Introducción
Con anterioridad vimos el concepto de rango de una matriz y rango de una transformación lineal, además del muy importante teorema de rango-nulidad y la desigualdad de Sylvester. Vimos también, como contenido optativo, el versátil teorema de la factorización $PJQ$. En esta ocasión nos enfocaremos en resolver problemas de rango que nos servirán para repasar dichos conceptos.
Problemas resueltos
Problema 1. Encuentra el kernel y el rango de la transformación lineal $T:\mathbb{R}_2[x] \longrightarrow \mathbb{R}_3[x]$ definida por $$T(f(x))=2f'(x) + \int _{0}^{x} 3f(t)dt.$$
Antes de comenzar a leer la solución, es conveniente que te convenzas de que $T$ es una transformación lineal y que está bien definida, es decir, que en efecto toma un polinomio de grado a lo más dos con coeficientes reales y lo lleva a un polinomio de grado a lo más tres con coeficientes reales.
Solución. Consideremos $\mathcal{B}=\{1, x, x^2\}$ la base canónica de $\mathbb{R}_2[x]$.
Entonces
\begin{align*}
\Ima(T)&=\text{span}(\{T(1),T(x),T(x^2)\})\\
&= \text{span}(\{3x,2+\frac{3}{2}x^2,4x+x^3\}).
\end{align*}
Para determinar el rango de $\Ima{T}$, colocamos a las coordenadas de estas imágenes en la siguiente matriz $A$,
$$A=\begin{pmatrix}
0 & 3 & 0 & 0\\
2 & 0 & \frac{3}{2} & 0\\
0 & 4 & 0 & 1 \end{pmatrix}$$
y con el algoritmo de reducción gaussiana llegamos a que
$$A_{red}=\begin{pmatrix}
1 & 0 & \frac{3}{4} & 0\\
0 & 1 & 0 & 0\\
0 & 0 & 0 & 1 \end{pmatrix}$$
Como $A_{red}$ tiene $3$ pivotes se sigue que $\rank(T)=3$.
Luego, por el teorema de rango nulidad se tiene que
\begin{align*}
3&=\dim(\mathbb{R}_2[x])\\
&= \dim (\ker (T))+\rank(T)\\
&=\dim(\ker(T))+3.
\end{align*}
Así, $\dim(\ker(T))=0$, por lo tanto $\ker(T)=\{0\}$.
$\triangle$
La desigualdad de Sylvester nos ayuda a acotar el rango de una suma de matrices por abajo. La desigualdad $$\rank(A+B)\leq \rank(A)+\rank(B)$$ nos ayuda a acotarlo por arriba. Combinar ambas ideas puede ser útil en problemas de rango de matrices.
Problema 2. Sea $A\in M_n(\mathbb{C})$ una matriz idempotente. Prueba que $$\rank(A)+\rank(I_n-A)=n.$$
Recuerda que una matriz es idempotente si $A^2=A$.
Solución. Como $A^2=A$, entonces $A(I_n – A)=O_n$.
Luego, por la desigualdad de Sylvester se tiene que
\begin{align*}
0&=\rank(O_n)\\
&=\rank(A(I_n-A))\\
&\geq \rank(A) + \rank(I_n-A)-n,
\end{align*}
entonces $$\rank(A)+\rank(I_n-A)\leq n.$$
Por otro lado, como para cualesquiera matrices $X,Y$ se tiene
$\rank(X+Y)\leq \rank(X)+\rank(Y)$, entonces
$$n=\rank(I_n)\leq \rank(A) + \rank(I_n-A),$$
de modo que $$n\leq \rank(A)+\rank(I_n – A).$$
Combinando ambas desigualdades, $$\rank(A)+\rank(I_n-A)=n.$$
$\square$
Problema 3. Encuentra el rango de la transformación lineal $T:\mathbb{R}_2[x]\longrightarrow M_2(\mathbb{R})$ definida por
$$T(f(x))=\begin{pmatrix}
f(1)-f(2) & 0\\
0 & f(0)\end{pmatrix}.$$
Solución. Para determinar el rango, basta tomar una base, encontrar la imagen de sus elementos bajo $T$ y determinar cuántos de estos elementos son linealmente independientes. Considera $\mathcal{B}=\{1,x,x^2\}$ la base canónica de $\mathbb{R}_2[x]$. Tenemos que
\begin{align*}
\Ima(T)&=\text{span}(T(\mathcal{B}))\\
&=\text{span}(\{T(1), T(x), T(x^2)\})\\
&=\text{span}\left(\left\{ \begin{pmatrix}
0 & 0\\
0 & 1\end{pmatrix}, \begin{pmatrix}
-1 & 0\\
0 & 0\end{pmatrix}, \begin{pmatrix}
-3 & 0\\
0 & 0\end{pmatrix} \right\} \right )\\
&=\text{span}\left (\left\{ \begin{pmatrix}
0 & 0\\
0 & 1\end{pmatrix}, \begin{pmatrix}
-1 & 0\\
0 & 0\end{pmatrix} \right\} \right ).
\end{align*}
Notemos también que $\mathcal{C}=\left\{ \begin{pmatrix}
0 & 0\\
0 & 1\end{pmatrix}, \begin{pmatrix}
-1 & 0\\
0 & 0\end{pmatrix}} \right\}$ es linealmente independiente.
Por lo tanto $\mathcal{C}$ es una base para $\Ima(T)$ y así $\rank(T)=2$.
$\triangle$
Problema 4. Sean $A\in M_{3,2}(\mathbb{R})$ y $B\in M_{2,3}(\mathbb{R})$ matrices tales que
$$AB=\begin{pmatrix}
2 & -2 & -4\\
-1 & 3 & 4\\
1 & -2 & -3\end{pmatrix} $$
Muestra que $BA$ es la identidad.
El enunciado no parece mostrar que este sea uno de los problemas de rango de matrices. Sin embargo, para poder resolverlo usaremos las herramientas que hemos desarrollado hasta ahora.
Partiremos el problema en los siguientes pasos.
- Verificar que $(AB)^2=AB$ y que $\rank(AB)=2$.
- Probar que $BA$ es invertible.
- Probar que $(BA)^3=(BA)^2$ y deducir que $BA=I_2$.
Solución.
1. Realizamos la operación matricial:
$$\begin{pmatrix}
2 & -2 & -4\\
-1 & 3 & 4\\
1 & -2 & -3\end{pmatrix}\begin{pmatrix}
2 & -2 & -4\\
-1 & 3 & 4\\
1 & -2 & -3\end{pmatrix}=\begin{pmatrix}
2 & -2 & -4\\
-1 & 3 & 4\\
1 & -2 & -3\end{pmatrix}$$
Ahora, aplicando reducción gaussiana en $AB$ obtenemos que $$(AB)_{red}=\begin{pmatrix}
1 & 0 & -1\\
0 & 1 & 1\\
0 & 0 & 0\end{pmatrix}.$$
Como $(AB)_{red}$ tiene sólo dos pivotes, entonces $\rank(AB)=2$.
2. Usando la desigualdad de rango para producto de matrices, obtenemos que
\begin{align*}
\rank(BA)&\geq \rank(A(BA)B)\\
&=\rank((AB)^2)\\
&=\rank(AB)=2.
\end{align*}
Entonces, $\rank(BA)\geq 2$. Por otro lado, como $BA\in M_2(\mathbb{R})$, entonces $\rank(BA)\leq 2$. Así, $\rank(BA)=2$ y $BA$ es una matriz en $M_2(\mathbb{R})$, así que es invertible.
3. Como $(AB)^2=AB$, entonces $B(AB)^2 A=B(AB)A=(BA)^2$. Por consiguiente $BABABA=(BA)^2$ y así $(BA)^3=(BA)^2$ y como $BA$ es invertible, podemos multiplicar en ambos lados de esta última igualdad por $((BA)^{-1})^2$ para obtener $BA=I_2$.
$\square$
Entradas relacionadas
- Ir a Álgebra Lineal I
- Entrada anterior del curso: Rango de transformaciones lineales y matrices
- Siguiente entrada del curso: Introducción a espacio dual
Agradecimientos
Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»