Archivo del Autor: Angélica Amellali Mercado Aguilar

Funciones de $\mathbb{R}^{n}$ en $\mathbb{R}$

Por Angélica Amellali Mercado Aguilar

Introducción

Los conjuntos de nivel proporcionan una representación visual de como la función toma ciertos valores en su dominio, mientras qu los límites nos permiten comprender el comportamiento de la función en puntos particulares o en el infinito. La relación entre ambos objetos puede verse como una descripción del comportamiento local y global de una función .

Funciones de $\mathbb{R}^{n}$ en $\mathbb{R}$

Definición 1 . Una función $f:A\subset\mathbb{R}^{n}\rightarrow \mathbb{R}$ es una función $f(x_{1},x_{2},…,x_{n})$ que asocia a cada n-ada ordenada $(x_{1},x_{2},…,x_{n})$ de $\mathbb{R}^{n}$ un número real $f(x_{1},x_{2},…,x_{n})$

Ejemplo. La función $f:\mathbb{R}^{2}\rightarrow\mathbb{R}$ dada por $f(x,y)=x^{2}+y^{2}$ asocia a dada pareja $(x,y)\in \mathbb{R}^{^{2}}$ el número real $x^{2}+y^{2}$.

Ejemplo. La función $f:\mathbb{R}^{3}\rightarrow\mathbb{R}$ dada por $f(x,y,z)=\sqrt{1-x^{2}-y^{2}-z^{2}}$ asocia a dada terna $(x,y,z)\in \mathbb{R}^{^{3}}$ el número real $\sqrt{1-x^{2}-y^{2}-z^{2}}$

Definición 2. El dominio de una función $f:A\subset \mathbb{R}^{n}\rightarrow \mathbb{R}$ es el conjunto
$$Dom_{f}\left\{(x_{1},x_{2},…,x_{n})\in\mathbb{R}^{n}~|~f(x_{1},x_{2},…,x_{n})\in\mathbb{R}\right\}$$

Ejemplo. La función $f:\mathbb{R}^{3}\rightarrow\mathbb{R}$ dada por $f(x,y,z)=\sqrt{1-x^{2}-y^{2}-z^{2}}$ asocia a dada terna $(x,y,z)\in \mathbb{R}^{^{3}}$ el número real $\sqrt{1-x^{2}-y^{2}-z^{2}}$ tiene como dominio el conjunto

$$Dom_{f}=\left\{(x,y,z)\in\mathbb{R}^{3}~|~1-x^{2}-y^{2}-z^{2}\geq0 \right\}=\left\{(x,y,z)\in\mathbb{R}^{3}~|~1\geq x^{2}+y^{2}+z^{2}\right\}$$


Ejemplo La función $f:\mathbb{R}^{2}\rightarrow\mathbb{R}$ dada por $f(x,y)=x^{2}+y^{2}$ asocia a dada pareja $(x,y)\in \mathbb{R}^{^{2}}$ el número real $x^{2}+y^{2}$ en este caso el dominio es $\mathbb{R}^{2}$

Definición 3.$ El rango de una función $f:A\subset\mathbb{R}^{n}\rightarrow \mathbb{R}$ es el conjunto
$$Ran_{f}= \left\{f(x_{1},x_{2},…,x_{n})\in\mathbb{R}~|~(x_{1},x_{2},…,x_{n})\in\mathbb{R}^{n} \right\}$$

Ejemplo. La función $f:\mathbb{R}^{2}\rightarrow\mathbb{R}$ dada por $f(x,y)=\sqrt{1-x^{2}-y^{2}}$ asocia a dada pareja $(x,y)\in \mathbb{R}^{^{2}}$ el número real $\sqrt{1-x^{2}-y^{2}}$ en este caso el rango de la función es el conjunto
$$\left\{z\in\mathbb{R}~|~0\leq z\leq1 \right\}$$

Definición 4. La gráfica de una función $f:A\subset\mathbb{R}^{n}\rightarrow \mathbb{R}$ es el conjunto
$$Gra_{f}=\left\{(x_{1},x_{2},…,x_{n},f(x_{1},x_{2},…,x_{n}))\in\mathbb{R}^{n+1}~|~(x_{1},x_{2},…,x_{n})\in\mathbb{R}^{n}\right\}$$

Ejemplo. La gráfica de la función $f:\mathbb{R}^{2}\rightarrow\mathbb{R}$ dada por $f(x,y)=x^{2}+y^{2}$ es un paraboloide cuyo aspecto es

Ejemplo. La gráfica de la función $f:\mathbb{R}^{2}\rightarrow\mathbb{R}$ dada por $f(x,y)=x^{2}-y^{2}$ es un paraboloide hiperbolico (silla de montar) cuyo aspecto es

Conjuntos de Nivel

Definición 5. Sea $f:\mathbb{R}^{n}\rightarrow\mathbb{R}$ y sea $c\in\mathbb{R}$. El conjunto de nivel del valor c se define como:
$$C_{N}=\left\{x\in\mathbb{R}^{n}~|~f(x)=c\right\}$$

Ejemplo. Describir el conjunto de nivel de la función $f(x,y)=x^{2}+y^{2}$

$Solución$ En este caso el conjnuto de nivel es$$C_{N}=\left\{(x,y)\in\mathbb{R}^{2}~|~x^{2}+y^{2}=c\right\}$$
geometricamente son circunferencias con centro el origen y radio $c$.

Ejemplo. Describir el conjunto de nivel de la función $f(x,y)=x^{2}-y^{2}$

Solución En este caso el conjnuto de nivel es$$C_{N}={(x,y)\in\mathbb{R}^{2}~|~x^{2}-y^{2}=c}$$
geometricamente son circunferencias con centro el origen y radio c

Ejemplo La función $f:\mathbb{R}^{2}\rightarrow \mathbb{R}$ dada por $f(x,y)=x^{2}+y^{2}$ tiene como gráfica el paraboloide de revolución $z=x^{2}+y^{2}$

Las curvas de nivel son: el vacio para $a<0$, y para $a>0$ es el conjunto $$\left\{(x,y)\in \mathbb{R}^{2}|x^{2}+y^{2}=a\right\}$$, es decir un círculo de radio $\sqrt{a}$ con centro en el origen

Ejemplo La función $f:\mathbb{R}^{2}\rightarrow \mathbb{R}$ dada por $f(x,y)=x^{2}-y^{2}$ tiene como gráfica el paraboloide hiperbolico $z=x^{2}-y^{2}$

Las curvas de nivel son: para $a=0\Rightarrow x^2-y^2=0$ par de rectas que se cortan en el origen, y para $a=1\Rightarrow x^2-y^2 =1$ es una hiperbola paralela al eje X que lo corta en $(\pm 1,0)$, para $a=-1\Rightarrow x^2-y^2=-1$ es una hiperbola paralela al eje Y y que lo corta en $(0,\pm 1)$

Ejemplo La función $f:\mathbb{R}^{3}\rightarrow \mathbb{R}$ dada por $f(x,y,z)=\sqrt{x^{2}+y^{2}+z^2}$ tiene el siguiente conjunto de nivel
$${(x,y,z)\in \mathbb{R}^{3}|\sqrt{x^2+y^2+z^2}=a}$$

Las superficies de nivel son: para $a=0\Rightarrow \sqrt{x^2+y^2+z^2}=0$ el origen, y para $a=1\Rightarrow \sqrt{x^2+y^2+z^2}=1$ es una esfera, $a=2\Rightarrow \sqrt{x^2+y^2+z^2}=2$ es una esfera

La función $f:\mathbb{R}^{3}\rightarrow \mathbb{R}$ dada por $f(x,y,z)=x^{2}-y^{2}+z^2$ tiene el siguiente conjunto de nivel
$$\left\{(x,y,z)\in \mathbb{R}^{3}|x^2-y^2+z^2=a\right\}$$

Las superficies de nivel son: para $a=0\Rightarrow x^2-y^2+z^2=1$ es un hiperboloide de un manto, y para $a=1\Rightarrow x^2-y^2+z^2=1$ es un hiperboloide de un manto, $a=2\Rightarrow \sqrt{x^2-y^2+z^2}=2$ es un hiperboloide de un manto

Límite de Funciones de $\mathbb{R}^{n} \rightarrow \mathbb{R}$

Sea $f:\Omega\subset\mathbb{R}^{n} \rightarrow \mathbb{R}$, y sea $x_{0}$ un punto de acumulación de $\Omega$. Se dice que $L\in\mathbb{R}$ es el límite de $f$ en
$x_{0}$, y se denota por: $$\displaystyle\lim_{x\rightarrow x_{0}}f(x)=L$$ Si dado $\varepsilon > 0$, existe $\delta > 0$ tal que $|f(x)-b|<\varepsilon$ cuando $x \in \Omega$, $0<|x-x_{0}|<\delta$

Observación: Es necesarío que $x_{0}$ sea punto de acumulacion de $\Omega$.

Usando la definición de límite, demostrar que:
$$\displaystyle\lim_{(x,y) \rightarrow (0,0)}\frac{x^{4}y^{2}}{(x^{2}+y^{2})^{2}}=0$$
Por demostrar, para todo $\varepsilon > 0$ existe $\delta > 0$ tal que $0 < |(x,y) – (0,0)| < \delta$ entonces $\displaystyle\left| \frac{x^{4}y^{2}}{(x^{2}+y^{2})^{2}} \right| < \varepsilon$

Demostración. Como $x^{2} \leq x^{2}+y^{2}$ entonces $x^{4} \leq (x^{2}+y^{2})^{2}$ entonces $\displaystyle\frac{1}{(x^{2}+y^{2})^{2}} \underset{(*)}{\leq} \displaystyle\frac{1}{x^{4}}$

$\therefore$ $\displaystyle\left|\frac{x^{4}y^{2}}{(x^{2}+y^{2})^{2}}\right| \underset{(*)}{\leq}
\displaystyle\left|\frac{x^{4}y^{2}}{x^{4}}\right| \leq |y^{2}|=y^{2}\leq (\sqrt{x^{2}+y^{2}})^{2} <
\delta^{2}$

$\therefore$ Si $\delta^{2}=\varepsilon$ entonces $\delta=\sqrt{\varepsilon}$

Más adelante

Relacionaremos el concepto de límite con el de derivada para funciones $f:\mathbb{R}^n \rightarrow \mathbb{R}$ escalares.

Tarea Moral

1.- Esboza las curvas de nivel y gráficas de las siguientes funciones

a) $f: \mathbb{R}^2 \rightarrow \mathbb{R}, (x,y) \rightarrow x-y+2$

b) $f: \mathbb{R}^2 \rightarrow \mathbb{R}, (x,y) \rightarrow x^2+4y^2$

2.- Describe el comportamiento conforme varia $c$ de la curva de nivel $f(x,y)=c$ para cada una de las siguientes funciones

a) $f(x,y)=x^2+y^2+1$

b) $f(x,y)=1-x^2-y^2$

3.- Traza la curva de nivel (en el plano $xy$) para las siguientes funciones.

a) $f(x,y)= 4-3x+2y, c=0,1,2,3,-1,-2,-3$

b) $f(x,y)=x/y, c=0,1,2,3,-1,-2,-3$

4.- Sea $f:\mathbb{R}^2 \rightarrow \mathbb{R}. (x,y) \rightarrow x^2+y^2+2$ calcular $\displaystyle\lim_{(x,y) \rightarrow (0,1)} f(x,y)$

5.- Sea $f:A \subset \mathbb{R}^n \rightarrow \mathbb{R}$, $x_0$ un elemento o punto fronrtera de $A \in \mathbb{R}^n$ y $b\in\mathbb{R}$ demuestra que si

$\displaystyle\lim_{x \rightarrow x_0}f(x)=b$ entonces $$c \displaystyle\lim_{x \rightarrow x_0}f(x)=cb$$

Enlaces

Calculadora para curvas de nivel de funciones de $\mathbb{R}^2 \rightarrow \mathbb{R}$

https://www.desmos.com/calculator/frx7bimvdd?lang=es

Sucesiones $\mathbb{R}$

Por Angélica Amellali Mercado Aguilar

Introducción

La idea generalizada de convergencia de una sucesión nos dice que a medida que los índices de una sucesión avanzan entonces los términos se tienen que acercar más entre sí.

Definición.Una sucesión en $\mathbb{R}^{n}$ es cualquier lista infinita de vectores en $\mathbb{R}^{n}$ $\overline{x_{1}},\overline{x_{2}},…,\overline{x_{k}},…$ algunos de los cuales o todos ellos pueden coincidir entre si. Dada una sucesión $\overline{x_{1}},\overline{x_{2}},…,\overline{x_{k}},…$ se define de manera natural una función de los enteros positivos $\mathbb{N}$ en $\mathbb{R}^{n}$ tal que a cada entero positivo $k$ se le asigna un vector $\overline{x_{k}}\in \mathbb{R}^{n}$
A la colección ordenada de los elementos de una sucesión la denotaremos

$$\left\{ \overline{x}_{k}\right\} _{k=1}^{\infty },\left\{\overline{x}_{k}\right\}$$

Ejemplo. Considerando el espacio $\mathbb{R}^{2}$ sea la sucesión $\left\{\overline{x_{k}}\right\}_{k=1}^{\infty}$ dada por $\overline{x_{k}}=\left(k,\frac{1}{k}\right)$ cuyos elementos podemos listar como sigue:

$$\left\{(1,1),\left(2,\frac{1}{2}\right),\left(3,\frac{1}{3}\right),…\right\}$$

Considerando la sucesión $\left\{\overline{x_{k}}\right\}\in \mathbb{R}^{n}$. Cada vector $\overline{x_{k}}\in \left\{\overline{x_{k}}\right\}$ esta dado de la siguiente manera:

$$\overline{x_{k}}=\left(x_{1,k},x_{2,k},…,x_{n,k}\right)$$

Es decir, dicho vector define de manera natural $n$ sucesiones $\left\{\overline{x}\right\}$ en $\mathbb{R}$ , las cuales, llamaremos sucesiones componentes o sucesiones proyección, así, la primera sucesión componente del ejemplo anterior es: $\left\{x_{1,k}\right\}=k$ y la segunda sucesión proyección del ejemplo anterior es $\left\{x_{2,k}\right\}=\frac{1}{k}$

Ejemplo. Sea la sucesión $\left\{\overline{x_{k}}\right\}_{k=1}^{\infty}$ dada por $\overline{x_{k}}=\left(\frac{k+1}{k+2},\frac{1}{2^{k}}\right)$ cuyas sucesiones componentes son:

$$\overline{x_{1_{k}}}=\left(\frac{k+1}{k+2}\right)\quad \overline{x_{2_{k}}}=\left(\frac{1}{2^{k}}\right)$$

Ejemplo. Sea la sucesión $\left\{\overline{x_{k}}\right\}_{1}^{\infty}$ dada por $\overline{x_{k}}=\left(\left(1+\frac{1}{k}\right)^{k},\sqrt[k]{k},\sqrt[k]{\frac{1}{k}}\right)$ cuyas sucesiones componentes son:

$$\overline{x_{1_{k}}}=\left(1+\frac{1}{k}\right)^{k}\quad \overline{x_{2_{k}}}=\sqrt[k]{k}\quad \overline{x_{3_{k}}}=\sqrt[k]{\frac{1}{k}}$$

Convergencia de Sucesiones en $\mathbb{R}^{n}$

Definición. Una sucesión $\left\{\overline{x_{k}}\right\}_{k=1}^{\infty}$ en $\mathbb{R}^{n}$ se dice que converge a un vector $\overline{x}$ en $\mathbb{R}^{n}$ si $$\forall\quad \epsilon>0\quad \exists\quad N_{0}\in\mathbb{N}\quad tal\quad que \quad |\overline{x_{k}}-\overline{x}|<\epsilon\quad \forall k>N_{0}$$
En este caso diremos que la sucesión es convergente y que $\overline{x}$ es el limite de la sucesión y escribimos $$\lim_{k\rightarrow\infty}\overline{x_{k}}=\overline{x}$$

Proposición. Unicidad del Limite: Consideremos una sucesión $\left\{\overline{x_{k}}\right\}_{k=1}^{\infty}$ en $\mathbb{R}^{n}$ y sean $\overline{x},\overline{y}\in \mathbb{R}^{n}$ tal que $$\overline{x}=\lim_{k\rightarrow\infty}\overline{x_{k}}\quad y \quad \overline{y}=\lim_{k\rightarrow\infty}\overline{x_{k}}$$ entonces $\overline{x}=\overline{y}$

Demostración. Supongamos que $\overline{x}\neq\overline{y}$ y tomemos $\epsilon=\frac{1}{2}|\overline{x}-\overline{y}|>0$.Por definición $\overline{x}=\lim_{k\rightarrow\infty}\overline{x_{k}}$ por lo que $\exists N_{0_{x}} \in \mathbb{N}$ tal que $|\overline{x_{k}}-\overline{x}|<\epsilon$ para $k>N_{0_{x}}$ y analogamente se tiene que $\overline{y}=\lim_{k\rightarrow\infty}\overline{x_{k}}$ por lo que $\exists N_{0_{y}} \in \mathbb{N}$ tal que $|\overline{x_{k}}-\overline{y}|<\epsilon$ para $k>N_{0_{y}}$. Sea ahora $N_{0}=m\acute{a}x\left\{N_{0_{x}},N_{0_{y}}\right\}$ entonces se cumple simultaneamente que $|\overline{x_{k}}-\overline{x}|<\epsilon$ y $|\overline{x_{k}}-\overline{y}|<\epsilon$ para $k>N_{0}$ $\therefore$ $$|\overline{x}-\overline{y}|=|\overline{x}-\overline{x_{k}}+\overline{x_{k}}-\overline{y}|\leq |\overline{x}-\overline{x_{k}}|+|\overline{x_{k}}-\overline{y}|<2\epsilon=2\left(\frac{1}{2}|\overline{x}-\overline{y}|\right)=|\overline{x}-\overline{y}|(falso)$$ $\square$

Proposición. Sea $\left\{\overline{x_{k}}\right\}_{k=1}^{\infty}$ una sucesión en $\mathbb{R}^{n}$ y sean $${\overline{x_{1_{k}}}}_{1}^{\infty}=(x_{1_{1}},x_{1_{2}},…)$$ $${\overline{x_{2_{k}}}}_{1}^{\infty}=(x_{2_{1}},x_{2_{2}},…)$$ $$\vdots$$ $${\overline{x_{n_{k}}}}_{1}^{\infty}=(x_{n_{1}},x_{n_{2}},…)$$ las sucesiones componentes de la sucesión ${\overline{x_{k}}}_{1}^{\infty}$. Entonces la sucesión ${\overline{x_{k}}}_{1}^{\infty}$ converge a $\overline{x}=(x_{1},x_{2},…)$ en $\mathbb{R}^{n}$ si y solo si para cada $j=1,2,…$ se tiene que $x_{n_{j}}$ converge a $x_{j}$.

Demostración. Supóngase que la sucesión $\left\{\overline{x_{k}}\right\}_{k=1}^{\infty}$ converge a $\overline{x}=(x_{1},x_{2},…)$ esto quiere decir que $\exists N_{0}\in \mathbb{N}$ tal que $|\overline{x_{k}}-\overline{x}|<\epsilon$ para $k>N_{0}$ y dado que $$0\leq|x_{j_{k}}-x_{j}|\leq|\overline{x_{k}}-\overline{x}|<\epsilon$$ entonces se tiene que $$0\leq|x_{j_{k}}-x_{j}|<\epsilon$$ lo que significa que $$\lim_{k\rightarrow\infty}x_{j_{k}}=x_{j}$$
Reciprocamente, supongamos que para cada j $$\lim_{k\rightarrow\infty}x_{j_{k}}=x_{j}$$ lo que significa que
$$|x_{j_{k}}-x_{j}|<\frac{\epsilon}{n}$$
$$\therefore\quad 0\leq|\overline{x_{k}}-\overline{x}|\leq |x_{1_{k}}-x_{1}|+|x_{2_{k}}-x_{2}|+…+|x_{n_{k}}-x_{n}|<\frac{\epsilon}{n}+\frac{\epsilon}{n}+…+\frac{\epsilon}{n}=\epsilon$$
$$\therefore \quad \lim_{k\rightarrow\infty}\overline{x_{j_{k}}}=\overline{x}$$

$\square$

Ejemplo. Consideremos la sucesión $\overline{x_{k}}=\left(\frac{1}{k},\frac{k}{k+1}\right)$ tenemos que $$\lim_{k\rightarrow\infty}\overline{x_{1_{k}}}=\lim_{k\rightarrow\infty}\frac{1}{k}=0$$ $$\lim_{k\rightarrow\infty}\overline{x_{2_{k}}}=\lim_{k\rightarrow\infty}\frac{k}{k+1}= \lim_{k\rightarrow\infty}\frac{\frac{k}{k}}{\frac{k}{k}+\frac{1}{k}}=\lim_{k\rightarrow\infty}\frac{1}{1+\frac{1}{k}}=1$$
$\therefore$ $\lim_{k\rightarrow\infty}\overline{x_{k}}=(0,1)=\overline{x}$

Ahora para comprobarlo tenemos que $$\left\|\overline{x_{k}}-\overline{x}\right\|=\left\|\left(\frac{1}{k},\frac{k}{k+1}\right)-(0,1)\right\|=\sqrt{\frac{1}{k^{2}}+\left(\frac{k}{k+1}-1\right)^{2}}=\sqrt{\frac{1}{k^{2}}+\frac{1}{(k+1)^{2}}}<\sqrt{\frac{2}{k^{2}}}=\frac{\sqrt{2}}{k}$$ $$\therefore\quad \frac{\sqrt{2}}{k}<\epsilon\Leftrightarrow \frac{\sqrt{2}}{\epsilon}N_{0}\therefore \quad \left|\left(\frac{1}{k},\frac{k}{k+1}\right)-(0,1)\right|<\epsilon$$

Definición. Deciimos que $A\subset \mathbb{R}^{n}$ es un conjunto acotado si y solo si $\exists M>0$ tal que $\forall \overline{a}\in A$ se cumple $|\overline{a}|\leq M$

Proposición. Sea $\left\{\overline{x}_{k}\right\}\subset \mathbb{R}^{n}$, si $\left\{\overline{x}_{k}\right\}$ converge, entonces $\left\{\overline{x}_{k}\right\}$ es acotada.

Si $\left\{\overline{x}_{k}\right\}$ converge entonces $\lim_{k\rightarrow \infty}\overline{x}_{k}=\overline{x}\Rightarrow \lim_{k\rightarrow \infty}x_{k,j}=x_{j} \forall j=1,…,n$ por lo tanto se tiene que $\left\{x_{k,j}\right\}$ es acotada y por tanto $\exists M_{j}>0$ tal que $|x_{k,j}|\leq M_{j}$ $\forall k$ $\therefore$ se tiene que $$\left\|\overline{x_{k}}\right\|\leq|x_{1,k}|+|x_{2,k}|+\cdot\cdot\cdot+|x_{n,k}|\leq n\cdot \max\left\{x_{k,j}\right\}=n \cdot M_{j}=M$$ $\therefore \left\{\overline{x}_{k}\right\}$ es acotada. $\square$

Teorema. Un subconjunto $A\subset \mathbb{R}^{n}$ es cerrado si y solo si contiene a todos sus puntos de acumulación.

Demostración. ( $\Rightarrow$ ) Suponemos que A es cerrado. Sea $\overline{x}$ un punto de acumulación de A y suponemos que $\overline{x}\notin A$. Como $A^{c}$ es abierto y $\overline{x}\in A^{c}$ existe $r>0$ tal que $B(\overline{x},r)\subset A^{c}$ $\therefore$ $B(\overline{x},r)\cap A=\emptyset$ $\nabla$ pues $\overline{x}$ es punto de acumulaión de A.

( $\Leftarrow$ ) Supongamos que A contiene a todos sus puntos de acumulación. Sea $U=A^{c}$ queremos probar que $U$ es abierto. Sea $\overline{x}\in U$ como $\overline{x}$ no es de acumulación $\exists r>0$ tal que $B(\overline{x},r)\cap A=\emptyset$ $\therefore$ $B(\overline{x},r)\subset A^{c}$ $\therefore$ $A^{c}$ es abierto. $\square$

Teorema. Sea $A\subset \mathbb{R}^{n}$ y $\overline{x}\in \mathbb{R}^{n}$. Entonces, $\overline{x}$ es un punto de acumulación de $A$ si y solo si $\exists\left\{\overline{x}_{k}\right\}\in A$ con $\overline{x_{k}}\neq \overline{x}$ $\forall k$ tal que $\overline{x}_{k}\rightarrow \overline{x}$$

Demostración. Suponemos que $\overline{x}$ es punto de acumulación de $A$ entonces para cada $k \in \mathbb{N}$ $\exists$ $\overline{x_{k}}\in A\cap B(\overline{x},\frac{1}{k})$ con $\overline{x_{k}}\neq \overline{x}$ $\therefore$ $\overline{x_{k}}\rightarrow \overline{x}$
$\textcolor{Red}{\Leftarrow}$ Sea $B(\overline{x},r)$ como $\overline{x_{k}}\rightarrow \overline{x}$ $\exists k_{0}\in\mathbb{N}$ tal que $\overline{x_{k}}\in B(\overline{x},r)$ $\forall k>k_{0}$ $\therefore$ $\exists$ $\overline{x_{k}}\in A\cap B(\overline{x},r)$ $\therefore$ $\overline{x}$ es punto de acumulación. $\square$

Criterio de Convergencia de Cauchy

Definición. Sea ${\overline{x_{k}}}$ una sucesión de puntos de $\mathbb{R}^{n}$. Se dice que ${\overline{x_{k}}}$ es una sucesión de Cauchy si dado $\epsilon>0$ $\exists N_{0}\in \mathbb{N}$ tal que $|\overline{x_{k}}-\overline{x_{l}}|<\epsilon$ $\forall k,l\geq N_{0}$

Teorema. Una sucesión $\overline{x_{k}}\in \mathbb{R}^{n}$ es convergente si y solo si cumple el criterio de Cauchy

Demostración. $\Rightarrow$ Suponemos que ${\overline{x_{k}}}\rightarrow \overline{x}$ $\therefore$ $|\overline{x_{k}}-\overline{x}|<\epsilon$ $\forall k>N_{0}$. Se tiene entonces que $$|\overline{x_{k}}-\overline{x_{l}}|=|\overline{x_{k}}-\overline{x}+\overline{x}-\overline{x_{l}}|\leq |\overline{x_{k}}-\overline{x}|+|\overline{x}-\overline{x_{l}}|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$$ $\forall k,l>N_{0}$ $\therefore$ $\left\{\overline{x_{k}}\right\}$ es convergente. $\square$

Más adelante

Tarea Moral

Sean $\overline{x}_{k}$ y $\overline{y}_{k}$ sucesiones en $ \mathbb{R}^{n}$ y $\alpha \in \mathbb{R}$, si $\overline{x}_{k} \rightarrow \overline{x}_0$ y $\overline{y}_{k} \rightarrow \overline{y}_0$, prueba que

1.- $\left\{ \overline{x}_{k} \right\} + \left\{ \overline{y}_{k} \right\} := \left\{\overline{x}_k+ \overline{y}_k \right\} \rightarrow \overline{x}_0 + \overline{y}_0$

2.- $\alpha \left\{\overline{x}_k \right\} := \left\{\alpha \overline{x}_k \right\} \rightarrow \alpha \overline{x}_0$

3.- Demuestra que dada una sucesión $\left\{ \overline{x}_{k}=(x_k^{1}, …, x_k^{n})\right\}$ una sucesión en $\mathbb{R}^n$ la sucesión $\left\{ \overline{x}_{k}\right\}$ es de Cauchy si y sólo si la sucesión $\left\{x_k^(i) \right\}$ es de Cauchy para cada $i \in \left\{1,2,…, n \right\}$

4.- Da un ejemplo de una sucesión en $\mathbb{R}^2$ acotada pero no convergente.

5.- Determina y demuestra el límite de la siguiente sucesión: $x_n=\left(\frac{n}{n+1} , \frac{(-1)^n}{n}\right)$

Enlaces