Álgebra Moderna I: Clase de Conjugación, Centro de G, Ecuación de Clase y p-Grupo

Por Cecilia del Carmen Villatoro Ramos

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Esta entrada es una caja de herramientas. Continuamos sobre la línea de estudiar las propiedades de una órbita y de su orden. Primero, nos vamos a enfocar en grupos actuando sobre sí mismos, a partir de esto definiremos un nuevo conjunto al que llamamos el centro de G y daremos algunas observaciones al respecto.

El segundo bloque importante de la entrada es probar la llamada ecuación de clase, una ecuación que nos permite calcular el orden de un G-conjunto usando otros conjuntos relacionados. Uno de estos conjuntos lo definiremos como XG, el conjunto de todos los elementos de X que quedan fijos sin importar el elemento de G que actúa sobre ellos. Volveremos a encontrar a la órbita de los elementos en la demostración de esta ecuación.

Por último, comenzaremos a trabajar con p-grupos, es decir grupos de orden una potencia de un número primo y usaremos la ecuación de clase para demostrar una propiedad de los p-grupos.

Decimos que esta entrada es una caja de herramientas, porque no estamos introduciendo temas que vayamos a estudiar a profundidad, más bien son conceptos que nos ayudarán a llegar al tema principal de esta unidad: los Teoremas de Sylow.

Clases de conjugación, centralizadores y centro de G

La acción de un grupo actuando en sí mismo por conjugación es muy importante y debido a ello daremos nombres y notaciones específicas para las órbitas y estabilizadores correspondientes (que fueron estudiados de manera general en la entrada Órbita de x y tipos de acciones).

Definición. Sea G es un grupo actuando en sí mismo por conjugación, es decir gx=gxg1 para todos g,xG. Dado xG la órbita del elemento x bajo esta acción se llama la clase de conjugación de x y se denota por xG, esto es:
xG=O(x)={gx|gG}={gxg1|gG}.

Por otro lado el estabilizador de x se llama el centralizador de x en G y se denota por CG(x), es decir:

CG(x)=Gx={gG|gx=x}={gG|gxg1=x}={gG|gx=xg},

siendo entonces el conjunto de todos los elementos del grupo que conmutan con x.

Otra colección que resultará clave en el material que desarrollaremos más adelante es el llamado centro de un grupo:

Definición. Sea G un grupo, el centro de G, denotado por Z(G), es
Z(G)={xG|xg=gxgG}.

Es decir, el centro es la colección de todos los elementos de G que conmutan con todos los demás.

Observación 1. Z(G) es subgrupo normal de G.

Demostración.
Primero, tomemos el neutro eG y veamos que está en Z(G). Como estamos hablando del neutro, se cumple que eg=g=ge para toda gG, entonces eZ(G).

Ahora, tomamos xZ(G) entonces xg=gx para toda gG. Así g=x1gx para toda gG, lo que implica que gx1=x1g para toda gG por lo que x1Z(G).

Luego, si tomamos x,yZ(G), se tienen las siguientes igualdades por la definición del centro (xy)g=x(yg)=x(gy)=(xg)y=(gx)y=g(xy) para todo gG. Así, xyZ(G).

Concluimos que el centro es un subgrupo.

Por último, probemos que es un subgrupo normal. Sean xZ(G), gG, al conjugar x con g podemos usar la asociatividad y la definición de centro para concluir que gxg1=(gx)g1=(xg)g1=x(gg1)=xe=xZ(G).

Por lo tanto Z(G)G.

◼

Observación 2. Sean G un grupo y xG. Entonces xZ(G) si y sólo si xG={x}.

Demostración. Sean G un grupo y xG. Tenemos que
xG={x}gxg1=xgGgx=xgMultiplicamos por g a la derechaxZ(G).

◼

La observación anterior nos dice entonces que los elementos del centro son precisamente aquellos cuya clase de conjugación es trivial.

Ecuación de Clase

Para poder enunciar la ecuación de clase, que describe la carnalidad de un G-conjunto X en términos de los índices de ciertos estabilizadores, definamos primero un cierto subconjunto de X:

Definición. Sea G un grupo, X un G-conjunto finito,
XG={xX|gx=xgG}.

Es decir, XG es el conjunto de elementos de X que quedan fijos sin importar qué elemento de G actúe sobre ellos.

Notemos que dado xX se tiene que xXG si y sólo si gx=x para toda gG y esto sucede si y sólo si O(x)={x}. Entonces se cumple lo siguiente:

Observación 3. xXG si y sólo si O(x)={x}.

Así, el conjunto XG consiste de los elementos cuya órbita es trivial.

Proposición. (Ecuación de Clase)
Sea G un grupo, X un G-conjunto finito. Tenemos que
#X=#XG+j=1k[G:Gxj]
con x1,xk representantes de las distintas órbitas con más de un elemento.

En particular, si G es finito y actúa en G por conjugación
|G|=|Z(G)|+j=ik[G:CG(xj)]
con x1,xk representantes de las distintas clases de conjugación con más de un elemento.

Demostración.
Sea G un grupo, X un G-conjunto finito.

Sabemos que las órbitas son una partición de X. Sean x1,,xk,xk+1,,xt representantes de las distintas órbitas, donde #(xj)>1 si j{1,,k} y #O(xj)=1 si j{k+1,,t}. Entonces por un lado tenemos a las órbitas que tienen un sólo elemento y, por otro lado, las demás.

Por la observación 3, XG={xX|#O(x)=1}={xk+1,,xt}.

Así,
#X=j=1t#O(xj)=j=1k#O(xj)+j=k+1t#O(xj)Separamos la suma=j=1k#O(xj)+j=k+1t1#O(xj)=1 para jk+1=j=1k[G:Gxj]+#XGPor la observación 3.

Si G es finito y actúa en G por conjugación, XG=Z(G), O(xj)=xjG son las clases de conjugación y Gxj=CG(xj). Así
|G|=j=1kG:CG(xj)+|Z(G)|.

◼

p-grupo

Hemos tratado con grupos finitos de orden primo, de ellos sabemos propiedades importantes como el hecho de que son cíclicos. El siguiente paso en nuestro estudio, es enfocarnos en los grupos cuyo orden es una potencia de algún primo. No todos los grupos finitos cumplen esta característica, pero los que sí, nos permiten entender a los demás.

Definición. Sea G un grupo, pZ+ un primo. Decimos que G es un p-grupo si |G|=pt para alguna tN.

Teorema. Sean pZ+ un primo, G un p-grupo, X un G-conjunto finito. Entonces #X#XG(mód p).

Demostración.
Sean pZ+ un primo, G un p-grupo, X un G-conjunto finito. Por la ecuación de clase,
#X=#XG+j=1k[G:Gxj]
con x1,,xk representantes de las distintas órbitas con más de un elemento. Como G es un p-grupo, |G|=pt con tN. Dado que el orden de los estabilizadores divide al orden de G tenemos que |Gxj|pt y por lo tanto |Gxj|=pmj con mjN,mjt.

Entonces

1<#O(xj)=[G:Gxj]Por lo visto anteriormente=|G||Gxj|Propiedad del índice=ptpmjConsecuencia de la hipótesis=ptmj.

Así, p divide a [G:Gxj] para toda j{1,,k}. Por lo que

p divide a j=1k[G:Gxj].

Pero por la ecuación de clase j=1k[G:Gxj]=#X#XG.

Entonces
p divide a #X#XG.

En consecuencia #X#XG(mód p).

◼

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Considera el grupo S4 actuando sobre sí mismo por conjugación.
    • Determina las clases de conjugación de S4.
    • Escribe la ecuación de clase de S4.
    • Deduce el orden de cada uno de los estabilizadores Gx, donde xS4.
  2. Encuentra todos los p-subgrupos de S4.
  3. Sean X={H|HD2(4)}, G=a con a la rotación de π2. Considera la acción de G en X dada por gH=gHg1 para todo gG, HX. Encuentra XG y verifica que #X#XG(mód 2).

Más adelante…

Ahora nuestro interés está puesto en los números primos o más bien, en la relación de los números primos con el orden de los grupos. Esta entrada te da lo que tienes que saber de p-grupos y más adelante veremos cómo mediante ellos se pueden estudiar otros grupos. Además, eventualmente veremos un caso especial de los p-grupos, llamados p-subgrupos de Sylow, que nos llevará (para sorpresa de nadie) a los Teoremas de Sylow.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.