Teoría de los Conjuntos I: Buenos órdenes para cualquier conjunto

Por Gabriela Hernández Aguilar

Introducción

En esta entrada usaremos lo que aprendimos en la entrada anterior sobre el lema de Zorn para demostrar que cualquier conjunto no vacío puede ser bien ordenado.

Ordenando buenos órdenes de subconjuntos

En esta entrada demostraremos que cualquier conjunto no vacío $X$ tiene un buen orden. Si $a\in X$, entonces $(a,a)$ es un buen orden para $\{a\}\subseteq X$, así que podemos darle un buen orden a un elemento de $X$. La intuición de nuestra prueba es que podemos ir «agrandando» un buen orden para «pocos elementos» de $X$ hasta llegar a ordenar todo $X$. Sin embargo, no podemos hacer esto paso a paso. Tendremos que hacerlo de golpe usando el lema de Zorn. Para ello, daremos una noción de cuándo «un buen orden ordena más elementos de $X$ que otro y lo extiende». Nuestro resultado se obtendrá aplicando el lema de Zorn a esta noción. Comencemos con formalizarla.

Lema. Sea $X$ un conjunto y $\mathcal{B}$ la familia de todos los pares ordenados $(A,R)$ donde $A$ es un subconjunto de $X$ y $R$ es un buen orden para $A$. Definimos en $\mathcal{B}$ la relación $\leq$ como sigue: dados $(A,R),(B,R’)\in\mathcal{B}$ diremos que $(A,R)\leq(B,R’)$ si y sólo si $A\subseteq B$, $R\subseteq R’$ y para todo $x\in A$ y $y\in B\setminus A$ se cumple que $(x,y)\in R’$. Entonces, $\leq$ es una relación de orden parcial en $\mathcal{B}$.

Demostración.

Verifiquemos primero la reflexividad. Sea $(A,R)\in\mathcal{B}$. Luego, $A\subseteq A$, $R\subseteq R$ y, por vacuidad, para todo $x\in A$ y $y\in A\setminus A$ se tiene que $(x,y)\in R$, lo que muestra que $(A,R)\leq(A,R)$. Por tanto, $\leq$ es una relación reflexiva.

Verifiquemos ahora la antisimetría. Si $(A,R)\leq (B,R’)$ y $(B,R’)\leq(A,R)$, entonces, como consecuencia de la definición de $\leq$ tenemos que $A\subseteq B$, $R\subseteq R’$ y para todo $x\in A$ y $y\in B\setminus A$ se tiene que $(x,y)\in R’$; pero también, $B\subseteq A$, $R’\subseteq R$ y para todo $x\in B$ y $y\in A\setminus B$ se tiene que $(x,y)\in R$. En particular tenemos que $A\subseteq B$, $B\subseteq A$, $R\subseteq R’$ y $R’\subseteq R$, lo cual implica que $A=B$ y $R=R’$. Por tanto, $(A,R)=(B,R’)$, lo que muestra que $\leq$ es antisimétrica.

Por último mostraremos que la relación $\leq$ es transitiva. Sean $(A,R_0),(B,R_1),(C,R_2)\in\mathcal{B}$ elementos tales que $(A,R_0)\leq(B,R_1)$ y $(B,R_1)\leq(C,R_2)$. Luego, por definición de la relación $\leq$ tenemos que, $A\subseteq B$, $R_0\subseteq R_1$ y para todo $x\in A$ y $y\in B\setminus A$ se cumple que $(x,y)\in R_1$; asimismo, $B\subseteq C$, $R_1\subseteq R_2$ y para todo $x\in B$ y $y\in C\setminus B$ se cumple que $(x,y)\in R_2$. Así, como $A\subseteq B$ y $B\subseteq C$, entonces $A\subseteq C$ y, también, como $R_0\subseteq R_1$ y $R_1\subseteq R_2$, entonces $R_0\subseteq R_2$. Ahora, sean $x\in A$ y $y\in C\setminus A$ cualesquiera elementos. Si $y\in B$, entonces $x\in A$ y $y\in B\setminus A$, por lo que $(x,y)\in R_1$ y, por ende, $(x,y)\in R_2$. Si $y\notin B$, entonces $y\in C\setminus B$ y dado que $x\in A\subseteq B$, entonces $(x,y)\in R_2$. En cualquier caso $(x,y)\in R_2$, lo que demuestra que $(A,R_1)\leq(C,R_2)$.

Por lo tanto $\leq$ es una relación de orden en $\mathcal{B}$.

$\square$

Ya tenemos el conjunto parcialmente ordenado $(\mathcal{B},\leq)$ al que queremos aplicar el lema de Zorn. Pero tenemos que verificar una hipótesis importante: que cada cadena tiene cota superior. Esto lo hacemos en el siguiente lema.

Lema. Sea $X$ un conjunto y $\mathcal{B}$ y $\leq$ definidos como en el lema anterior. Entonces, en $(\mathcal{B}, \leq)$ toda cadena tiene una cota superior.

Demostración.

Sea $\mathcal{C}$ una cadena en $\mathcal{B}$. Definamos $f:\mathcal{C}\to\mathcal{P}(X)$ como sigue: si $(A,R)\in\mathcal{C}$, con $A\subseteq X$ y $R$ un buen orden en $A$, entonces $f((A,R))=A$. Ahora, notemos que si $A\subseteq X$ y $R$ es un buen orden en $A$, entonces $R\subseteq A\times A\subseteq X\times X$, es decir, $R$ es también una relación en $X$. Teniendo en cuenta esto definamos $g:\mathcal{C}\to\mathcal{P}(X\times X)$ como sigue: si $(A,R)\in\mathcal{C}$, con $A\subseteq X$ y $R$ un buen orden en $A$, entonces $g((A,R))=R$. Sean $Y_1:=f[\mathcal{C}]$ y $Y_2:=g[\mathcal{C}]$ y definamos $\mathcal{A}=\bigcup Y_1$ y $\mathcal{R}=\bigcup Y_2$.

Lo que haremos será probar que $\mathcal{A}$ es un subconjunto de $X$ y que $\mathcal{R}$ es un buen orden para $\mathcal{A}$, con lo cual tendríamos que $(\mathcal{A},\mathcal{R})\in\mathcal{B}$.

Primero, como $f((A,R))=A\subseteq X$ para cualquier $(A,R)\in\mathcal{C}$, entonces $Y_1=f[\mathcal{C}]$ es una familia de subconjuntos de $X$ y, por tanto, $\mathcal{A}=\bigcup Y_1$ es un subconjunto de $X$. Ahora, veamos que $\mathcal{R}$ es un buen orden en $\mathcal{A}$.

Lo primero que tenemos que mostrar es que $\mathcal{R}$ es efectivamente una relación en $\mathcal{A}$, es decir, que $\mathcal{R}$ es un subconjunto de $\mathcal{A}\times\mathcal{A}$. Sea $u\in\mathcal{R}$ un elemento arbitrario. Luego, $u\in g((A,R))=R$ para algún $(A,R)\in\mathcal{C}$. Dado que $u\in R$ y $R\subseteq A\times A$, entonces $u\in A\times A$. Además, como $(A,R)\in\mathcal{C}$, entonces $A=f((A,R))\in f[\mathcal{C}]$ y, en consecuencia, $A\subseteq\bigcup f[\mathcal{C}]=\mathcal{A}$, por lo que $A\times A\subseteq\mathcal{A}\times\mathcal{A}$. De este modo, como $u\in A\times A$ se sigue que $u\in\mathcal{A}\times\mathcal{A}$. Esto demuestra que $\mathcal{R}\subseteq\mathcal{A}\times\mathcal{A}$, es decir, $\mathcal{R}$ es una relación en $\mathcal{A}$.

Ahora veamos que $\mathcal{R}$ es una relación de orden en $\mathcal{A}$.

Sea $x\in\mathcal{A}$. Luego, $x\in f((A,R))=A$ para algún $(A,R)\in\mathcal{C}$. Como $R$ es un buen orden en $A$, entonces $(x,x)\in R$ y, dado que $R\subseteq\mathcal{R}$, se sigue que $(x,x)\in\mathcal{R}$. Esto prueba que $\mathcal{R}$ es una relación reflexiva.

Ahora, sean $x,y\in\mathcal{A}$ elementos tales que $(x,y)\in\mathcal{R}$ y $(y,x)\in\mathcal{R}$. Luego, $(x,y)\in g((A,R))=R$ y $(y,x)=g((B,R’))=R’$ para algunos $(A,R),(B,R’)\in\mathcal{C}$. Dado que $\mathcal{C}$ es una cadena, entonces $(A,R)\leq(B,R’)$ o $(B,R’)\leq(A,R)$, lo cual implica que $R\subseteq R’$ o $R’\subseteq R$. De modo que $(x,y),(y,x)\in R$ o $(x,y),(y,x)\in R’$. En cualquier caso podemos concluir que $x=y$ ya que tanto $R$ como $R’$ son relaciones de orden. Esto prueba que $\mathcal{R}$ es una relación antisimétrica.

Supongamos que $x,y,z\in\mathcal{A}$ son cualesquiera elementos tales que $(x,y),(y,z)\in\mathcal{R}$. Luego, $(x,y)\in g((A,R))=R$ y $(y,z)\in g((B,R’))=R’$ para algunos $(A,R),(B,R’)\in\mathcal{C}$. Ahora, como $\mathcal{C}$ es una cadena, entonces $(A,R)\leq(B,R’)$ o $(B,R’)\leq(A,R)$, por lo que $R\subseteq R’$ o $R’\subseteq R$. Así, $(x,y),(y,z)\in R$ o $(x,y),(y,z)\in R’$ y, por tanto, $(x,z)\in R$ o $(x,z)\in R’$ pues tanto $R$ como $R’$ son relaciones de orden. En cualquier caso $(x,z)\in\mathcal{R}$, ya que $R,R’\subseteq\mathcal{R}$. Esto prueba que $\mathcal{R}$ es una relación transitiva.

Por lo tanto, $\mathcal{R}$ es una relación de orden en $\mathcal{A}$.

Resta probar que $\mathcal{R}$ es un buen orden en $\mathcal{A}$. Sea pues $D\subseteq\mathcal{A}$ un conjunto no vacío. Luego, como $D\subseteq\mathcal{A}$ y $D\not=\emptyset$, entonces $D\cap f((A,R))=D\cap A\not=\emptyset$ para algún $(A,R)\in\mathcal{C}$. Luego, como $D\cap A\subseteq A$ no vacío, entonces existe el mínimo de $D\cap A$ con respecto a la relación $R$, ya que $R$ es un buen orden en $A$, es decir, existe $a_0\in D\cap A$ tal que $(a_0,x)\in R$ para todo $x\in D\cap A$. Veamos que $a_0$ es el mínimo de $D$ con respecto a la relación $\mathcal{R}$. Sea $x\in D$ cualquier elemento. Si $x\in A$, entonces $(a_0,x)\in R\subseteq\mathcal{R}$. Si ahora $x\notin A$, entonces, como $D\subseteq\mathcal{A}$, existe $(B,R’)\in\mathcal{C}\setminus\set{(A,R)}$ tal que $x\in f((B,R’))=B$. Luego, como $\mathcal{C}$ es una cadena se tiene que $(A,R)\leq(B,R’)$ o $(B,R’)\leq(A,R)$, sin embargo, no puede ocurrir que $(B,R’)\leq(A,R)$ pues de ser así tendríamos que $B\subseteq A$ y, por ende, $x\in A$ lo cual asumimos no ocurre. Así pues, necesariamente, $(A,R)\leq(B,R’)$ y, por consiguiente, $A\subseteq B$, $R\subseteq R’$ y para cualesquiera $a\in A$ y $b\in B\setminus A$ se tiene $(a,b)\in R’$. Debido a que $a_0\in A$ y $x\in B\setminus A$, entonces $(a_0,x)\in R’\subseteq\mathcal{R}$. Por lo tanto, para todo $x\in D$, $(a_0,x)\in\mathcal{R}$, lo que demuestra que $a_0$ es el mínimo de $D$ en la relación $\mathcal{R}$. Consecuentemente, $\mathcal{R}$ es un buen orden para $\mathcal{A}$.

Los argumentos anteriores nos permiten concluir que $(\mathcal{A},\mathcal{R})\in\mathcal{B}$, pues $\mathcal{A}\subseteq X$ y $\mathcal{R}$ es un buen orden para $\mathcal{A}$. Ahora, $(\mathcal{A},\mathcal{R})$ es una cota superior para $\mathcal{C}$. En efecto, si $(A,R)\in\mathcal{C}$ es cualquier elemento, entonces $A=f((A,R))\subseteq\bigcup f[\mathcal{C}]=\mathcal{A}$ y $R=g((A,R))\subseteq\bigcup g[\mathcal{C}]=\mathcal{R}$. Por último, si $x\in A$ y $y\in\mathcal{A}\setminus A$, entonces $y\in f((B,R’))=B$ para algún $(B,R’)\in\mathcal{C}$, pero dado que $\mathcal{C}$ es una cadena, entonces $(A,R)\leq(B,R’)$ o $(B,R’)\leq(A,R)$. Sin embargo, no puede ocurrir que $(B,R’)\leq(A,R)$ pues en ese caso tendríamos, en particular, que $B\subseteq A$ y por ende $y\in A$, lo que contradice la elección de $y$. Así que necesariamente, $(A,R)\leq(B,R’)$. Por consiguiente, $A\subseteq B$, $R\subseteq R’$ y para cualquier $a\in A$ y $b\in B\setminus A$, se tiene que $(a,b)\in R’$. En consecuencia, $(x,y)\in R’$ y como $R’\subseteq\mathcal{R}$, entonces $(x,y)\in\mathcal{R}$.

Por lo tanto, $A\subseteq\mathcal{A}$, $R\subseteq\mathcal{R}$ y para cualesquiera $x\in A$ y $y\in\mathcal{A}\setminus A$, $(x,y)\in\mathcal{R}$, es decir, $(A,R)\leq(\mathcal{A},\mathcal{R})$. Esto demuestra que $(\mathcal{A},\mathcal{R})$ es una cota superior para $\mathcal{C}$.

$\square$

El teorema del buen orden

Ya con los ingredientes anteriores, podemos enfocarnos en el resultado principal de esta entrada.

Teorema. (teorema del buen orden). Todo conjunto no vacío puede ser bien ordenado.

Demostración.

Sea $X$ un conjunto no vacío. Sea $\mathcal{B}$ el conjunto de todos los pares ordenados $(A,R)$ tales que $A\subseteq X$ y $R$ es un buen orden para $A$. Por uno de los lemas anteriores tenemos que $(\mathcal{B},\leq)$ es un conjunto ordenado, donde $\leq$ es la relación definida como $(A,R)\leq(B,R’)$ si y sólo si $A\subseteq B$, $R\subseteq R’$ y para todo $x\in A$ y $y\in B\setminus A$, $(x,y)\in R’$.

Antes de continuar veamos que $\mathcal{B}$ es no vacío. Como $X\not=\emptyset$, entonces existe $a\in X$. Luego, $R=\set{(a,a)}$ es un buen orden para $\set{a}$. Por tanto, $(\set{a},\set{(a,a)})\in\mathcal{B}$ y así $\mathcal{B}$ es no vacío.

Ahora, por el último lema probado, toda cadena en $\mathcal{B}$ está acotada superiormente y, como $\mathcal{B}$ es no vacío, podemos aplicar el lema de Kuratowski-Zorn y concluir que $\mathcal{B}$ tiene un elemento maximal. Sea $(A,R)$ elemento maximal de $\mathcal{B}$. Lo que probaremos es que $A=X$.

Si $X\not=A$, entonces existe $x\in X\setminus A$. Luego, definiendo $B=A\cup\set{x}$ y $R’=R\cup\set{(a,x):a\in A}\cup\set{(x,x)}$ tenemos que $R’$ es un buen orden para $B$. En efecto, primero probaremos que $R’$ es una relación de orden en $B$.

Si $u\in R’$, entonces $u\in R$ o $u\in\set{(a,x):a\in A}$ o $u=(x,x)$. Luego, como $A\subseteq B$ y $R\subseteq A\times A$, entonces $u\in A\times A\subseteq B\times B$ o $u=(a,x)\in A\times B\subseteq B\times B$ para algún $a\in A$ o $u=(x,x)\in B\times B$. En cualquier caso $u\in B\times B$ y, por tanto, $R’\subseteq B\times B$, lo que muestra que $R’$ es una relación en $B$.

Ahora, si $b\in B$, entonces $b\in A$ o $b=x$. Si $b\in A$, entonces $(b,b)\in R$ por ser $R$ una relación de orden en $A$ y, por tanto, $(b,b)\in R’$ pues $R\subseteq R’$. Si $b=x$, entonces $(b,b)\in R’$, por definición de $R’$. En cualquier caso se cumple que $(b,b)\in R’$, lo que muestra que $R’$ es una relación reflexiva.

Por otro lado, si $c,b\in B$ son tales que $(c,b)\in R’$ y $(b,c)\in R’$, entonces tenemos algunos casos:

Caso 1. $(c,b)\in R$ y $(b,c)\in R$. Luego, por ser $R$ una relación de orden se cumple que $R$ es antisimétrica, por lo que $c=b$.

Caso 2. $(c,b)\in R$ y $(b,c)\in\set{(a,x):a\in A}$. Luego, $(b,c)=(a,x)$ para algún $a\in A$ y, como $(c,b)\in R\subseteq A\times A$, entonces $(c,b)=(a_1,a_2)$ para algunos $a_1,a_2\in A$. De lo anterior se sigue que $c=a_1\in A$ pero también que $c=x\notin A$ y esto es una contradicción. Así el caso 2 no puede ocurrir.

Caso 3. $(c,b)\in R$ y $(b,c)\in\set{(x,x)}$. Este caso tampoco puede darse por las razones dadas en el caso 2.

Caso 4. $(c,b)\in\set{(a,x):a\in A}$ y $(b,c)\in\set{(a,x):a\in A}$. Luego, $(c,b)=(a_1,x)$ y $(b,c)=(a_2,x)$ para algunos $a_1,a_2\in A$. De esto se sigue que $c=a_1\in A$ y $c=x\notin A$ lo cual es una contradicción. Por lo tanto, el caso 5 tampoco pede darse.

Caso 5. $(c,b)\in\set{(a,x):a\in A}$ y $(b,c)\in\set{(x,x)}$. Luego, $(c,b)=(a_1,x)$ para algún $a_1\in A$ y $(c,b)=(x,x)$, por lo que $c=a_1\in A$ y $c=x\notin A$ lo cual es una contradicción. Por tanto, el caso 5 tampoco puede darse.

Caso 6. $(c,b)\in\set{(x,x)}$ y $(b,c)\in\set{(x,x)}$. En este caso se tiene que $b=x=c$.

Los 6 casos anteriores son las únicas posibilidades y, por tanto, concluimos que $b=c$. Esto muestra que $R’$ es una relación antisimétrica.

Ahora, sean $b,c,d\in B$ tales que $(b,c)\in R’$ y $(c,d)\in R’$. Luego, tenemos los siguientes casos:

Caso 1. $(b,c),(c,d)\in R$. En este caso se sigue que $(b,d)\in R\subseteq R’$ pues $R$ es transitiva.

Caso 2. $(b,c)\in R$ y $(c,d)\in\set{(a,x):a\in A}$. Luego, como $(b,c)\in R\subseteq A\times A$, entonces $b\in A$ y, por tanto, $(b,x)\in R’$. Ahora, como $(c,d)\in\set{(a,x):a\in A}$, entonces $d=x$ y, por tanto, $(b,d)\in R’$.

Caso 3. $(b,c)\in R$ y $(c,d)\in\set{(x,x)}$. Así como en el caso 2 se sigue que $(b,d)\in R’$.

Caso 4. $(b,c),(c,d)\in\set{(a,x):a\in A}$. En este caso se sigue que $c=d=x$ y, por tanto, $(b,c)=(b,d)\in R’$.

Caso 5. $(b,c)\in\set{(a,x):a\in A}$ y $(c,d)\in\set{(x,x)}$. Así como en el caso 3 se sigue que $c=d=x$ y, por tanto, que $(b,d)\in R’$.

Caso 6. $(b,c),(c,d)\in\set{(x,x)}$. Se sigue inmediatamente que $b=c=d=x$ y, por tanto, $(b,d)\in R’$.

Estos son los únicos casos posibles, pues no pueden ocurrir los siguientes casos:

Caso i. $(c,d)\in R$ y $(b,c)\in\set{(a,x):a\in A}$. En este caso se tendría que $c=x$ y que $c\in A$, lo cual no ocurre por la elección de $x$.

Caso ii. $(c,d)\in R$ y $(b,c)\in\set{(x,x)}$. Lo mismo que en el caso i.

Caso iii. $(c,d)\in\set{(a,x):a\in A}$ y $(b,c)\in\set{(x,x)}$. Lo mismo que en los casos i y ii.

En los únicos casos posibles se concluye que $(b,d)\in R’$, lo que muestra que $R’$ es una relación transitiva.

Por lo tanto $R’$ es una relación de orden en $B$. Ahora, sea $D\subseteq B$ no vacío. Si $D\cap A\not=\emptyset$, entonces $D\cap A$ tiene un elemento mínimo en $A$ respecto a la relación de orden $R$, es decir, existe $a_0\in D\cap A$ tal que $(a_0,a)\in R$ para todo $a\in D\cap A$. Luego, si $d\in D$ es cualquier elemento, entonces $d\in A$ o $d=x$. Si $d\in A$, entonces $(a_0,d)\in R\subseteq R’$ y, si $d=x$, entonces $(a_0,d)\in R’$ por definición de $R’$. Lo que demuestra que $a_0$ es el mínimo de $D$ con respecto a la relación de orden $R’$. Si ahora $D\cap A=\emptyset$, entonces, necesariamente, $D=\set{x}$ y, ciertamente, $D$ tiene mínimo, el cual es $x$. Por lo tanto, cualquier subconjunto no vacío de $B$ tiene elemento mínimo con respecto a la relación $R’$. Lo que muestra que $R’$ es un buen orden para $B$.

Luego, $(B,R’)\in\mathcal{B}$. Dado que $A\subseteq B$, $R\subseteq R’$ y para cualquier $a\in A$ y $b\in B\setminus A=\set{x}$ se tiene que $(a,b)\in R’$, se sigue que $(A,R)\leq(B,R’)$ y, sin embargo, $(A,R)\not=(B,R’)$, lo cual contradice la maximalidad de $(A,R)$ en $\mathcal{B}$.

Concluimos entonces que $A=X$ y, por tanto, $R$ es un buen orden para $X$. Por lo tanto, $X$ puede ser bien ordenado.

$\square$

Para culminar esta entrada, mostraremos que el teorema del buen orden implica el axioma de elección. La idea intuitiva es sencilla. Para un conjunto $X$, ¿cuál elemento elegimos de cada subconjunto no vacío de $X$? Pues damos un buen orden a $X$ y para cada subconjunto no vacío elegimos el mínimo.

Teorema. El teorema del buen orden implica el axioma de elección.

Demostración.

Sea $X$ un conjunto no vacío. Luego, por el teorema del buen orden, existe una relación $R$ en $X$ que es un buen orden en $X$. Definamos $e:\mathcal{P}(X)\setminus\set{\emptyset}\to X$ por medio de $e(B)=\min_R(B)$, donde $\min_R(B)$ denota al elemento mínimo del subconjunto no vacío $B$ de $A$ con respecto a la relación $R$. Dado que, por definición, el mínimo de un conjunto pertenece a dicho conjunto, concluimos que $e(B)\in B$ para todo $B\in\mathcal{P}(X)\setminus\set{\emptyset}$. Esto demuestra que $X$ tiene una función de elección.

$\square$

Resumen de últimas equivalencias

Podemos resumir la serie de resultados probados en esta entrada y la anterior mediante el siguiente teorema.

Teorema. Son equivalentes los siguientes resultados

  1. El axioma de elección.
  2. El lema de Tukey-Teichmüller.
  3. Principio maximal de Hausdorff.
  4. El lema de Kuratowski-Zorn.
  5. El teorema del buen orden.

Con esto damos por termnado esl estudio de algunas de las equivalencias más importantes del axioma de elección.

Tarea moral

  1. Sea $(X,\leq)$ un conjunto parcialmente ordenado en el que cualquier cadena tiene una cota superior. Muestra que para cada $a\in X$ existe un elemento $\leq-$maximal $x\in X$ tal que $a\leq x$.
  2. Sea $(L,\leq)$ un conjunto linealmente ordenado. Prueba que existe un conjunto $W\subseteq L$ tal que $\leq$ es un buen orden para $W$ y tal que para cada $x\in L$ existe $y\in W$ tal que $x\leq y$.
  3. Sea $X$ cualquier conjunto infinito. Prueba que $X$ puede ser bien ordenado de tal forma que $X$ no tenga máximo. Prueba también que $X$ puede ser bien ordenado de tal forma que tenga un máximo.

Más adelante…

En la siguiente y última entrada veremos una aplicación del axioma de elección relevante en álgebra lineal.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.