Cálculo Diferencial e Integral I: La regla de la cadena

Por Juan Manuel Naranjo Jurado

Introducción

Anteriormente revisamos, entre otras cosas, cómo derivar la suma, el producto y el cociente de funciones. La siguiente operación a analizar es la composición de funciones, tema del cual tratará esta entrada.

Demostración de la regla de la cadena

Teorema. Sean $A$, $B \subset \RR$, $g: A \to \RR$, $f: B \to \RR$ y $x_0 \in A$ tales que

  1. Para todo $x \in A$, $g(x) \in B$.
  2. $g$ es derivable en $x_0$, es decir $$\lim_{x \to x_0} \frac{g(x)-g(x_0)}{x-x_0} = g'(x_0).$$
  3. $f$ es derivable en $g(x_0)$, es decir $$\lim_{t \to x_0} \frac{f(t)-f(g(x_0))}{t-g(x_0)} = f'(g(x_0)).$$

Entonces $f \circ g$ es derivable en $x_0$, además $$(f \circ g)'(x_0) = f'(g(x_0))g'(x_0).$$

Demostración.

Para realizar esta demostración haremos uso de una función auxiliar de la que probaremos propiedades específicas.

$$\rho (t) = \begin{cases}
\frac{f(t)-f(g(x_0))}{t-g(x_0)}-f'(g(x_0)), & \text{ si $t \neq g(x_0)$} \\
0, & \text{ si $t = g(x_0)$.}
\end{cases}$$

Podemos observar que la función $\rho$ está «inspirada» en la definición de derivada de $f$ en el punto $g(x_0)$. Procederemos a puntualizar 5 observaciones de nuestra función auxiliar.

  1. Como $f: B \to \RR$, entonces $\rho: B \to \RR$.
  2. El límite de $\rho$ en $g(x_0)$ es cero, puesto que
    \begin{align*}
    \lim_{t \to g(x_0)} \rho (t) & = \lim_{t \to g(x_0)} \left( \frac{f(t)-f(g(x_0))}{t-g(x_0)} – f'(g(x_0)) \right) \\ \\
    & = \lim_{t \to g(x_0)} \frac{f(t)-f(g(x_0))}{t-g(x_0)} – \lim_{t \to g(x_0)} f'(g(x_0)) \\ \\
    & =f'(g(x_0))-f'(g(x_0)) \text{, por el supuesto 3} \\ \\
    & = 0.
    \end{align*}

    $$\therefore \lim_{t \to g(x_0)} \rho (t) = 0.$$
  3. $\rho$ es continua en $g(x_0)$, puesto que $$\lim_{t \to g(x_0)} \rho(t) = 0 = \rho (g(x_0)).$$
  4. Para todo $t \in B$, se sigue de la definición de $\rho$ que $$f(t)-f(g(x_0)) = (\rho(t)+f'(g(x_0)) (t-g(x_0)).$$
  5. Por el supuesto 2, $g$ es derivable en $x_0$ lo que implica que también es continua en tal punto, además por la observación 3, sabemos que $\rho$ es continua en $g(x_0).$ Por tanto, se tiene que
    \begin{gather*}
    \lim_{x \to x_0} \rho (g(x)) = \rho (g(x_0)) = 0. \\
    \therefore \rho \circ g \text{ es continua en } x_0.
    \end{gather*}

Ahora que establecimos las 5 observaciones, estamos listos para calcular la derivada de la composición:

\begin{align*}
(f \circ g)'(x_0) & = \lim_{x \to x_0} \frac{ f(g(x))-f(g(x_0)) }{x – x_0} \\ \\
& = \lim_{x \to x_0} \frac{ ( \rho(g(x))+f'(g(x_0)) )( g(x)-g(x_0) ) }{x-x_0} \text{, por la obs 4} \\ \\
&= \lim_{x \to x_0} \left( ( \rho(g(x))+f'(g(x_0)) ) \cdot \frac{g(x)-g(x_0)}{x-x_0} \right) \\ \\
& =\lim_{x \to x_0} ( \rho(g(x))+f'(g(x_0)) ) \cdot \lim_{x \to x_0} \frac{g(x)-g(x_0)}{x-x_0} \\ \\
& =(0+f'(g(x_0))) \cdot g'(x_0) \text{, por la obs 3 y el supuesto 2} \\ \\
& = f'(g(x_0)) g'(x_0).
\end{align*}

$$\therefore (f \circ g)'(x_0) = f'(g(x_0))g'(x_0).$$

$\square$

Aplicando la regla de la cadena

A continuación revisaremos algunos ejemplos donde aplicaremos la proposición anterior. La idea general de los ejercicios será expresar una función en términos de la composición de otras dos.

Ejemplo 1. Encuentra la derivada de la función $F(x) = (3x+1)^2$.

Notemos que podemos ver a $F$ como la composición de las siguientes dos funciones
$$ f(x) = x^2, \qquad g(x) = 3x + 1.$$

Así, $F(x) = f(g(x))$. Y empleando la regla de la cadena se tiene que

\begin{align*}
F'(x) & = f'(g(x)) g'(x) \\
& = 2g(x)g'(x) \\
& =2 (3x+1)(3) \\
& = 6(3x+1) \\
& = 18x+6.
\end{align*}

Ejemplo 2. Deriva la función $F(x) = \sqrt{\frac{x^2+1}{x^3+3}}$.

Definimos las funciones

$f(x) = \sqrt{x}$ con derivada $f'(x) = \frac{1}{2 \sqrt{x}}$ y $g(x) = \frac{x^2+1}{x^3+3}$ con derivada
\begin{align*}
g'(x) & = \frac{ (x^3+3)(2x)-(x^2+1)(3x^2) }{ (x^3+3)^2 } \\
& = \frac{ -x^4-3x^2+6x }{ (x^3+3)^2 }.
\end{align*}

Con lo anterior, se tiene que $F(x) = f(g(x))$, y empleando la regla de la cadena tenemos

\begin{align*}
F'(x) & = f'(g(x)) g'(x) \\
& =\frac{1}{ 2\sqrt{g(x)} } \cdot \frac{ -x^4-3x^2+6x }{ (x^3+3)^2 } \\
& = \frac{1}{ 2\sqrt{ \frac{ x^2+1 }{ x^3+3 } } } \cdot \frac{ -x^4-3x^2+6x }{ (x^3+3)^2 }\\
& = \frac{ \sqrt{x^3+3} }{2 \sqrt{x^2+1} } \cdot \frac{ -x^4-3x^2+6x }{ (x^3+3)^2 }.
\end{align*}

Más adelante…

En las siguientes entradas haremos un resumen de las «reglas de derivación» que hemos visto hasta ahora y probaremos algunas más; particularmente se hará la revisión de las derivadas para las funciones trigonométricas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Teorema de Carathéodory. Sea $f$ definida en un intervalo $A$ y sea $a \in A$. Entonces $f$ es derivable en $a$ si y solo si existe una función $\rho$ en $A$ que es continua en $a$ y satisface:
    $$f(x) – f(a) = \rho (x) (x-a) \text{ para } x \in A.$$
    En este caso, se tiene que $\rho(a) = f'(a)$.
  • Deriva la función $f(x) = \sqrt{5-2x+x^2}$.
  • Si $f: \RR \to \RR$ es derivable en $x_0$ y $f(x_0) = 0$. Prueba que $g(x) := |f(x)|$ es derivable en $x_0$ si y solo si $f'(x_0) = 0$.
  • Determina en dónde es derivable cada una de las siguientes funciones de $\RR \to \RR$ y encuentra la derivada:
    • $f(x) = |x|+|x+1|.$
    • $g(x) = 2x + |x|.$
    • $h(x) = x|x|.$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

2 comentarios en “Cálculo Diferencial e Integral I: La regla de la cadena

  1. Jmzc

    Gracias por esta demostración de la regla de la cadena. Sueño verla en forma de notación de Leibniz y no me gusta, prefiero está que has escrito.
    ¿No tendrás una demostración de la regla de separación de variables en ecuaciones diferenciales ordinarias pero sin usar notación de Leibniz? Un saludo

    Responder
    1. Leonardo Ignacio Martínez SandovalLeonardo Ignacio Martínez Sandoval

      Hola. Gracias por el comentario. La notación de LaGrange (la de f’) es bonita pues es más simple. Pero el problema es que no es tan buena para cuando involucramos varias variables, pues es importante saber con respecto a qué estamos haciendo las derivadas. Por ello, sería algo complicado encontrar una demostración así para separación de variables, pues ahí típicamente se trabaja con varias variables que se están derivando.

      Responder

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.