Nota 8. Imagen directa e inversa de una función.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En esta nota analizaremos a las funciones observando las imágenes de subconjuntos del dominio, y los elementos del dominio que bajo la función son asignados a ciertos elementos tomados del codominio. Empecemos estableciendo cuándo dos funciones son iguales:

Definición

Sean $A$ y $B$ conjuntos, dos funciones $f: A\to B$ y $g: A\to B$ son iguales si $f(x)=g(x)$ para toda $x\in A$ (es decir si tienen la misma regla de correspondencia).

Nota

$f=g$ se usará cuando $f$ y $g$ tengan el mismo dominio, mismo codominio y misma regla de correspondencia.

Definición

Sean $A$ y $B$ conjuntos, $f: A\to B$ una función. Dado $A’\subseteq A$, la imagen directa de $A’$ bajo $f$ es:

$f[A’]=\set{f(x)\in B\mid x\in A’}.$

Dado $B’\subseteq B$ la imagen inversa de $B’$ bajo $f$ es:

$f^{-1}[B’]=\set{x\in A\mid f(x)\in B’}.$

Observa que:

$f[A’]\subseteq B$ y que $f^{-1}[B’]\subseteq A$, además $f[A]=Imf$.

Ejemplos

1. $f:\set{1,2,3,4,5}\rightarrow\ \set{-2,-1,0,1}$.

$f(1)= f(2)=-1$, $ f(3)= f(4)=0$, $ f(5)=1$.

Si $A’=\set{1,2,5}$ entonces $f[A’]=\set{-1,1}$.

Mientas que si $B’=\set{-2,0,1}$ entonces $f[B’]=\set{3,4,5}$.

2. $g:\mathbb R\to \mathbb R$, $g(x)=x^2$

$A’=[-1,2]$

$g[A’]=\set{x\in \mathbb R\mid 0\leq x\leq 4}$

Observa el siguiente clip donde se asignan los elementos de $A’$ que se muestran en verde, a los elementos de su imagen directa $f[A]$ que se muestran en rojo.

Ahora considera $A^{\prime\prime}=[0,2]$

$g[A^{\prime\prime}]=\set{x\in \mathbb R\mid 0\leq x\leq 4}$

Observa el siguiente clip

Observa que aunque $A’\neq A^{\prime\prime}$ tienen la misma imagen directa $g[A’]= g[A^{\prime\prime}]$

Ahora analicemos la definición de imagen inversa con el mismo ejemplo.

Si $B’=[0,1]$, la imagen inversa de $B’$ bajo $f$ es:

$f^{-1}[B’ ]=\set {x\in \mathbb R\mid g(x)\in [0,1]}$

$f^{-1}[B’ ] = \set{x\in \mathbb R\mid -1\leq x\leq 1}$

En el siguiente clip se muestran en rojo los elementos de $B’$ y en verde los elementos de $f^{-1}[B’]$.

Observa que si $B^{\prime\prime}=[-1,1]$, la imagen inversa de $B^{\prime\prime}$ bajo $f$ es la misma que $B’$, $f^{-1}[B^{\prime\prime}] = \set{x\in \mathbb R\mid -1\leq x\leq 1}$, pues no hay números reales elevados al cuadrado que vayan a dar números negativos. Observa el siguiente clip:

Si $C=[-2,-1]$ entonces $f^{-1}[C]=\emptyset$, por que para todo $x\in \mathbb R$, $f(x)=x^2\notin [-2,-1]$.

Proposición

Sean $A$ y $B$ conjuntos $f: A\to B$, una función, $A’\subseteq A$, $B’\subseteq B$. Se cumple que:

  1. $A’\subseteq f^{-1}[f[A’]]$
  2. $f[f^{-1}[B’]]\subseteq B’$

Demostración

Demostración de 1

Por demostrar que $A’\subseteq f^{-1}[f[A’]]$

Sea $a\in A’\subseteq A$, entonces $f(a)\in f[A’]=\set{f(x)\in B\mid x\in A’}$, así $a$ cumple con la propiedad del siguiente conjunto $\set{x\in A\mid f(x)\in f[A’]}$, es decir $ a\in \set{x\in A\mid f(x)\in f[A’]}$ que es por definición $f^{-1}[f[A’]]$ y por lo tanto $A’\subseteq f^{-1}[f[A’]]$.

Demostración de 2

Por de mostrar que $f[f^{-1}[B’]]\subseteq B’$.

Sea $b\in f[f^{-1}[B’]]=\set{f(x)\mid x\in f^{-1}[B’] }$, eso nos indica que existe $a\in f^{-1}[B’]=\set{x\in A\mid f(x)\in B’}$ tal que $f(a)=b$, $a$ cumple la propiedad del conjunto y por lo tanto $b=f(a)\in B’$, y así $f[f^{-1}[B’]]\subseteq B’$.

$\square$

Tarea moral

Considera la siguiente función:

$f:\mathbb R\to \mathbb R$ dada por $f(x)=-3x^2 $

  • Para $A=[-3,4]$ calcula $f^{-1}[f[A]]$. ¿Qué relación tiene con $A$?.
  • Para $B=[-12,1]$ calcula $f[f^{-1}[B]]$. ¿Qué relación tiene con $B$?

Mas adelante

En la siguiente nota hablaremos de la composición de funciones y derivaremos propiedades la composición.

Enlaces relacionados

Página principal del curso

Enlace a la nota anterior. Nota 7 Relaciones y funciones.

Enlace a la nota siguiente. Nota 9. Composición de funciones.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.