Archivo de la categoría: Sin clasificar

Integración de funciones medibles generales

Por César Mendoza

Introducción

Hasta ahora, sólo hemos definido la integral para funciones medibles no negativas. En esta entrada veremos que la definición se puede extender a funciones medibles más generales (no necesariamente $\geq 0$) heredando muchas de sus propiedades. Definiremos también el concepto de integrabilidad (o función $L^1$) que será una hipótesis esencial en muchos de nuestros desarrollos más adelante.

Definición. Sea $f:\mathbb{R}^n\to [-\infty,\infty]$ una función medible, con parte positiva y negativa $f_+$ y $f_-$ respectivamente. Definimos la integral de $f$ como

$$\int f \ \mathrm{d} \lambda=\int f_+ \ \mathrm{d} \lambda-\int f_- \ \mathrm{d} \lambda.$$

Siempre que este número esté bien definido.

Definición. Si $\int f_+ \ \mathrm{d} \lambda$ y $\int f_- \ \mathrm{d} \lambda$ son ambas finitas, entonces decimos que $f$ es integrable.

Notación. Denotaremos a la clase de funciones integrables como $L^1(\mathbb{R}^n,\mathcal{L},\lambda)$, $L^1(\mathbb{R}^n)$ , o simplemente $L^1$.

Observaciones.

  • La definición tiene sentido (siempre que $\int f_+ \ \mathrm{d} \lambda-\int f_- \ \mathrm{d} \lambda$ exista), pues si $f$ es medible entonces $f_+$ y $f_-$ son medibles no negativas por lo que admiten integrales bien definidas.
  • Si $f\geq 0$, la nueva definición es consistente con la definición de integral para funciones medibles no negativas, pues en este caso $f=f_+$ y $f_-=0$.
  • A diferencia de las funciones no negativas, no todas las funciones medibles admiten una integral. Si $\int f_+ \ \mathrm{d}\lambda=\int f_- \ \mathrm{d}\lambda=\infty$, $\int f \ \mathrm{d}\lambda$ no está bien definida.
  • Si $f\in L^1(\mathbb{R}^n)$, entonces $\int f_+ \ \mathrm{d} \lambda-\int f_- \ \mathrm{d} \lambda$ es un número real. Enfocaremos nuestro análisis principalmente en las funciones en $L^1$ pues es un espacio más manejable pero al mismo tiempo lo suficientemente general.
  • Más adelante le daremos un significado ligeramente distinto al conjunto $L^1(\mathbb{R}^n)$. De momento es conveniente pensar que $f\in L^1$ es un atajo notacional para decir que $f$ es integrable.

Veamos primero un par de Lemas que facilitarán nuestro estudio de las funciones integrables.

Lema. Si $f:\mathbb{R}^n\to [0,\infty]$ es una función medible, no negativa y con integral finita $0\leq \int f \ \mathrm{d} \lambda<\infty$, entonces $I=\{ x\in \mathbb{R}^n \ | \ f(x)=\infty\}$ es de medida cero.

Demostración. Supongamos por el contrario que $\lambda(I)>0$. Consideremos la sucesión de funciones simples: $$s_k=k\chi_I \ \ \ \ \forall k\in \mathbb{R}^n.$$
Claramente $s_k\leq f$ para toda $k$, de donde $$\int f \ \mathrm{d} \lambda\geq \int s_k \ \mathrm{d} \lambda=k\lambda(I).$$
Como $k\lambda(I)\longrightarrow \infty$ cuando $k\longrightarrow \infty$, la única posibilidad es $$\int f \ \mathrm{d} \lambda=\infty.$$ Lo cual es una contradicción.

$\square$

Proposición (desigualdad del triángulo). Si $f$ es una función medible y con integral bien definida, entonces $$\left| \int f \ \mathrm{d} \lambda \right|\leq \int |f| \ \mathrm{d} \lambda.$$ Además $f\in L^1$ $\iff$ $|f|\in L^1$.

Demostración. Notemos que $|f|=f_++f_-$. Como $f_+$ y $f_-$ son medibles no negativas, se sigue por aditividad: $$\int |f| \ \mathrm{d} \lambda=\int f_+ \ \mathrm{d} \lambda+\int f_- \ \mathrm{d} \lambda.$$
Evidentemente $\int f_+ \ \mathrm{d} \lambda\leq \int f_+ \ \mathrm{d} \lambda$ y $-\int f_- \ \mathrm{d} \lambda\leq \int f_- \ \mathrm{d} \lambda$, por lo que $$\int f \ \mathrm{d} \lambda=\int f_+ \ \mathrm{d} \lambda-\int f_- \ \mathrm{d} \lambda\leq \int f_+ \ \mathrm{d} \lambda+\int f_- \ \mathrm{d} \lambda=\int |f| \ \mathrm{d} \lambda.$$

Análogamente $$-\int f \ \mathrm{d} \lambda=\int f_- \ \mathrm{d} \lambda-\int f_+ \ \mathrm{d} \lambda\leq \int f_+ \ \mathrm{d} \lambda+\int f_- \ \mathrm{d} \lambda=\int |f| \ \mathrm{d} \lambda.$$

Por lo que $$\left| \int f \ \mathrm{d} \lambda \right|\leq \int |f| \ \mathrm{d} \lambda.$$

Si $f\in L^1$ $$\implies \ \int f_+ \ \mathrm{d} \lambda,\int f_- \ \mathrm{d} \lambda<\infty$$ $$\implies \ \int |f| \ \mathrm{d} \lambda=\int f_+ \ \mathrm{d} \lambda+\int f_- \ \mathrm{d} \lambda<\infty.$$ De modo que $|f|\in L^1$.

Inversamente, supongamos que $|f|\in L^1$. Como $f_+,f_-\leq |f|$ $$\implies \ \int f_+ \ \mathrm{d} \lambda, \ \int f_- \ \mathrm{d} \lambda\leq \int |f| \ \mathrm{d} \lambda < \infty$$ Por lo que $f\in L^1$.

$\square$

Proposición (Linealidad de la Integral). Supongamos que $f,g\in L^1$ y $a, b\in \mathbb{R}$. Entonces $af+bg\in L^1$ con $$\int (af+bg) \ \mathrm{d}\lambda=a\int f \ \mathrm{d}\lambda+b\int g \ \mathrm{d}\lambda.$$

Observación. Hay un un detalle en ésta proposición: es posible que $af+bg$ no esté definida en todo $\mathbb{R}^n$ (piensa por ejemplo que $f(0)=g(0)=\infty$ $\implies$ $(f-g)(0)$ no está definida). Los puntos que «pueden dar problemas» son aquellos en los que $f$ ó $g$ valen $\pm \infty$. Por el lema anterior, éste conjunto es de medida cero así que $af+bg$ está bien definida salvo quizá un conjunto de medida cero. Más adelante veremos que a la hora de integrar podemos «ignorar» los conjuntos de medida cero, es decir, podemos redefinir $f$ y $g$ en cualquier conjunto de medida cero sin afectar el valor de su integral. Por esta razón podemos suponer sin mayor problema que $f,g$ son finitas en todo $\mathbb{R}^n$.

Demostración. Basta probar por separado: $$\int af \ \mathrm{d}\lambda=a\int f \ \mathrm{d}\lambda,$$ $$\int (f+g) \ \mathrm{d}\lambda=\int f \ \mathrm{d}\lambda+\int g \ \mathrm{d}\lambda.$$

Veamos la primera parte. Podemos distinguir dos casos:

  • Si $a\geq 0$, tenemos $(af)_+=af_+$ y $(af)_-=af_-$. Luego
    \begin{align*}
    \int af \ \mathrm{d}\lambda &= \int af_+ \ \mathrm{d}\lambda – \int af_- \ \mathrm{d}\lambda \\
    &= a \int f_+ \ \mathrm{d}\lambda – a \int f_- \ \mathrm{d}\lambda \\
    &= a\left( \int f_+ \ \mathrm{d}\lambda-\int f_- \ \mathrm{d}\lambda \right) \\
    &= a \int f \ \mathrm{d}\lambda
    \end{align*} En la segunda igualdad usamos la proposición para el caso $f\geq 0$ que ya probamos anteriormente.
  • Similarmente, cuando $a<0$, $(af)_+=(-a)f_-$ y $(af)_-=(-a)f_+$, luego
    \begin{align*}
    \int af \ \mathrm{d}\lambda &= \int (-a)f_- \ \mathrm{d}\lambda – \int (-a)f_+ \ \mathrm{d}\lambda \\
    &= (-a) \int f_- \ \mathrm{d}\lambda + a \int f_+ \ \mathrm{d}\lambda \\
    &= a\left( \int f_+ \ \mathrm{d}\lambda-\int f_- \ \mathrm{d}\lambda \right) \\
    &= a \int f \ \mathrm{d}\lambda.
    \end{align*}

Veamos ahora la segunda parte. Sea $h=f+g$. Entonces $|h|\leq |f|+|g|$ $\implies$ $\int |h| \ \mathrm{d}\lambda\leq \int |f| \ \mathrm{d}\lambda+\int |g| \ \mathrm{d}\lambda<\infty$ $\implies$ $|h|\in L^1$ $\implies$ $h\in L^1$ (desigualdad del triángulo).

Ahora, como podemos escribir: $$h_+-h_-=h=f+g=(f_+-f_-)+(g_+-g_-)$$
$$\implies \ h_++f_-+g_-=h_-+f_++g_+$$

Integrando y usando la proposición para funciones no negativas (que ya probamos)
$$\implies \int h_+ \ \mathrm{d}\lambda+\int f_- \ \mathrm{d}\lambda+\int g_- \ \mathrm{d}\lambda=\int h_- \ \mathrm{d}\lambda+ \int f_+ \ \mathrm{d}\lambda+\int g_+ \ \mathrm{d}\lambda.$$

Reordenando los términos y usando la definición concluimos:
$$\int (f+g) \ \mathrm{d}\lambda=\int f \ \mathrm{d}\lambda+\int g \ \mathrm{d}\lambda.$$

$\square$

Corolario (Monotonía de la integral). Sean $f,g\in L^1(\mathbb{R}^n)$ con $f\leq g$. Entonces $$\int f \ \mathrm{d}\lambda \leq \int g \ \mathrm{d}\lambda.$$

Demostración. Notemos que $g-f\geq 0$. Por el teorema anterior, sabemos que $g-f\in L^1(\mathbb{R}^n)$ y además:

$$0\leq \int (g-f) \ \mathrm{d}\lambda=\int g \ \mathrm{d}\lambda-\int f \ \mathrm{d}\lambda$$
$$\implies \int f \ \mathrm{d}\lambda\leq \int g \ \mathrm{d}\lambda.$$

$\square$

Más adelante…

Enunciaremos y probaremos otro de los teoremas más importantes de teoría de integración: El Teorema de la Convergencia Dominada. Al igual que el Teorema de la convergencia Monótona, éste es un resultado de «intercambio de límites con integrales», pero es aplicable incluso cuando las funciones no son $\geq 0$.

Tarea Moral

  • Demuestra que si $f:\mathbb{R}^n\to [-\infty,\infty]$ es integrable, entonces para cualquier $M>0$$$\lambda(\{ x \ | \ |f(x)|>M\})<\infty.$$
  • Demuestra que si $f:\mathbb{R}^n\to [-\infty,\infty]$ es integrable, entonces $$\lambda(\{ x \ | \ f(x)=\pm \infty\})=0.$$
  • Prueba que la función $f(x)=\frac{1}{x}$ si $x\neq 0$; $f(0)=0$ NO es integrable. [SUGERENCIA: Compara $f_+$ con alguna función escalonada cuya integral sea una suma armónica $\sum_{k=1}^{\infty}\frac{1}{k}=\infty$].
  • Sea $f:\mathbb{R}\to [-\infty,\infty]$ una función medible tal que:
    • f es acotada en el intervalo $[-1,1]$.
    • $|f(x)|\leq \frac{1}{k^2}$ si $|x|\leq k$.
      Demuestra que $f\in L^1(\mathbb{R})$.
  • (Desigualdad de Chebyshev). Sea $f\in L^1(\mathbb{R}^n)$. Demuestra que $$\lambda(\{ x \ | \ |f(x)|\geq \alpha\})\leq \frac{1}{\alpha}\int |f| \ \mathrm{d}\lambda.$$

El Lema de Fatou

Por César Mendoza

Introducción

Contrario a lo que la intuición podría sugerir, en general los límites no conmutan con integrales. A pesar de esto, sí que podemos dar un estimado bastante útil a la hora de comparar límites de integrales: El Lema de Fatou.

Las hipótesis del Teorema de la Convergencia Monótona no se pueden relajar

En general, no siempre podemos intercambiar límites con integrales. Veamos un ejemplo.

Ejemplo. Para cada $k\in \mathbb{N}$, definamos $$g_k=\chi_{[k-1,k]}.$$ Observa que $\{ g_k \}_{k=1}^{\infty}$ es una sucesión de funciones simples, medibles y no negativas. Además, para cualquier $x\in \mathbb{R}$, podemos encontrar un $N\in \mathbb{N}$ suficientemente grande tal que $x<N-1$, es decir, $x\notin [k-1,k]$ para $k\geq N$. Esto garantiza que la sucesión $g_k(x)$ es eventualmente $0$. Concluimos que $$\lim_{k\to \infty} g_k=0.$$
Sin embargo, para cualquier $k$: $$\int g_k \ \mathrm{d}\lambda = 1\cdot \lambda([k-1,k])=1. $$
De modo que $$\int \left( \lim_{k\to \infty} g_k \right) \ \mathrm{d}\lambda=0\neq 1=\lim_{k\to \infty} \int g_k \ \mathrm{d}\lambda.$$

$\triangle$

Destacamos que la hipótesis de que la sucesión de funciones sea creciente es esencial para poder intercambiar límites con integrales.

El Lema de Fatou

Lema (de Fatou). Sean $f_1, f_2, f_3\dots$ funciones medibles y no negativas. Entonces:

$$\int \left( \liminf_{k\to \infty} f_k \right) \ \mathrm{d}\lambda \leq \liminf_{k\to \infty} \int f_k \ \mathrm{d}\lambda.$$

Demostración. Para cada $k\in \mathbb{N}$, definamos: $$g_k=\inf \{ f_k, f_{k+1}, f_{k+2}, \dots \}.$$

Observa que $\{ g_k \}_{k=1}^{\infty}$ es una sucesión creciente de funciones medibles no negativas. Además $g_k\leq f_k$ para todo $k$, de donde $\int g_k \ \mathrm{d}\lambda\leq \int f_k \ \mathrm{d}\lambda$.

Luego, invocando el teorema de la convergencia monótona:

\begin{align*}
\int \left( \liminf_{k\to \infty} f_k \right) \ \mathrm{d}\lambda &= \int \left( \lim_{k\to \infty} \inf_{m\geq k} f_m \right) \ \mathrm{d}\lambda \\
&= \int \left( \lim_{k\to \infty} g_k \right) \ \mathrm{d}\lambda \\
&= \lim_{k\to \infty} \int g_k \ \mathrm{d}\lambda \\
&\leq \liminf_{k\to \infty} \int f_k \ \mathrm{d}\lambda.
\end{align*}

$\square$

Algunas consideraciones sobre el Lema de Fatou

Observación. En general también es cierto que $$\int \liminf_{k\to \infty}f_k \ \mathrm{d}\lambda \leq \limsup_{k\to \infty} \int f_k \ \mathrm{d}\lambda$$ Simplemente porque $\liminf \int f_k\leq \limsup \int f_k$, aunque este estimado es más débil.

Ejemplo. La igualdad en el teorema de Fatou puede ser estricta. Consideremos dos sucesiones $a_k$ y $b_k$ tales que $$a_k\longrightarrow \frac{1}{2}$$ Y $$b_k\longrightarrow \frac{1}{2}.$$
Con $0=a_0<a_1<a_2<\dots$ y $1=b_0>b_1>b_2>\dots$

Definamos $$s_k=\frac{\chi_{[a_k,b_k]}}{b_k-a_k}.$$

\begin{equation*}
\implies (\liminf_{k\to \infty} s_k)(x)=
\begin{cases}
0 & \text{si } x \neq \frac{1}{2} \\
\frac{1}{b_0-a_0} & \text{si } x = \frac{1}{2}.
\end{cases}
\end{equation*}

$$\implies \int \liminf_{k\to \infty} s_k \ \mathrm{d}\lambda= 1 \cdot \lambda\left(\left\{ \frac{1}{2} \right\}\right)=0.$$

Pero $$\int s_k \ \mathrm{d}\lambda = \frac{1}{b_k-a_k}\lambda([a_k,b_k])=1.$$ Para todo $k$. Así que en este caso: $$\int \liminf_{k\to \infty} s_k \ \mathrm{d}\lambda=0<1 = \liminf \int s_k \ \mathrm{d}\lambda.$$

$\triangle$

Ejemplo. No hay una versión del Lema de Fatou con $\limsup$ en lugar de $\liminf$ (a menos de que pidamos más condiciones).

  • En general $$\int \limsup_{k\to \infty} f_k \ \mathrm{d}\lambda \ngeq \limsup_{k\to \infty} \int f_k \ \mathrm{d}\lambda.$$
    Consideremos $s_k$ como en el ejemplo anterior: $$s_k=\frac{\chi_{[a_k,b_k]}}{b_k-a_k}.$$
    Ahora tenemos
    \begin{equation*}
    \limsup_{k\to \infty} s_k(x)=
    \begin{cases}
    0 & \text{si } x \neq \frac{1}{2} \\
    \infty & \text{si } x = \frac{1}{2}.
    \end{cases}
    \end{equation*}
    $$\implies \int \limsup_{k\to \infty} s_k \ \mathrm{d}\lambda = \infty \cdot \lambda\left(\left\{ \frac{1}{2} \right\}\right)=0.$$
    Pero $$\limsup_{k\to \infty} \int s_k \ \mathrm{d}\lambda=1.$$
  • Tampoco se cumple siempre que $$\int \limsup_{k\to \infty} f_k \ \mathrm{d}\lambda \leq \limsup_{k\to \infty} \int f_k \ \mathrm{d}\lambda.$$
    Para ello consideremos una sucesión de subconjuntos medibles $A_k \subseteq \mathbb{R}$ con $\lambda(A_k)=1$ y tales que el conjunto $$S_x=\{k\in \mathbb{N} \ | \ x\in A_k \}$$ Sea infinito para todo $x\in \mathbb{R}$.
    Podemos construir una sucesión de tales $A_k$ de la siguiente manera: Tomamos $\{ r_k \}_{k=1}^{\infty}$ una enumeración de $\mathbb{Q}$ y definimos $A_k$ como el intervalo de longitud 1 centrado en $r_k$ (no importa si el intervalo es abierto o cerrado).
    Ahora, sea $$s_k=\chi_{A_k}.$$ Entonces, para cada $k\in \mathbb{N}$ $$\int s_k \ \mathrm{d}\lambda=\lambda(A_k)=1$$ De donde $$ \limsup_{k\to \infty} \int s_k \ \mathrm{d}\lambda =1. $$
    Por otro lado, $$\limsup_{k\to \infty}s_k= \chi_{\mathbb{R}}\equiv1$$ $$\implies \int \limsup_{k\to \infty} s_k \ \mathrm{d}\lambda =\lambda(\mathbb{R})=\infty.$$

$\triangle$

A pesar de lo anterior, sí que podemos dar una versión «dual» del Lema de Fatou si asumimos algunas condiciones adicionales. Para la demostración del siguiente resultado, requerimos definir la integral de una función negativa: Si $f\leq 0$ es medible, definimos provisionalmente $\int f \ \mathrm{d}\lambda:=-\int (-f) \ \mathrm{d}\lambda$. Asumiremos también que «la integral abre restas», es decir, que $\int (f-g) \ \mathrm{d}\lambda=\int f \ \mathrm{d}\lambda-\int g \ \mathrm{d}\lambda$. En la siguiente entrada probaremos estas y muchas otras propiedades de la integral de funciones no necesariamente $\geq 0$.

Lema (dual de Fatou). Sean $f_1,f_2,\dots$ funciones no negativas y medibles. Supongamos además que existe una función medible $f$ tal que

  1. $f_k\leq f$ para todo $k\in \mathbb{N}$.
  2. $\int f \ \mathrm{d}\lambda <\infty$.

Entonces, $$\limsup_{k\to \infty} \int f_k \ \mathrm{d}\lambda \leq \int \limsup_{k\to \infty} f_k \ \mathrm{d}\lambda.$$

Demostración. Consideremos $$g_k:=f-f_k.$$ Luego:

  • $g_k \geq 0$ (por 1.)
  • $g_k$ es Lebesgue medible (al ser combinación lineal de funciones medibles).

Entonces, el Lema de Fatou implica que:
$$\int \liminf_{k\to \infty} g_k \ \mathrm{d}\lambda\leq \liminf_{k\to \infty} \int g_k \ \mathrm{d}\lambda.$$ Es decir $$\int \liminf_{k\to \infty} (f-f_k) \ \mathrm{d}\lambda\leq \liminf_{k\to \infty} \left( \int f \ \mathrm{d}\lambda – \int f_k \ \mathrm{d}\lambda \right).$$
$$\implies \int f \ \mathrm{d}\lambda+\int \liminf_{k\to \infty} (-f_k) \ \mathrm{d}\lambda\leq \int f \ \mathrm{d}\lambda +\liminf_{k\to \infty} \left( – \int f_k \ \mathrm{d}\lambda \right).$$
Restando $\int f \ \mathrm{d}\lambda<\infty$ de ambos lados y usando que $\liminf -a_k=-\limsup a_k$ concluimos:
$$\limsup_{k\to \infty} \int f_k \ \mathrm{d}\lambda \leq \int \limsup_{k\to \infty} f_k \ \mathrm{d}\lambda.$$

$\square$

Más adelante…

Definiremos la integral para funciones medibles generales (no necesariamente $\geq 0$) y el concepto de función integrable (ó $L^1$). Veremos varias de sus propiedades, muchas análogas a las que hemos visto hasta ahora, aunque también algunas nuevas.

Tarea moral

  • Sea $f_k=\chi_{[0,\frac{1}{k}]}$ para cada $k\in \mathbb{N}$. Calcula $\int (\liminf f_k) \ \mathrm{d}\lambda$ y $\liminf \int f_k \ \mathrm{d}\lambda$. ¿Se satisface el Lema de Fatou? ¿La desigualdad es estricta?
  • Sea $f_k=\chi_{[k,k+1]}$ para cada $k\in \mathbb{N}$. Calcula $\int (\liminf f_k) \ \mathrm{d}\lambda$ y $\liminf \int f_k \ \mathrm{d}\lambda$. ¿Se satisface el Lema de Fatou? ¿La desigualdad es estricta?
  • Sean $f_1,f_2,\dots$ funciones medibles definidas sobre $\mathbb{R}^n$ tales que $f_k\longrightarrow f$ puntualmente. Sea $g:\mathbb{R}\to [0,\infty)$ una función continua y no negativa. Prueba que $$\int g\circ f \ \mathrm{d}\lambda \leq \liminf_{k\to \infty} \int g\circ f_k \ \mathrm{d}\lambda.$$

El Teorema de la Convergencia Monótona

Por César Mendoza

Introducción

Anteriormente definimos la integral de una función medible no negativa general, sin embargo, comentamos que existían dificultades técnicas a la hora de ver que $$\int (f+g) \ \mathrm{d}\lambda=\int f \ \mathrm{d}\lambda+\int g \ \mathrm{d}\lambda.$$ (Algo bastante deseable a la hora de integrar).

En esta entrada enunciaremos y probaremos el Teorema de la Convergencia Monótona de Lebesgue, una de las herramientas más importantes en teoría de integración. Veremos también algunas de sus consecuencias, entre ellas la aditividad de la integral.

El teorema de la convergencia monótona

Teorema (de Convergencia Monótona de Lebesgue). Sea $\{f_k \}_{k=1}^{\infty}$ una sucesión creciente de funciones medibles no negativas sobre $\mathbb{R}^n$: $$0\leq f_1\leq f_2\leq f_3\dots$$ Entonces $$\lim_{k\to \infty}\int f_k \ \mathrm{d}\lambda=\int \left( \lim_{k\to \infty} f_k \right) \ \mathrm{d}\lambda$$

Demostración. Definamos $f=\lim_{k\to \infty} f_k$. Observa que $f$ está bien definida pues en cada punto es el límite de una sucesión creciente. Es medible al ser límite de funciones medibles.

Para todo $k$, claramente $f_k\leq f_{k+1}\leq f$, de donde $\int f_k \ \mathrm{d}\lambda \leq \int f_{k+1} \ \mathrm{d}\lambda \leq \int f \ \mathrm{d}\lambda$. Es decir, la sucesión $\{ \int f_k \ \mathrm{d}\lambda \}_{k=1}^{\infty}$ es creciente y acotada por $ \int f \ \mathrm{d}\lambda$. Como cualquier sucesión creciente (de números extendidos) converge a su supremo, concluimos que:

$$\lim_{k\to \infty} \int f_k \ \mathrm{d}\lambda = \sup_k \int f_k \ \mathrm{d}\lambda \leq \int f \ \mathrm{d}\lambda .$$ Veamos la desigualdad opuesta. Para ello es suficiente probar que para cada núemro real $c<\int f \ \mathrm{d}\lambda$, se tiene $c\leq \lim_{k\to \infty} \int f_k \ \mathrm{d}\lambda$. Fijemos entonces algún $c<\int f \ \mathrm{d}\lambda$. Por definición de $\int f \ \mathrm{d}\lambda$, existe alguna función simple $s\in S$ tal que $0\leq s \leq f$ y $c<\int s \ \mathrm{d}\lambda$.

Al ser una función simple, $s$ admite una representación de la forma: $$s=\sum_{j=1}^{m}\alpha_j\chi_{A_j}.$$ Donde $0<\alpha_j<\infty$ y los conjuntos $A_j$ son medibles ajenos. Dado $\varepsilon<\min(\alpha_1,\dots, \alpha_m)$, consideremos la función simple: $$s_\varepsilon=\sum_{j=1}^{m}(\alpha_j-\varepsilon)\chi_{A_j}$$ Claramente $s_\varepsilon \in S$. Más aún, podemos escoger $\varepsilon$ suficientemente pequeño tal que $c<\int s_\varepsilon \ \mathrm{d}\lambda$: Esto es obvio si alguno de los $A_j$ tiene medida infinita. Si todos los $A_j$ son de medida finita, esto es consecuencia de la continuidad de $\int s_\varepsilon \ \mathrm{d}\lambda=\sum_{j=1}^{m}(\alpha_j-\varepsilon)\lambda(A_j)$ respecto a $\varepsilon$.

Reemplazando a $s$ por $s_\varepsilon$ de ser necesario, podemos entonces asumir que $s$ satisface:

  • $0\leq s \leq f$,
  • Si $f(x)>0 \ \implies \ s(x)<f(x)$,
  • $c<\int s \ \mathrm{d}\lambda$.

Definamos ahora los conjuntos $$E_k = \{ x\ | \ f_k(x)\geq s(x) \}.$$

Estos son medibles (pues la función $f_k-s$ es medible). Como las $f_k$ son crecientes, claramente $$E_1\subseteq E_2\subseteq E_3\subseteq \dots$$
Más aún, notemos que $$\bigcup_{k=1}^{\infty} E_k =\mathbb{R}^n.$$ Pues dado $x\in \mathbb{R}^n$, si $s(x)=0$, entonces $s(x)\leq f_k(x)$ $\forall k$, de donde $x\in E_k$ para todo $k$. Si $s(x)>0$ $\implies$ $f(x)>0$ $\implies$ $f(x)>s(x)$. Como $f_k(x)\uparrow f(x)$, existe algún $N$ tal que $f_N(x)>s(x)$ $\implies$ $x\in E_N$.

En particular, para cualquier $A\subseteq \mathbb{R}^n$ medible, se tiene $(A\cap E_1)\subseteq (A\cap E_2)\subseteq \dots$ y $A=\bigcup_{k=1}^{\infty}(A\cap E_k)$. Luego, por monotonía de la medida de Lebesgue: \begin{equation} \lambda(A)=\lim_{k\to \infty} \lambda(A\cap E_k). \end{equation}

Ahora, usando que $\chi_{A\cap B}=\chi_A\chi_B$, tenemos: $$f_k\geq f_k\chi_{E_k}\geq s_k\chi_{E_k}= \sum_{j=1}^{m}\alpha_j\chi_{A_j\cap E_k}$$ \begin{equation} \implies \int f_k \ \mathrm{d}\lambda\geq \sum_{j=1}^{m}\alpha_j\lambda (A_j\cap E_k). \end{equation} Haciendo tender $k\longrightarrow \infty$ en (2) y usando (1), concluimos finalmente: $$\lim_{k\to \infty} \int f_k \ \mathrm{d}\lambda\geq \lim_{k\to \infty} \left( \sum_{j=1}^{m}\alpha_j\lambda (A_j\cap E_k) \right)=\sum_{j=1}^{m}\alpha_j\lambda (A_j)=\int s \ \mathrm{d}\lambda>c.$$ Lo que completa la demostración.

$\square$

Corolario. Si $f,g:\mathbb{R}^n\to [0,\infty]$ son funciones medibles no negativas, entonces: $$\int (f+g) \ \mathrm{d}\lambda=\int f \ \mathrm{d}\lambda+\int g \ \mathrm{d}\lambda.$$

Demostración. Como ya sabemos, podemos encontrar sucesiones crecientes en $S$ , digamos $\{ s_k \}_{k=1}^{\infty}$ y $\{ t_k \}_{k=1}^{\infty}$, tales que $$s_k\uparrow f \ \ \text{y} \ \ t_k\uparrow g.$$ De donde claramente $$(s_k+t_k)\uparrow f+g.$$
Por el teorema de la convergencia monótona, aplicado a las sucesiones $\{ s_k \}_{k=1}^{\infty}$, $\{ t_k \}_{k=1}^{\infty}$, $\{ s_k+t_k\}_{k=1}^{\infty}$ podemos concluir:

\begin{align*}
\int (f+g) \ \mathrm{d}\lambda &= \lim_{k\to \infty} \int (s_k+t_k) \ \mathrm{d}\lambda\\
&= \lim_{k\to \infty} \left( \int s_k \ \mathrm{d}\lambda+\int t_k \ \mathrm{d}\lambda \right) \\
&= \lim_{k\to \infty} \left( \int s_k \ \mathrm{d}\lambda \right)+ \lim_{k\to \infty} \left( \int t_k \ \mathrm{d}\lambda \right) \\
&= \int f \ \mathrm{d}\lambda+\int g \ \mathrm{d}\lambda.
\end{align*}

Pues ya sabemos que $\int (s+t) \ \mathrm{d}\lambda=\int s \ \mathrm{d}\lambda+\int t \ \mathrm{d}\lambda$ si $s,t\in S$.

$\square$

Corolario. Si $f_1,f_2,f_3\dots$ es una sucesión de funciones medibles no negativas en $\mathbb{R}^n$, entonces $$\int \sum_{k=1}^{\infty} f_k \ \mathrm{d}\lambda= \sum_{k=1}^{\infty}\int f_k \ \mathrm{d}\lambda.$$

Demostración. Como las $f_k$ son no negativas, la sucesión de sumas parciales $$P_N=\sum_{k=1}^{N}f_k.$$ Es una sucesión creciente de funciones medibles no negativas. Así que su límite $$\sum_{k=1}^{\infty}f_k.$$ Existe y es una función medible (en cada punto es el límite de una sucesión creciente de números extendidos).

Como $f_k\geq 0$ $\implies$ $\int f_k \ \mathrm{d}\lambda\geq 0$ para toda $k$, de modo que la sucesión de sumas parciales de integrales $\sum_{k=1}^{N} \int f_k \ \mathrm{d}\lambda$ es creciente y por lo tanto tiene un límite (posiblemente extendido): $$\sum_{k=1}^{\infty} \int f_k \ \mathrm{d}\lambda.$$

Por el teorema de la convergencia monótona aplicado a $\{ P_N\}_{N=1}^{\infty}$ y el primer corolario:

\begin{align*}
\int \sum_{k=1}^{\infty} f_k \ \mathrm{d}\lambda &=\int \left( \lim_{N\to \infty} \sum_{k=1}^{N} f_k \right) \ \mathrm{d}\lambda \\
&= \lim_{N\to \infty} \int \sum_{k=1}^{N} f_k \ \mathrm{d}\lambda \\
&= \lim_{N\to \infty} \sum_{k=1}^{N} \int f_k \ \mathrm{d}\lambda \\
&= \sum_{k=1}^{\infty} \int f_k \ \mathrm{d}\lambda.
\end{align*}

$\square$

Más adelante…

Veremos que, en general, las hipótesis del teorema de la convergencia monótona no se pueden «relajar mucho». Sin embargo, siempre podemos dar un estimado muy poderoso con respecto a límites e integrales: El Lema de Fatou.

Tarea moral

En los siguientes ejercicios $f,g:\mathbb{R}^n\to [0,\infty]$ denotan funciones medibles no negativas.

  • Demuestra que si $\int f \ \mathrm{d}\lambda, \int g \ \mathrm{d}\lambda<\infty$ y $a,b\in \mathbb{R}$ son reales no negativos, entonces $$\int(af+bg) \ \mathrm{d}\lambda=a\int f \ \mathrm{d}\lambda + b\int g \ \mathrm{d}\lambda<\infty.$$
  • Sea $r=\sum_{k=1}^{\infty}\alpha_k\chi_{A_k}$, donde para cada $k$, $0\leq \alpha_k<\infty$ y los conjuntos $A_k$ son medibles y ajenos. Demuestra que $$\int r \ \mathrm{d}\lambda=\sum_{k=1}^{\infty}\alpha_k\lambda(A_k).$$
  • Aproximando mediante funciones simples y usando el teorema de la convergencia dominada, calcula $$\int_0^1 x \ \mathrm{d}x:=\int_{\mathbb{R}}\chi_{[0,1]}(x)\cdot x \ \mathrm{d}x.$$ [SUGERENCIA: Puede ser útil imitar el primer ejercicio de la entrada Conjuntos medibles – Parte III].
  • Para cada $k\in \mathbb{N}$, definamos $f_k(x)=\min(f(x),k)$. Prueba que $$\lim_{k\to \infty}\int f_k \ \mathrm{d}\lambda=\int f \ \mathrm{d}\lambda.$$
  • Para cada $k\in \mathbb{N}$, definamos $t_k=\chi_{[k,k+1]}:\mathbb{R}\to[0,\infty]$.
    • Prueba que la sucesión $\{ t_k\}_{k=1}^{\infty}$ converge puntualmente a 0.
    • Verifica que $$\lim_{k\to \infty}\int t_k \ \mathrm{d}\lambda=1\neq 0 =\int\left( \lim_{k\to \infty}t_k\right) \ \mathrm{d}\lambda.$$
    • ¿Porqué no se puede aplicar el teorema de la convergencia monótona sobre la sucesión $\{t_k \}_{k=1}^{\infty}$?

Integración de funciones no negativas

Por César Mendoza

Introducción

En la entrada pasada definimos el concepto de función simple y como es que estas funciones se integran respecto a la medida de Lebesgue. En esta entrada definiremos la integral para funciones medibles más generales y veremos algunas de sus propiedades.

Integración de funciones no negativas

A modo de recordatorio, en la entrada pasada vimos un resultado interesante: toda función medible no negativa se puede «aproximar» por una sucesión creciente de funciones simples. Es entonces natural definir la integral de una función medible y no negativa precisamente como una aproximación de integrales de funciones simples, que ya sabemos como «integrar».

Al igual que en la entrada pasada, denotaremos por $S$ al conjunto de funciones simples medibles $s$ con $0\leq s\leq \infty$.

Definición. Supongamos que $f:\mathbb{R}^n\to [0,\infty]$ es una función medible no negativa. Definimos la integral de $f$ respecto a la medida de Lebesgue como: $$\int f \ \mathrm{d}\lambda=\sup\left\{ \int s \ \mathrm{d}\lambda \ | \ s\leq f, \ s\in S \right\}.$$

Observa que la integral está bien definida para cualquier función medible no negativa al ser el supremo de un conjunto.

Otras notaciones que usaremos a menudo para denotar la integral (y que puedes encontrar en la bibliografía) son $$\int f, \ \
\int_{\mathbb{R}^n} f, \ \ \int_{\mathbb{R}^n} f \ \mathrm{d}\lambda, \ \ \int f \ \mathrm{d}x, \ \ \int_{\mathbb{R}^n} f(x) \ \mathrm{d}x.$$

Entre otras. En algunos textos, también se puede denotar como:
$$\int_{\mathbb{R}^n} \mathrm{d}\lambda \ f, \ \ \int_{\mathbb{R}^n} \mathrm{d}x \ f(x) .$$

Proposición (Propiedades de la integral de una función no negativa).

  1. $0\leq \int f \ \mathrm{d}\lambda \leq \infty$
  2. Si $0\leq c<\infty$ es una constante, $\int cf \ \mathrm{d}\lambda=c\int f \ \mathrm{d}\lambda.$
  3. Si $f\leq g$, entonces $\int f \ \mathrm{d}\lambda\leq \int g \ \mathrm{d}\lambda.$
  4. Si $\int f \ \mathrm{d} \lambda=0$ $\implies$ $Z=\{ x \ | \ f(x)>0 \}$ es un conjunto nulo.

Demostración. 1 es inmediato pues $\int f \ \mathrm{d}\lambda$ es el supremo de un conjunto de números $\geq 0$ .

Para 2. notemos simplemente que:

\begin{align*}
\int cf \ \mathrm{d}\lambda &= \sup\left\{ \int s \ \mathrm{d}\lambda \ | \ s\leq cf, \ s\in S \right\} \\
&=\sup\left\{ \int ct \ \mathrm{d}\lambda \ | \ t\leq f, \ t\in S \right\} \\
&=\sup\left\{ c\int t \ \mathrm{d}\lambda \ | \ t\leq f, \ t\in S \right\} \\
&=c \ \sup\left\{ \int t \ \mathrm{d}\lambda \ | \ t\leq f, \ t\in S \right\} \\
&= c \int f \ \mathrm{d}\lambda.
\end{align*}

Si $f\leq g$, claramente

$$\left\{ \int s \ \mathrm{d}\lambda \ | \ s\leq f, \ s\in S \right\}\subseteq \left\{ \int t \ \mathrm{d}\lambda \ | \ t\leq g, \ t\in S \right\}$$

Tomando supremos se sigue 3.

Para 4. procedamos por contradicción: Supongamos que $\lambda(Z)>0$. Para cada $k$, definamos $Z_k=\{ x \ | \ f(x)>\frac{1}{k} \}$. Entonces $Z_1\subseteq Z_2\subseteq Z_3\subseteq\dots$ es una sucesión creciente de conjuntos medibles con $$Z=\bigcup_{k=1}^{\infty} Z_k.$$ Así que por monotonía de la medida de Lebesgue: $$\lambda(Z_k)\uparrow \lambda(Z).$$ En particular, podemos encontrar un $N$ suficientemente grande tal que $\lambda(Z_N)>0$. Consideremos ahora la función $s=\frac{1}{N}\chi_{Z_N}\in S$. Notemos que $s\leq f$. Entonces por definición: $$0<\frac{1}{N}\lambda(Z_N)=\int s \ \mathrm{d} \lambda\leq \int f \ \mathrm{d} \lambda$$ Lo cual es una contradicción.

$\square$

Por analogía al caso para integrales simples, uno podría esperar que $$\int (f+g) \ \mathrm{d}\lambda=\int f \ \mathrm{d}\lambda+\int g \ \mathrm{d}\lambda.$$ Esto es de hecho cierto pero no es trivial. Por un análisis similar a los anteriores es sencillo probar que $\int (f+g) \ \mathrm{d}\lambda \geq \int f \ \mathrm{d}\lambda+\int g \ \mathrm{d}\lambda$, sin embargo, es fácil convencerse de que la desigualdad opuesta requiere mucho más trabajo.

Para afrontar dificultades como la anterior, introduciremos uno de los teoremas más fundamentales de la teoría de integración de Lebesgue: El teorema de La convergencia monótona.

Más adelante…

Enunciaremos y probaremos el Teorema de la Convergencia Monótona, una de las herramientas más importantes en la teoría de integración y veremos algunas de sus consecuencias. Como un corolario muy importante, veremos que simplifica considerablemente la demostración de que $\int (f+g) \ \mathrm{d}\lambda=\int f \ \mathrm{d}\lambda+\int g \ \mathrm{d}\lambda$.

Tarea moral

En los siguientes ejercicios, $f,g:\mathbb{R}^n\to [0,\infty]$ denotan funciones medibles no negativas.

  • Demuestra que $\int (f+g) \ \mathrm{d}\lambda\geq \int f \ \mathrm{d}\lambda + \int g \ \mathrm{d}\lambda$.
  • (Propiedad de finitud). Demuestra que si $\int f \ \mathrm{d}\lambda<\infty$, entonces $$\lambda(\{x \ | \ f(x)=\infty \})=0.$$
  • Verifica que el punto 2. de la proposición es válido aún cuando $c=+\infty$, es decir $$\int \infty\cdot f \ \mathrm{d}\lambda=\infty \cdot \int f \ \mathrm{d}\lambda.$$ (En este ejercicio suponemos la convención $0\cdot \infty=0$).
  • Demuestra que si $\lambda(\{x \ | \ f(x)=\infty \})>0$, entonces $$\int f \ \mathrm{d}\lambda = \infty.$$[SUGERENCIA: Usando la monotonía de la medida de Lebesgue, prueba que existe $N>0$ suficientemente grande tal que $\lambda(\{x \ | \ f(x)=N \})>0$].
  • (Desigualdad de Chebyshev). Demuestra que si $\int f \ \mathrm{d}\lambda<\infty$, entonces $$\lambda(\{x \ | \ f(x)\geq \alpha \})\leq \frac{1}{\alpha}\int f \ \mathrm{d}\lambda.$$ [SUGERENCIA: Sea $A=\{x \ | \ f(x)\geq \alpha \}$. Usa monotonía sobre $\alpha \chi_A \leq f$].

Funciones simples

Por César Mendoza

Introducción

En las entradas anteriores construimos la maquinaria teórica sobre la que podemos definir un nuevo concepto de integral: «La integral de Lebesgue». En esta entrada estudiaremos las funciones simples y cómo es que se pueden integrar.

Las funciones simples son simplemente aquellas que toman una cantidad finita de valores. Resultan ser «las funciones más sencillas que se pueden integrar».

Funciones simples

En esta sección, $X$ denota un conjunto arbitrario y $\mathcal{M}$ una $\sigma$-álgebra sobre $X$.

Definición. Decimos que $s:X\to [-\infty,\infty]$ es una función simple si toma solamente una cantidad finita de valores.

Si $s$ es simple, podemos escribir: $$s=\sum_{k=1}^{m}\alpha_k \chi_{A_k},$$ Donde $\alpha_1,\dots, \alpha_m$ son los distintos valores del rango de $s$ y $A_k=\{ x\in X \ | \ f(x)=\alpha_k \}=f^{-1}(A_k)$ son conjuntos ajenos. (Como es usual $\chi_A$ denota la función característica del conjunto $A$, i.e. $\chi_A(x)=1$ si $x\in A$ y $\chi_A(x)=0$ en otro caso).

Observación. Hay muchas formas de escribir una función simple como combinación lineal de funciones características. La anterior es sólo una de ellas. A estas expresiones las llamaremos representaciones.

Las funciones simples y medibles admiten representaciones muy particulares como muestra la siguiente proposición. La demostración es una consecuencia sencilla de las propiedades de las funciones medibles y se deja como tarea moral.

Proposición. Si $\mathcal{M}$ es una $\sigma$-álgebra sobre $X$, una función simple $s$ es $\mathcal{M}$-medible si y sólo si admite una representación $s=\sum_{k=1}^{m}\alpha_k \chi_{A_k}$, con $A_k\in \mathcal{M}$ para todo $k$.

$\square$

Antes de definir de lleno la integral de una función simple, veremos una proposición muy útil que, en general, nos dice que podemos aproximar cualquier función medible con funciones simples.

Teorema (de aproximación por funciones simples). Supongamos que $f:X\to [-\infty, \infty]$ es $\mathcal{M}$-medible. Entonces existe una sucesión $s_1,s_2,\dots$ de funciones simples $\mathcal{M}$-medibles tales que $$\lim_{k\to \infty} s_k = f.$$ Si $f\geq 0$, podemos tomar la sucesión de modo que $0\leq s_1\leq s_2\ \leq \dots$. O más generalmente si $f$ es $\mathcal{M}$-medible, podemos tomar la sucesión de modo que $|s_1|\leq \ |s_2|\leq \dots$ . Si $f$ es acotada, podemos hacer que la convergencia sea uniforme.

Demostración. Supongamos primero que $f\geq 0$. La idea es sencilla: truncamos la función, cada vez más «finamente», cuidando que eventualmente podamos aproximar cualquier valor (por grande que sea) en el rango de $f$.

Para cada $k\in \mathbb{N}$, definamos la función simple:

\begin{equation*}
s_k(x)=
\begin{cases}
\frac{i-1}{2^k} & \text{si } \frac{i-1}{2^k}\leq f(x) < \frac{i}{2^k}; \ \ i=1,2,\dots,2^k k \\
k & \text{si } k \leq f(x).
\end{cases}
\end{equation*}

Como $f$ es $\mathcal{M}$-medible, los conjuntos $f^{-1}\left( [\frac{i-1}{2^k}, \frac{i}{2^k})\right)$ y $f^{-1}\left( [k,\infty] \right)$ son elementos de $\mathcal{M}$, de donde $s_k$ es $\mathcal{M}$-medible.

Sea $x\in X$. Por un sencillo trabajo por casos, es fácil ver que $s_k(x)\leq s_{k+1}(x)$ para todo $k$ (si $f(x)\in [\frac{2i-2}{2^{k+1}}, \frac{2i-1}{2^{k+1}}) \subseteq [\frac{i-1}{2^k}, \frac{i}{2^k})$, $s_k(x)=s_{k+1}(x)$. En cualquier otro caso $s_k(x)<s_{k+1}(x)$).

Si $f(x)<\infty$, existe algún entero $N$ tal que $f(x)< N$. Luego, si $k\geq N$, por definición \begin{equation} f(x)\in \left[s_k(x), s_k(x)+\frac{1}{2^k}\right) \ \ \implies \ \ |f(x)-s_k(x)|<\frac{1}{2^k}. \end{equation} De donde $s_k(x)\longrightarrow f(x)$ cuando $k\longrightarrow \infty$. Si $f(x)=\infty$, $s_k(x)=k\longrightarrow \infty$ cuando $k\longrightarrow \infty$.

En todo caso, para cualquier $x\in X$ concluimos que $$\lim_{k\to \infty} s_k(x) = f(x).$$

Entonces $s_k$ es la sucesión buscada en este caso.

Veamos ahora el caso general. Notemos que $f=f_+-f_-$. Tomemos sucesiones de funciones simples $0\leq r_1\leq r_2\leq \dots$ y $0\leq t_1 \leq t_2\leq \dots$ que convergen puntualmente a $f_+$ y $f_-$ respectivamente definidas como en el caso anterior. Luego, para cada $k\in \mathbb{N}$, sea $$s_k=r_k-t_k.$$ Claramente es una sucesión de funciones simples tal que $s_k=r_k-t_k\longrightarrow f_+-f_-=f$ puntualmente cuando $k\longrightarrow \infty$.

Dado $x\in X$, si $f(x)\geq 0$, entonces, por construcción, $t_k(x)=0$ $\forall k$ $\implies$ $0\leq r_k(x)=s_k(x)$ $\forall k$. Se sigue que la sucesión $|s_k(x)|=r_k(x)$ es creciente. Similarmente, si $f(x)<0$ se ve que $|s_k(x)|=t_k(x)$ es una sucesión creciente.

Por lo anterior concluimos que $$|s_1|\leq |s_2|\leq |s_3| \leq \dots $$

Si $f$ es acotada, para $N>\sup |f|$ suficientemente grande, tenemos por (1) que para cualquier $x\in X$: $$|f(x)-s_k(x)|\leq |f_+(x)-r_k(x)|+|f_-(x)-t_k(x)|<\frac{1}{2^k}+\frac{1}{2^k}=\frac{1}{2^{k-1}}.$$ Se sigue que en este caso la convergencia es uniforme.

$\square$

Veamos una aplicación del resultado anterior. Como probamos anteriormente, los conjuntos Lebesgue medibles son «casi» Borel medibles. Es entonces esperable que las funciones Lebesgue medibles sean «casi» funciones Borel medibles.

Ejemplo. Sea $f:\mathbb{R}^n\to [-\infty,\infty]$ una función Lebesgue-medible. Entonces existe una función $g:\mathbb{R}^n\to[-\infty,\infty]$ Borel-medible tal que el conjunto $$\{ x\in \mathbb{R}^n \ | \ f(x)\neq g(x) \}.$$ Es nulo.

Demostración. Supongamos primero que $f\geq 0$. Por el teorema anterior, existe una sucesión $$0\leq s_1\leq s_2\leq \dots$$ De funciones simples $\mathcal{L}$-medibles tales que $$\lim_{k\to \infty} s_k=f.$$

Podemos escribir $$s_k=\sum_{j=1}^{m}\alpha_j^k\chi_{A_j^k}. $$
Donde los $\alpha_j^k\in [0,\infty]$ son distintos dos a dos y los conjuntos $A_j^k$ son ajenos y medibles.

Como probamos anteriormente, para cualesquiera $j,k$ admisibles, podemos descomponer $$A_j^k=E_j^k\cup N_j^k$$ Donde $E_j^k\in \mathcal{B}$ y $N_J^K$ es nulo.

Definamos entonces $$\sigma_k=\sum_{j=1}^{m}\alpha_j^k\chi_{E_j^k} $$ Observemos que $\sigma_k$ es una función simple y $\mathcal{B}$-medible para todo $k$. Además, claramente $0\leq \sigma_k\leq s_k$ y $\sigma_k=s_k$ salvo en un conjunto de medida cero $N_k$ (a saber, $N_k=\bigcup_{j=1}^{m}N_j^k$).

Ahora, sean $$N=\bigcup_{k=1}^{\infty}N_k.$$ $$g=\sup_k \sigma_k$$ Notemos que $N$ es nulo. Como $0\leq \sigma_k\leq s_k \leq f$, tomando supremos se tiene $$0\leq g \leq f.$$ Más aún, para cualquier $x\notin N$, se cumple $\sigma_k(x)=s_k(x)$ $\forall k$ $\implies$ $$g(x)=\sup_k \sigma_k(x)=\lim_{k\to \infty} s_k(x)=f(x).$$ Por lo que $f=g$ salvo un conjunto de medida cero ($N$). $g$ es $\mathcal{B}$-medible al ser el supremo de una sucesión de funciones $\mathcal{B}$-medibles. Entonces $g$ es la función buscada.

Consideremos ahora el caso general. Podemos escribir $f=f_+-f_-$. Por lo anterior, existen funciones $\mathcal{B}$-medibles $g_+,g_-$ tales que $0\leq g_+\leq f_+$, $0\leq g_-\leq f_-$ y $f_+=g_+$, $f_-=g_-$ salvo en conjuntos de medida cero. Luego $g=g_+-g_-$ es la función buscada. ($g$ no se «indetermina», pues en los puntos donde $g_+(x)=\infty$, necesariamente $0\leq g_-(x)\leq f_-(x)=0$).

$\square$

Un comentario sobre la generalidad

En la siguiente sección comenzaremos de lleno con teoría de integración sobre $\mathbb{R}^n$. Como lo habíamos adelantado, las funciones $\mathcal{L}$-medibles son las funciones con «la suficiente estructura para ser integradas».

Además de destacar la estructura de la medida de Lebesgue, la razón de que estudiaramos $\sigma$-álgebras y funciones medibles con toda generalidad es que la teoría de integración se puede extender a espacios abstractos de manera inmediata. Como veremos más adelante, basta que exista una función $\mu:\mathcal{M}\to [0,\infty]$ que cumpla propiedades análogas a las de la medida de Lebesgue (una medida general) para poder definir la integral.

Por simplicidad, nos restringiremos al caso más importante e intuitivo: La integración de funciones $\mathcal{L}$-medibles sobre $\mathbb{R}^n$. La construcción de la integral general es idéntica. Basta reemplazar $(\mathbb{R}^n,\mathcal{L},\lambda)$ por $(X,\mathcal{M},\mu)$ respectivamente en cada una de las definiciones y demostraciones debajo.

Integración de funciones simples en $\mathbb{R}^n$

Ya estamos listos para definir la integral de una función simple (y finita) sobre $\mathbb{R}^n$. A manera de motivación, pensemos que $s=\alpha \chi_A$ ($\alpha>0$) es una función (muy) simple en alguna dimensión baja, por ejemplo $\mathbb{R}^2$. Entonces, ¿Cuál es el valor apropiado del «volumen bajo la gráfica» de $s$?. Geométricamente, la región «bajo la gráfica» es un cilindro generalizado con base $A$ y altura $\alpha$ como se observa en la figura. Por analogía con el cálculo de volúmenes de figuras sencillas (o incluso, por analogía con la integral de Riemann), lo más natural es pensar que dicho volúmen debe ser el «área de la base» multiplicado por la «altura». En este caso, por supuesto, podemos interpretar el área de la base como la medida de Lebesgue de $A$, de modo que $$\int s=\alpha\lambda(A).$$
Es la elección más natural para la integral. Similarmente si $s=\sum_{k=1}^{m}\alpha_k\lambda(A_k)$ (con $\alpha_j$ distintos y $A_k$ ajenos), invocando linealidad (o simplemente, «sumando el volúmen de los cilindros por separado») $$\int s=\sum_{k=1}^{m}\alpha_k\lambda(A_k).$$ Es la elección obvia para el valor de la integral.

Definición. Denotaremos por $S_n$ (o simplemente $S$) al conjunto de funciones simples ($\mathcal{L}$-) medibles $s$ en $\mathbb{R}^n$ tales que $0\leq s<\infty$.
Dada $s\in S$, podemos expresarla como $$s=\sum_{k=1}^{m}\alpha_k \chi_{A_k},$$ Donde $0\leq \alpha_k<\infty$ y los conjuntos $A_k$ son medibles y ajenos. Entonces, definimos su integral (respecto a la medida de Lebesgue) como: $$\int s \ \mathrm{d}\lambda := \sum_{k=1}^{\infty}\alpha_k\lambda(A_k). $$

Nota. En esta definición, usamos la convención $0\cdot \infty = 0$.

A priori, el valor de la integral podría depender de la representación de $s$ que tomemos (en la definición no pedimos que los $\alpha_k$ sean distintos, así que puede haber una infinidad de representaciones distintas). Aunque como veremos más adelante, la integral está bien definida.

Veamos las primeras propiedades.

Proposición (Propiedades de la integral de una función simple).

  1. $\int s \ \mathrm{d}\lambda$ está bien definida.
  2. $0\leq \int s \ \mathrm{d}\lambda \leq \infty.$
  3. Si $0\leq c <\infty$ es una constante, $\int cs \ \mathrm{d}\lambda=c\int s \ \mathrm{d}\lambda.$
  4. Si $s,t\in S$, entonces $\int (s+t) \ \mathrm{d}\lambda=\int s \ \mathrm{d}\lambda+\int t \ \mathrm{d}\lambda.$
  5. Si $s,t\in S$ y $s\leq t$, entonces $\int s \ \mathrm{d}\lambda\leq \int t \ \mathrm{d}\lambda.$

Demostración. Asumiendo 1., los incisos 2. y 3. son inmediatos de la definición.

Probaremos 1. y 5. en el mismo argumento. Supongamos que $s,t\in S$ y $s\leq t$. Tomemos representaciones de $s$ y $t$ de la forma:

\begin{align*}
s &= \sum_{k=1}^{m}\alpha_k\chi_{A_k}, \\
t &= \sum_{j=1}^{l}\beta_j\chi_{B_k}
\end{align*}

Con los $A_k$ y $B_k$ medibles y ajenos dos a dos. Podemos asumir que $\bigcup_{k=1}^{m}A_k=\mathbb{R}^n$ (de no ser así, podemos añadir el término $0\cdot \chi_{A’}$ a la expresión de $s$, donde $A’=\left( \bigcup_{k=1}^{m}A_k \right)^c$, lo que no afecta el valor de la integral bajo esta representación). Similarmente supongamos que $\bigcup_{j=1}^{l}B_j=\mathbb{R}^n$.

Luego, por la aditividad de la medida de Lebesgue y la definición:

\begin{align}
\int s \ \mathrm{d}\lambda &= \sum_{k=1}^{m}\alpha_k\lambda(A_k)=\sum_{k=1}^{m}\sum_{j=1}^{l}\alpha_k\lambda(A_k\cap B_j) \\
\int t \ \mathrm{d}\lambda &= \sum_{j=1}^{l}\beta_j\lambda(B_j)=\sum_{j=1}^{l}\sum_{k=1}^{m}\beta_j\lambda(A_k\cap B_j)
\end{align}

Si $\lambda(A_k\cap B_j)>0$, en particular $A_k\cap B_j\neq 0$, así que podemos tomar un $p\in A_k\cap B_j$. Pero como $s\leq t$: $$\alpha_k=s(p)\leq t(p)=\beta_j.$$
De donde $$\alpha_k\lambda(A_k\cap B_j)\leq \beta_j\lambda(A_k\cap B_j).$$
Si $\lambda(A_k\cap B_j)=0$, es inmediato que $\alpha_k\lambda(A_k\cap B_j)\leq \beta_j\lambda(A_k\cap B_j)$. Comparando (2) y (3) término a término conluimos que: $$\int s \ \mathrm{d}\lambda\leq \int t \ \mathrm{d}\lambda.$$ (Al tomar cualesquiera representaciones válidas de $s$ y $t$). Esto demuestra 5. pero también demuestra 1:

Si tomamos dos representaciones distintas de $s$, la desigualdad $s\leq s$ implica desigualdades simétricas sobre las integrales definidas por las distintas representaciones, lo que garantiza su igualdad.

Ahora veamos 4. Usando la misma notación que en el inciso anterior podemos escribir:
$$s+t=\sum_{k=1}^{m} \sum_{j=1}^{l}(\alpha_k+\beta_j)\chi_{A_k\cap B_j}.$$

Luego:

\begin{align*}
\int (s+t) \ \mathrm{d}\lambda &= \sum_{k=1}^{m} \sum_{j=1}^{l}(\alpha_k+\beta_j)\lambda(A_k\cap B_j) \\
&= \sum_{k=1}^{m} \sum_{j=1}^{l} \alpha_k\lambda(A_k\cap B_j) + \sum_{k=1}^{m} \sum_{j=1}^{l} \beta_j\lambda(A_k\cap B_j) \\
&= \int s \ \mathrm{d}\lambda + \int t \ \mathrm{d}\lambda.
\end{align*}

$\square$

Más adelante…

Definiremos la integral de una función medible y no negativa en general, usando fuertemente las ideas de aproximación por funciones simples y las propiedades de la integral de funciones simples.

Tarea moral

  • Prueba que si $\mathcal{M}$ es una $\sigma$-álgebra sobre $X$, una función simple $s$ es $\mathcal{M}$-medible si y sólo si admite una representación $s=\sum_{k=1}^{m}\alpha_k \chi_{A_k}$, con $A_k\in \mathcal{M}$ para todo $k$.
  • Prueba que una función $f:X\to [-\infty,\infty]$ es $\mathcal{M}$-medible si y sólo si existe una sucesión de funciones simples y $\mathcal{M}$-medibles $\{ s_k\}_{k=1}^{\infty}$ que convergen puntualmente a $f$.
  • Sean $A_1,A_2,\dots,A_m \subseteq \mathbb{R}^n$ conjuntos medibles y casi disjuntos (es decir, $\lambda(A_i\cap A_j)=0$ para todo $i\neq j$). Sea $s=\sum_{k=1}^{m}\alpha_k\chi_{A_k}$ ($0\leq \alpha_k<\infty$ para $k=1,\dots,m$). Prueba que $$\int s \ \mathrm{d}\lambda=\sum_{k=1}^{m}\alpha_k\lambda(A_k).$$