − t_{i−1}) \leq \underline{S}(f_{\hat{y}},P) \leq \overline{S}(f_{\hat{y}},P)\leq \sum_{i=1}^{n}M_{ij}(f)(t_{i} − t_{i−1}) $$
Sabemos que
$$\sum_{i=1}^{n}m_{ij}(f)(t_{i} − t_{i−1}) \leq \underline{S}(f_{\hat{y}},P)\leq \phi(\hat{y})\leq \psi(\hat{y})\leq \overline{S}(f_{\hat{y}},P)\leq \sum_{i=1}^{n}M_{ij}(f)(t_{i} − t_{i−1}) $$
Esto pasa para toda $\hat{y}\in[c,d]$ esto prueba que los extremos de estas desigualdades son cota inferior y superior (respectivamente) tanto de $\psi$ como de $\phi$ en el subrectángulo $R_{ij}$ y por lo tanto tendremos que
$$\sum_{i=1}^{n}m_{ij}(f)(t_{i} − t_{i−1})\leq m_{j}(\phi)\leq M_{j}(\phi)\leq \sum_{i=1}^{n}M_{ij}(f)(t_{i} − t_{i−1})$$
y también
$$\sum_{i=1}^{n}m_{ij}(f)(t_{i} − t_{i−1})\leq m_{j}(\psi)\leq M_{j}(\psi)\leq \sum_{i=1}^{n}M_{ij}(f)(t_{i} − t_{i−1})$$
Multiplicando por $(t_{j} − t_{j−1}) > 0$ se tiene
$$\sum_{i=1}^{n}m_{ij}(f)(t_{i} − t_{i−1})(t_{j} − t_{j−1}) \leq m_{j}(\phi)(t_{j} − t_{j−1}) \leq M_{j}(\phi)(t_{j} − t_{j−1}) \leq \sum_{i=1}^{n}M_{ij}(f)(t_{i} − t_{i−1})(t_{j} − t_{j−1}) $$
y también
$$\sum_{i=1}^{n}m_{ij}(f)(t_{i} − t_{i−1})(t_{j} − t_{j−1}) \leq m_{j}(\psi)(t_{j} − t_{j−1}) \leq M_{j}(\psi)(t_{j} − t_{j−1}) \leq \sum_{i=1}^{n}M_{ij}(f)(t_{i} − t_{i−1})(t_{j} − t_{j−1}) $$
Sumando sobre j
$$\sum_{i=1}^{m}\sum_{i=1}^{n}m_{ij}(f)(t_{i} − t_{i−1})(t_{j} − t_{j−1}) \leq \sum_{i=1}^{m}m_{j}(\phi)(t_{j} − t_{j−1}) \leq \sum_{i=1}^{m}M_{j}(\phi)(t_{j} − t_{j−1}) \leq \sum_{i=1}^{m}\sum_{i=1}^{n}M_{ij}(f)(t_{i} − t_{i−1})(t_{j} − t_{j−1}) $$
y también
$$\sum_{i=1}^{m}\sum_{i=1}^{n}m_{ij}(f)(t_{i} − t_{i−1})(t_{j} − t_{j−1}) \leq \sum_{i=1}^{m}m_{j}(\psi)(t_{j} − t_{j−1}) \leq \sum_{i=1}^{m}M_{j}(\psi)(t_{j} − t_{j−1}) \leq \sum_{i=1}^{m}\sum_{i=1}^{n}M_{ij}(f)(t_{i} − t_{i−1})(t_{j} − t_{j−1}) $$
se tiene entonces
$$\underline{S}(f,P)\leq \underline{S}(\phi,P)\leq \overline{S}(\phi,P)\leq \overline{S}(f,P)$$
y también
$$\underline{S}(f,P)\leq \underline{S}(\psi,P)\leq \overline{S}(\psi,P)\leq \overline{S}(f,P)$$
como f es integrable sobre R, entonces las funciones $\psi$ y $\phi$ son integrables sobre $[c, d]$ y además
$$\int_{R}f=\int_{c}^{d}\phi(y)dy=\int_{c}^{d}\psi(y)dy$$
Es decir
$$\int_{R}=\int_{c}^{d}\left(\int_{a}^{b}f(x,y)dx\right)dy$$
siguiendo estos pasos pero considerando ahora un $x_{o}$ fijo en [a, b] y haciendo variar la y se tendría
$$\int_{R}=\int_{a}^{b}\left(\int_{c}^{d}f(x,y)dy\right)dx$$
Es decir
$$\int_{R}=\int_{a}^{b}\left(\int_{c}^{d}f(x,y)dy\right)dx=\int_{c}^{d}\left(\int_{a}^{b}f(x,y)dx\right)dy\blacksquare$$
$\boxed{\textcolor{green}{Ejemplo}}$
Si $R=[-1,1]\times \left[0,\frac{\pi}{2}\right]$, calcular
$$\int_{R}(x\sin(y)-ye^{x})dxdy$$
$\boxed{\textcolor{green}{Solución}}$
Integrando primero respecto a x tenemos
$$\int_{0}^{\frac{\pi}{2}}\left(\int_{-1}^{1}(x\sin(y)-ye^{x})dx\right)dy=\int_{0}^{\frac{\pi}{2}}\left(\frac{x^{2}}{2}\sin(y)-ye^{x}\Big{|}_{-1}^{1}\right)dy=\int_{0}^{\frac{\pi}{2}}\left(-ey+\frac{y}{e}\right)dy$$
$$=\left(\frac{1}{e}-e\right)\int_{0}^{\frac{\pi}{2}}y~dy=\left(\frac{1}{e}-e\right)\frac{\pi^{2}}{8}$$
en el otro orden de integración
$$\int_{-1}^{1}\left(\int_{0}^{\frac{\pi}{2}}(x\sin(y)-ye^{x})dy\right)dx=\int_{-1}^{1}\left(x\cos(y)-\frac{y^{2}e^{x}}{2}\Big{|}_{0}^{\frac{\pi}{2}}\right)dx=\int_{-1}^{1}\left(-\frac{\pi^{}e^{x}}{8}+x\right)dx$$
$$=\left(\frac{1}{e}-e\right)\frac{\pi^{2}}{8}$$

Página de prueba

Funciones Continuas

Se dice que una función $\color{blue}{f(x)}$ es continua en un punto $\color{red}{x_{0}}$ de su dominio, cuando

Esto significa, que los puntos «cercanos» a $\color{red}{x_{0}}$ son mandados por $\color{blue}{f}$ cerca de $\color{blue}{f(}$$\color{red}{x_{0}}$$\color{blue}{)}$
Se dice que $\color{blue}{f}$ es continua cuando $\color{blue}{f}$ es continua en cada uno de los puntos de su

8 Junio 2016, Creado con GeoGebra



Conjuntos de Jordan y conjuntos Jordan medibles

Por Ruben Hurtado

$\framebox[5cm][c]{Medida de Jordan}$
$\textcolor{Blue}{Definición}$
Dado $A\subset \mathbb{R}^{n}$ acotado, definimos $\chi_{A}:\mathbb{R}^{n}\rightarrow \mathbb{R}$, la $\textcolor{Red}{función~ característica}$ de A, de la siguiente forma
$$\boxed{\chi_{A}=\left\{\begin{matrix}
1&si&x\in A\\0&si& x\notin A\end{matrix}\right.}$$

Dado $A\subset \mathbb{R}^{n}$ acotado, decimos que A es $\textcolor{Red}{Jordan Medible} si la función característica de A es integrable sobre algún rectángulo R que contenga a A. En este caso decimos que la medida de Jordan de A (que denotaremos J(A)) esta dada por
$$\boxed{J(A)=\int_{R}\chi_{A}}$$
$\textcolor{Green}{Ejemplo:}$
Sean a,b números positivos y $$A=\left\{(x,y)\in \mathbb{R}^{2}| 0\leq x\leq a, 0\leq y \leq \left(\frac{b}{a}x\right)\right\}$$ En este caso A es un triángulo de base a y altura b. Mostraremos que A es Jordan-Medible en $\mathbb{R}^{2}$, y que su medida es $\frac{ab}{2}$
$\textcolor{Green}{Demostración:}$
Tomemos el rectángulo $R=\{(x,y)\in \mathbb{R}^{2}|0\leq x\leq a, 0\leq y \leq b\}=[0,a]\times[0,b]$ el cual contiene a A. De acuerdo con nuestra definición tenemos que mostar que la función característica $\chi_{A}$ es integrable sobre R y que $$\boxed{\int_{R}\chi_{A}=\frac{ab}{2}}$$
Sea $\displaystyle{P_{1}=\left\{\frac{ia}{n}~|~i=1,…,n\right\}}$ y $\displaystyle{P_{2}=\left\{\frac{ib}{n}~|~i=1,…,n\right\}}$ por tanto $P=P_{1}\times P_{2}$ es una partición del rectángulo R, donde cada subrectángulo tiene medida $\displaystyle{\frac{ab}{n^{2}}}$. Por lo que en este caso
$$\overline{S}(\chi_{A},P)=\sum_{R_{i}\cap A\neq \emptyset}=2\cdot \frac{ab}{n^{2}}+3\cdot \frac{ab}{n^{2}}+…+n\cdot \frac{ab}{n^{2}}=\frac{ab}{n^{2}}\left(\frac{n(n+1)}{2}-1\right)=\frac{ab}{2}\left(1+\frac{1}{n}-\frac{1}{n^2}\right)$$
$$\underline{S}(\chi_{A},P)=\sum_{R_{i}\subset A\neq \emptyset}=1\cdot \frac{ab}{n^{2}}+2\cdot \frac{ab}{n^{2}}+…+(n-1)\cdot \frac{ab}{n^{2}}=\frac{ab}{n^{2}}\left(\frac{(n-1)n}{2}\right)=\frac{ab}{2}\left(1-\frac{1}{n}\right)$$
$\therefore$
$$\lim_{n\rightarrow \infty}\overline{S}(\chi_{A},P)=\lim_{n\rightarrow \infty}\underline{S}(\chi_{A},P)=\frac{ab}{2}$$
$$\boxed{J(A)=\int_{R}\chi_{A}=\frac{ab}{2}}$$

$\textcolor{Green}{Ejemplo:}$
Sea A el conjunto $$A=\left\{(x,y)\in \mathbb{R}^{2}~|~ 0\leq x\leq 1, 0\leq y \leq x^{2}\right\}$$ En este caso A la región de base 1 y altura la función $x^{2}$. Mostraremos que A es Jordan-Medible en $\mathbb{R}^{2}$, y que su medida es $\displaystyle{\frac{1}{3}}$
$\textcolor{Green}{Demostración:}$
Tomemos el rectángulo $R=\{(x,y)\in \mathbb{R}^{2}|0\leq x\leq 1, 0\leq y \leq 1\}=[0,1]\times[0,1]$ el cual contiene a A. De acuerdo con nuestra definición tenemos que mostar que la función característica $\chi_{A}$ es integrable sobre R y que $$\boxed{\int_{R}\chi_{A}=\frac{1}{3}}$$
Sea $\displaystyle{P_{1}=\left\{\frac{ia}{n}~|~i=1,…,n\right\}}$ y $\displaystyle{P_{2}=\left\{\frac{ib}{n}~|~i=1,…,n\right\}}$ por tanto $P=P_{1}\times P_{2}$ es una partición del rectángulo R, donde cada subrectángulo tiene medida $\displaystyle{\frac{1}{n^{2}}}$. Por lo que en este caso
$$\overline{S}(\chi_{A},P)=\sum_{R_{i}\cap A\neq \emptyset}=\frac{1}{n}\cdot \frac{1}{n^{2}}+\frac{1}{n}\cdot \frac{2^{2}}{n^{2}}+…+\frac{1}{n}\cdot \frac{n^{2}}{n^{2}}=\frac{1}{n^{3}}\left(1+2^{2}+\cdots+n^{2}\right)=\frac{1}{n^{3}}\left(\frac{n(n+1)(2n+1)}{6}\right)=\frac{1}{6}\left(1+\frac{1}{n}\right)\left(1+\frac{1}{n}\right)$$
$$\underline{S}(\chi_{A},P)=\sum_{R_{i}\subset A\neq \emptyset}=\frac{1}{n}\cdot \frac{1}{n^{2}}+\frac{1}{n}\cdot \frac{2^{2}}{n^{2}}+…+\frac{1}{n}\cdot \frac{(n-1)^{2}}{n^{2}}=\frac{1}{n^{3}}\left(1+2^{2}+\cdots+(n-1)^{2}\right)=\frac{1}{n^{3}}\left(\frac{(n-1)n(2(n-1)+1)}{6}\right)$$
$$=\frac{1}{6}\left(1-\frac{1}{n}\right)\left(2-\frac{1}{n}\right)$$
$\therefore$
$$\lim_{n\rightarrow \infty}\overline{S}(\chi_{A},P)=\lim_{n\rightarrow \infty}\underline{S}(\chi_{A},P)=\frac{1}{3}$$
$$\boxed{J(A)=\int_{R}\chi_{A}=\frac{1}{3}}$$

$\textcolor{Blue}{Teorema}$
Sea $A\subset\mathbb{R}^{n}$ acotado. Las siguientes afirmaciones son equivalentes:
1.- A es Jordan-Medible
2.-Para cada $\epsilon>0$ existen $R_{1},…,R_{k}$ rectángulos tales que:
(a) $Fr(A)\subset R_{1}\cup\cdots\cup R_{k}$
(b) $\displaystyle{\sum_{i=1}^{k}m(R_{i})<\epsilon}$
3.-La $Fr(A)$ es Jordan-Medible y $J(Fr(A))=0$
$\textcolor{Blue}{Demostración:}$
$(1)\Rightarrow (2)$
Sea $\epsilon>0$. Como A es Jordan-Medible, sabemos que $\chi_{A}$ es integrable sobre un rectángulo que contiene $\overline{A}$ por lo que existe una partición P de R tal que
$$\overline{S}(\chi_{A},P)-\underline{S}(\chi_{A},P)<\epsilon$$
en este caso
$$\overline{S}(\chi_{A},P)=\sum_{R_{i}\cap A\neq0}m(R_{i})$$
$$\underline{S}(\chi_{A},P)=\sum_{R_{i}\subset A}m(R_{i})$$
Por lo que
$$\overline{S}(\chi_{A},P)-\underline{S}(\chi_{A},P)=\sum_{R_{i}\cap A\neq \emptyset\atop{R_{i}\cap A^{c}\neq \emptyset}}m(R_{i})$$
Para ver que
$$Fr(A)\subset R_{1}\bigcup\cdots\bigcup R_{k}$$
Como $\underline{A}\subset int(R)$ entonces $Fr(A)\subset int(R)$. Sea $x\in Fr(A)$, si $x\in int(R_{i})$ entonces la condición se cumple
Si $x\notin int(R)$ entonces esta en la frontera de más de uno de los subrectángulos por lo que
(1) Si los subrectángulos estan en $int(A)$ entonces $x\in int(A)$
(2) Si los subrectángulos estan en $int(A^{c})$ entonces $x\in ext(A)$
En ambas situaciones $x\notin Fr(A)$ lo cual es una contradicción.
Por lo tanto $x\in R_{i}$ donde $R_{i}$ cumple la condición pedida.
$(2)\Rightarrow (3)$
Para probar que $Fr(A)$ es Jordan-Medible, se tiene que probar que $\chi_{A}$ es integrable sobre el rectángulo R ya que $Fr(a)\subset R$.
Como existen $R_{1},…,R_{k}$ rectángulos tales que:
\begin{align*}
(a)&Fr(A)\subset R_{1}\bigcap\cdots\bigcap R_{k}\\
(b)&\sum_{i=1}^{k}m(R_{i})<\epsilon
\end{align*}
Entonces
$$\overline{S}(\chi_{Fr(A)},P)=\sum_{R_{i}\cap A\neq\emptyset\atop{R_{i}\cap A^{c}\neq\emptyset}}m(R_{i})<\epsilon$$
Y como
$$\underline{S}(\chi_{Fr(A)},P)\leq \overline{S}(\chi_{Fr(A)},P)<\epsilon$$
entonces
$$0\leq \sup\{\underline{S}(\chi_{Fr(A)},P)\}<\epsilon$$
$$0\leq \inf\{\overline{S}(\chi_{Fr(A)},P)\}<\epsilon$$
entonces
$$\int_{R}\chi_{Fr(a)}=\overline{\int}_{R}\chi_{Fr(A)}=\underline{\int}_{R}\chi_{Fr(A)}=0$$
$(3)\Rightarrow (1)$
Como $Fr(A)$ es Jordan-Medible y $J(Fr(A))=0$, existe una partición P tal que $Fr(A)\cap R_{i}\neq\emptyset$ entonces
$$\overline{S}(\chi_{Fr(A)})=\sum_{R_{i}\cap Fr(A)\neq \emptyset}m(R_{i})<\epsilon$$
Por lo tanto
$$\overline{S}(\chi_{Fr(A)})-\underline{S}(\chi_{Fr(A)})=\sum_{R_{i}\cup A\neq\emptyset\atop{R_{i}\cup A^{c}\neq\emptyset}}m(R_{i})\leq \sum_{R_{i}\cup Fr(A)\neq\emptyset}m(R_{i})<\epsilon$$
por lo tanto $\chi_{A}$ es integrable sobre R y en consecuencia A es un conjunto Jordan-Medible.$~~\blacksquare$

$\textcolor{Blue}{Teorema}$
Sea $f:R\subset\mathbb{R}\rightarrow\mathbb{R}$ acotada sobre el rectángulo R. Si el conjunto de discontinuidades de f en R $(D_{f,R})$ es un conjunto Jordan-Medible y de Medida cero entonces f es integrable sobre R.
$\textcolor{Blue}{Demostración}$
Sea $M>0$ tal que $|f(\widehat{x})|\leq M$ para todo $\widehat{x}\in R$.
Sea $\epsilon>0$. Dado que $J(D_{f,R})=0$ sabemos que existe una partición P de R tal que
$$\overline{S}(\chi_{D_{f,R}},P)<\frac{\epsilon}{4M}$$
Si $R_{1},…,R_{l}$ son los subrectángulos de R inducidos por la partición P que tienen la propiedad de que $R_{i}\cap D_{f,R}\neq\emptyset~~(i=1,2,…,l)$, tenemos entonces que
$$\sum_{i=1}^{l}m(R_{i})<\frac{\epsilon}{4M}$$
Si $R_{\ell+1},…,R_{k}$ son el resto de los subrectángulos de R inducidos por P, sabemos que f es continua en cada uno de ellos por tanto f es integrable sobre cada $R_{i}~~(i=\ell+1,…,k)$. Para cada uno de estos subrectángulos podemos encontrar una partición $P^{(i)}$ tal que
$$\overline{S}(f,P^{(i)})-\underline{S}(f,P^{(i)})<\frac{\epsilon}{2(k-\ell)}$$
Para cada $i=\ell+1,…,k$. Cada una de estas particiones $P^{(i)}$ la extendemos a todo el rectángulo R y junto con la partición inicial P, formamos una nueva partición del rectángulo R a la que llamaremos Q.
si los subrectángulos inducidos por Q los denotamos $R^{‘}_{j,i}$, en donde $(i=1,…,k)$ y $(j=1,..k_{i})$, entonces
$$R_{i}=\bigcup_{j=1}^{k_{i}}R’_{j,i}$$
Observe que para $i=\ell+1,…,k$ los $R’_{j,i}$ $(j=1,…,k_{i})$ son subrectángulo de $R_{i}$ inducidos por alguna partición $Q^{(i)}$ que refina a $P^{(i)}$ de modo tal que
\begin{align*}
\overline{S}(f,Q^{(i)})-\underline{S}(f,Q^{i})&\leq \overline{S}(f,P^{(i)})-\underline{S}(f,P^{i})\\
&<\frac{\epsilon}{2(k-\ell)}
\end{align*}
Tenemos que
\begin{align*}
\overline{S}(f,Q)-\underline{S}(f,Q)&=\sum_{i=1}^{k}\left(\sum_{j=1}^{k}(M’_{j,i}-m’_{j,i})\cdot m(R’_{j,i}\right)\\
&=\sum_{i=1}^{k}\left(\sum_{j=1}^{k}(M’_{j,i}-m’_{j,i})\cdot m(R’_{j,k}\right)+\sum_{i=\ell+1}^{k}\left(\sum_{j=1}^{k}(M’_{j,i}-m’_{j,i})\cdot m(R’_{j,k}\right)\\
&=\sum_{i=1}^{\ell}\left(\sum_{j=1}^{k_{i}}(M’_{j,i}-m’_{j,i})\cdot m(R’_{j,k}\right)+\sum_{i=\ell+1}^{k}\left(\overline{S}(f,Q^{i})-\underline{S}(f,Q^{i})\right)\\
&\leq \sum_{i=1}^{\ell}\left(\sum_{j=1}^{k_{i}}2M\cdot m(R’_{j,i})\right)+\sum_{i=\ell+1}^{k}\left(\overline{S}(f,P^{i})-\underline{S}(f,P^{i})\right)\\
&<2M\cdot \sum_{i=1}^{\ell}\left(\sum_{j=1}^{k_{i}} m(R’_{j,i})\right)+\sum_{i=\ell+1}^{k}\frac{\epsilon}{2(k-\ell)}\\
&=2M\cdot \sum_{i=1}^{\ell}m(R_{i})+\frac{\epsilon}{2}\\
&<2M\cdot \left(\frac{\epsilon}{4M}\right)+\frac{\epsilon}{2}\\
&=\epsilon
\end{align*}
En donde, como era de esperarse, $M’_{j,i}=\sup\{f(\widehat{x})~|~\widehat{x}\in R’_{j,i}\}$ y $m’_{j,i}=\inf\{f(\widehat{x})~|~\widehat{x}\in R’_{j,i}\}$ para $i=1,…,k$ y $j=1,…,k_{i}$.$~~\blacksquare$