La Lemniscata puede definirse como el lugar geométrico de los puntos $P$ tales que el producto de sus distancias a dos puntos dados $F_1$ y $F_2$ es constante.
$$d(P, F_1) d(P, F_2) = k$$
Ejemplo:
Sean $ F_1 = \Big(\dfrac{1}{2}, \dfrac{1}{2}\Big) \; $ ; $\; F_2 =\Big(\dfrac{-1}{2}, \dfrac{-1}{2}\Big) \; $
y $\; k = \dfrac{1}{2}$
Sea $P (x, y)$, entonces
$d(P, F_1) = \sqrt{\Big( x \, – \, \dfrac{1}{2}\Big)^2 + \Big( y \, – \, \dfrac{1}{2}\Big)^2 \; }$
$d(P, F_2) = \sqrt{\Big( x \, + \, \dfrac{1}{2}\Big)^2 + \Big( y \, + \, \dfrac{1}{2}\Big)^2 \; }$
$\sqrt{\Big( x \, – \, \dfrac{1}{2}\Big)^2 + \Big( y \, – \, \dfrac{1}{2}\Big)^2 \; } \sqrt{\Big( x \, + \, \dfrac{1}{2}\Big)^2 + \Big( y \, + \, \dfrac{1}{2}\Big)^2 \; } = \dfrac{1}{2}$
$\Bigg( \Big( x \, – \, \dfrac{1}{2}\Big)^2 + \Big( y \, – \, \dfrac{1}{2}\Big)^2 \Bigg) \Bigg( \Big( x \, + \, \dfrac{1}{2}\Big)^2 + \Big( y \, + \, \dfrac{1}{2}\Big)^2 \Bigg) = \Bigg(\dfrac{1}{2}\Bigg)^2$
$$\Bigg( x^2 \, – \, x \, + \, \dfrac{1}{4} + y^2 \, – \, y \, + \, \dfrac{1}{4} \Bigg) \Bigg( x^2 \, + \, x \, + \, \dfrac{1}{4} + y^2 \, + \, y \, + \, \dfrac{1}{4}\Bigg) = \dfrac{1}{4}$$
$$ \textcolor{DarkBlue}{x^4} \, + \, \cancel{x^3} \, + \, \cancel{\dfrac{1}{4}x^2} + \textcolor{DarkBlue}{x^2 y^2} \, + \, \cancel{x^2 y} \, + \, \cancel{\dfrac{1}{4} x^2} \, – \, \cancel{x^3} \, – \, \cancel{x^2} \, – \, \cancel{\dfrac{1}{4} x}$$
$$ \cancel{- x y^2} \, \textcolor{DarkBlue}{- \, xy} \, – \, \cancel{\dfrac{1}{4}x} \, + \, \cancel{\dfrac{1}{4}x^2} \, + \, \cancel{\dfrac{1}{4} x} \, + \, \cancel{\dfrac{1}{16}} + \cancel{\dfrac{1}{4}y^2} \, + \, \cancel{\dfrac{1}{4}y} \, + \, \cancel{\dfrac{1}{16}} \, $$
$$+ \, \textcolor{DarkBlue}{x^2y^2} \, + \, \cancel{ xy^2} \, + \, \cancel{\dfrac{1}{4} y^2} + \textcolor{DarkBlue}{y^4} \, + \, \cancel{y^3} \, + \, \cancel{\dfrac{1}{4} y^2} \, – \, \cancel{x^2y} \, \textcolor{DarkBlue}{- \, xy} \, – \, \cancel{\dfrac{1}{4}y} – \cancel{y^3} \, – \, \cancel{y^2} \, – \, \cancel{\dfrac{1}{4}y} \,$$
$$ + \, \cancel{\dfrac{1}{4}x^2} \, + \, \cancel{\dfrac{1}{4}x} \, + \, \cancel{\dfrac{1}{16}} + \cancel{\dfrac{1}{4} y^2} \, + \, \cancel{\dfrac{1}{4} y} \, + \, \cancel{\dfrac{1}{16}} = \cancel{\dfrac{1}{4}}$$
${}$
$$ \textcolor{DarkBlue}{x^4} \, + \, 2 \textcolor{DarkBlue}{x^2 y^2} \, + \, \textcolor{DarkBlue}{y^4} \textcolor{DarkBlue}{- \, 2 xy}= 0 $$
Por lo tanto
$$ \textcolor{DarkBlue}{\Big(x^2 \, + \, y^2\Big)^2 \, = \, 2 xy} $$
${}$
En coordenadas polares:
$ x = r \cos \theta$
$ y = r \sin \theta$
$ x^2 + y^2 = r^2$
Luego
$r^4 = 2 r \cos \theta r \sin \theta$
$r^4 = 2 r^2 \cos \theta \sin \theta$
$ r^2 = 2 \cos \theta \sin \theta$
Por lo tanto, $ r^2 = \sin (2 \theta)$
Observaciones:
$r^2 \geq 0$ por lo que $sin (2 \theta) \geq 0$
Luego $ \sin (2 \theta) \geq 0 \iff \theta \in \Bigg[ 0, \dfrac{\pi}{2}\Bigg] \bigcup \Bigg[ \pi , \dfrac{3\pi}{2} \Bigg]$
Si $\theta \in \Bigg[ 0, \dfrac{\pi}{4} \Bigg] \Rightarrow 0 \leq 2 \theta \leq \dfrac{\pi}{2}$
Entonces $sin 0 \leq sin (2 \theta) \leq \sin \dfrac{\pi}{2}$ por lo que
$ 0 \leq \sin (2 \theta) \leq 1$ entonces $0 \leq r^2 \leq 1$ y por tanto $0 \leq r \leq 1.$
Análogamente, si $\theta \in \Bigg[ \dfrac{\pi}{2}, \dfrac{3 \pi}{4}\Bigg] \Rightarrow \pi \leq 2 \theta \leq \dfrac{3 \pi}{2}$
Se puede calcular el área de cada pétalo de la Lemniscata.
$x (t) = \sqrt{ \sin (2 t) \, } \cos t$
$y (t) = \sqrt{ \cos (2 t) \, } \sin t$
Entonces $$F (x, y) = \big( x^2 + y^2 \big)^2 \, – \, 2xy = 0 $$
Podemos ver la Lemniscata como una curva de nivel $F : \mathbb{R}^3 \rightarrow \mathbb{R}$
¿Cómo será el valor de $F( x, y)$ cuando el punto $( x, y)$ está fuera de la Lemniscata?
¿Cómo será cuando el punto esté adentro?
Tomemos $P \Big(0, 1\Big)$ un punto fuera de la Lemniscata.
Entonces $F \Big(0, 1\Big) = (0)^2 + (1)^2 \, – \, 2 (0) (1) = 1 $. $F$ es positiva.
${}$
Tomemos $P \Big( \dfrac{1}{2}, \dfrac{1}{2} \Big)$ un punto dentro de la Lemniscata.
Entonces $F \Big(\dfrac{1}{2}, \dfrac{1}{2}\Big) = \Bigg( \Big( \dfrac{1}{2}\Big)^2 + \Big( \dfrac{1}{2}\Big)^2 \Bigg)^2 \, – \, 2 \Big(\dfrac{1}{2}\Big) \Big(\dfrac{1}{2} \Big) = \Bigg( \dfrac{1}{4} + \dfrac{1}{4} \Bigg)^2 \, – \, \dfrac{1}{2} = \dfrac{1}{4} \, – \, \dfrac{1}{2} = \dfrac{-1}{2}$. Entonces $F$ es negativa.
Analicemos algunos cortes verticales
$x = 0$
$F (0, y) = \big( 0^2 + y^2 \big)^2 \, – \, 2 (0) y = y^4 $
$x =1$
$F (1, y) = \big( 1^2 + y^2 \big)^2 \, – \, 2 (1) y = \big( 1^2 + y^2 \big)^2 \, – \, 2 y $
$x = 2$
$F (2, y) = \big( 2^2 + y^2 \big)^2 \, – \, 2 (2) y = \big( 4 + y^2 \big)^2 \, – \, 4 y $
En el siguiente enlace puedes observar una animación de diferentes cortes $x = \mathcal{x_0}$ y $z = \mathcal{z_0}$.
https://www.geogebra.org/classic/xef6rmxd