Álgebra Moderna I: Subgrupo Conjugado, Subgrupo Normal y Conmutatividad Parcial

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Hace algunas entradas, comenzamos dando una motivación usando a los enteros. En ésta, nos encontramos de nuevo con la necesidad de retomarlos para darle introducción al tema principal de la entrada. Sabemos que $(\z, +)$ es un grupo, de ahí podemos considerar el subgrupo $n\z$ formado por los múltiplos de $n$, y trabajar con las clases módulo $n$. Supongamos que tenemos $a,b\in \z$ y las clases de equivalencia de $a$ y $b$ módulo $n$ . Éstas se definen de la siguiente manera:
\begin{align*}
\bar{a} = a + n\z, \quad \bar{b} = b + n\z.
\end{align*}

Si queremos sumar dos clases de equivalencia, usamos la suma usual en $\z$. Digamos
\begin{align*}
\bar{a} + \bar{b} = \overline{a+b}.
\end{align*}

Aunque lo escribamos así, en realidad lo que estamos haciendo, es definir la suma $+_n$ en $\z_n$ usando $+_\z$ que es la suma del grupo $(\z,+)$. Entonces lo anterior quedaría:
\begin{align*}
\bar{a} +_n \bar{b} = \overline{a+_\z b}.
\end{align*}

Resulta que $+_n$ es una operación bien definida y $(\z_n,+_n)$ es un grupo.

Otra manera de escribirlo sería:
\begin{align*}
(a+\z) +_n (b+\z) = (a+_\z b) + \z.
\end{align*}
Donde, en este caso estamos usando la notación aditiva.

Entonces, ahora nos preguntamos, ¿cómo podemos generalizar esta propiedad?

Tomemos $G$ un grupo y $H$ un subgrupo y consideremos dos clases laterales izquierdas de $H$, digamos $aH$ y $bH$, lo que queremos es definir, en caso de ser posible, un producto entre clases del siguiente modo:
\begin{align*}
aH \cdot_H bH = ab H.
\end{align*}

donde $\cdot_H$ es el nuevo producto entre clases y $ab$ se hace con el producto en $G$.

Sin embargo, debemos verificar que este producto $\cdot_H$ esté bien definido. Para ello tenemos que ver que no depende de los representantes elegidos. Tomemos entonces otros representantes de las clases, para simplificarlo, cambiemos sólo el representante de una de las dos clases, digamos $\tilde{a}\in G$ tal que $\tilde{a}H = aH$.

Entonces, quisiéramos que $abH = \tilde{a}bH$, pero esto sucedería sólo de la siguiente manera,
\begin{align*}
abH = \tilde{a}b H \Leftrightarrow\;& (ab)^{-1} \tilde{a}b\in H\\
\Leftrightarrow\;& b^{-1}a^{-1}\tilde{a}b\in H.
\end{align*}

Entonces, ¿cómo sabemos que $b^{-1}a^{-1}\tilde{a}b\in H$? Lo que sí sabemos es que $a^{-1}\tilde{a} \in H$, pues $\tilde{a}H= aH$. Entonces, bastaría pedir que si $h\in H$, al multiplicar a $h$ a un lado por un elemento de $G$, y al otro por su inverso, sigamos obteniendo elementos en $H$.

En esta entrada usaremos la idea anterior para definir un producto entre dos clases izquierdas usando el producto en $G$.

Subgrupos normales

Primero necesitamos definir formalmente qué es un conjugado.

Definición. Sea $G$ un grupo, $b,c \in G$. Decimos que $b$ es conjugado de $c$ si $b = aca^{-1}$ para alguna $a\in G$.

Dado $a\in G$ y $H$ un subgrupo de $G$,el conjugado de $H$ por el elemento $a$ es
$$aHa^{-1} = \{aha^{-1}|h\in H\}.$$

Observación. $aHa^{-1}$ es un subgrupo de $G$, para toda $a \in G$.

La demostración de esta observación queda de tarea moral.

Definición. Sea $G$ un grupo, $N$ subgrupo de $G$. Decimos que $N$ es normal en $G$ si $ana^{-1} \in N$ para todas $a\in G$, $n\in N$.

Notación. $N\unlhd G$.

Ahora, veamos una proposición. Recordemos que en una entrada pasada vimos que las clases laterales izquierdas no siempre coinciden con las clases laterales derechas y dimos algunos ejemplos. La siguiente proposición nos dirá que con subgrupos normales, la igualdad de clases derechas e izquierdas siempre se da.

Proposición. Sea $G$ un grupo, $N$ subgrupo de $G$. Las siguientes condiciones son equivalentes:

  1. $N\unlhd G$.
  2. $a N a^{-1} = N$ para todo $a\in G$.
  3. Toda clase laterial izquierda de $N$ en $G$ es una clase lateral derecha de $N$ en G.

Demostración. Sea $G$ un grupo, $N \leq G$.

$|1) \Rightarrow 2)]$ Supongamos que $N \unlhd G$. Sea $a\in G$.

P.D. $aNa^{-1} = N$.
Probaremos esto por doble contención.

$\subseteq]$ Como $N\unlhd G$, $ana^{-1} \in N$ para toda $n\in N$. Entonces el conjunto $aNa^{-1} = \{ana^{-1}|n\in N\}$ está contenido en $N$.

$\supseteq]$ Sea $n\in N$, como $N\unlhd G$, $a^{-1}na = a^{-1}n(a^{-1})^{-1} \in N$. Entonces $n = a(a^{-1}n a)a^{-1} \in a N a^{-1}$.

Por lo tanto $aNa^{-1} = N$.

$|2) \Rightarrow 3)]$ Supongamos que para todo $a \in G$, entonces $aNa^{-1} = N$. Sea $a\in G$.

P.D. $aN = Na$.
De nuevo, probaremos esto por doble contención.

$\subseteq]$ Tomemos $an \in aN$ con $n\in N$, como $ana^{-1} \in aNa^{-1}$, y $ aNa^{-1}= N$ por hipótesis, entonces $an = (ana^{-1}) a \in Na$.

$\supseteq]$ Tomemos $na \in Na$ con $n\in N$, como $a^{-1}na \in a^{-1}Na$, y $a^{-1}Na = N$ por hipótesis, entonces $na = a(a^{-1}na) \in aN$.

Por lo tanto $aN = Na$.

$|3)\Rightarrow 1)]$ Supongamos que para todo $a\in G$, existe $b\in G$ tal que $aN = Nb$. Sean $a \in G$ y $n \in N$.

P.D. $ana^{-1} \in N$.

Por hipótesis $aN = Nb$ para alguna $b\in G$. Pero $a \in aN = Nb$, entonces $a\in Nb$, por lo que $a$ es otro representante de la clase lateral $Nb$, y en consecuencia $Na = Nb$. Tenemos entonces que $aN = Nb=Na$

Así, $an\in aN = Na$ y entonces $an = \tilde{n}a$ para alguna $\tilde{n}\in N$. Entonces

\begin{align*}
ana^{-1} = (an)a^{-1} = (\tilde{n}a)a^{-1} = \tilde{n} \in N.
\end{align*}
Por lo tanto $N \unlhd G$.

Así 1), 2) y 3) son equivalentes.

$\blacksquare$

Observación. (Conmutatividad parcial)
Si $N\unlhd G$, dados $n\in N$ y $a\in G$, tenemos que $an = \tilde{n}a$ para alguna $\tilde{n}\in N$, también $na = a \hat{n}$ para alguna $\hat{n} \in N$.

Ejemplos

  1. $A_n \unlhd S_n$ ya que si $\beta \in A_n$ y $\alpha\in S_n$.
    \begin{align*}
    sgn \,(\alpha\beta\alpha^{-1}) &= sgn \,\alpha \; sgn \,\beta \:sgn \,\alpha^{-1}\\
    & = sgn \,\alpha \;(+1) \;sgn \, \alpha \\
    & = +1
    \end{align*}
    Por lo tanto $\alpha\beta\alpha^{-1}\in A_n$.
  2. Consideremos
    \begin{align*}
    Q &= \{\pm 1, \pm i, \pm j, \pm k\}\\
    H &= \{\pm 1, \pm i\}
    \end{align*}
    Las clases laterales izquierdas de $H$ en $Q$ son: $H$ y $jH$.
    Las clases laterales derechas de $H$ en $Q$ son: $H$ y $Hj$.
    Además $jH = \{\pm j, \pm k\} = Hj$. Por lo tanto $H \unlhd Q$.
  3. Consideremos $D_{2(4)}$ las simetrías del cuadrado. Sea $a$ la rotación $\displaystyle\frac{\pi}{2}$, $b$ la reflexión con respecto al eje $x$.
    Sea $H = \{e, b\}$.
    Si tomamos la transformación $aba^{-1}$ podemos desarrollarla algebraicamente y geométricamente. Primero lo haremos de manera algebraica y interpretación geométrica la podrás encontrar en una imagen más abajo.
    Así, como vimos cuando trabajamos con el grupo diédrico:
    $aba^{-1} = aab = a^2b \not\in H$
    con $a^2b$ la reflexión con respecto al eje $y$.
    Por lo tanto $H \not\unlhd D_{2(4)}$.
Representación gráfica de la transformación $aba^{-1}$.

Tarea moral

  1. Sean $W = \left< (1\;2)(3\;4)\right>$, $V = \{(1), (1\;2)(3\;4),(1\;3)(2\;4),(1\;4)(2\;3)\}\leq S_4$. Verifica si $W$ es normal en $V$, si $V$ es normal en $S_4$ y si $W$ es normal en $S_4$ ¿qué puedes concluir con ello?
  2. Sea $G$ un grupo, $H$ y $N$ subgrupos de $G$ con $N$ normal en $G$, prueba o da un contraejemplo:
    1. $N\cap H$ es normal en $H$.
    2. $N\cap H$ es normal en $G$.
  3. Demuestra o da un contraejemplo: Si $G$ es un grupo tal que cada subgrupo de él es normal, entonces $G$ es abeliano.
  4. Sea $G$ un grupo finito con un único subgrupo $H$ de orden $|H|$. ¿Podemos concluir que $H$ es normal en $G$?

Más adelante…

Como ya es costumbre, después de dar las definiciones y de practicarlas un poco con ejemplos, toca profundizar y hablar más sobre las proposiciones y teoremas que involucran a los subgrupos normales. En la siguiente entrada veremos esto.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.