Archivo de la etiqueta: propiedades de sucesiones divergentes

Cálculo Diferencial e Integral I: Sucesiones divergentes y sus propiedades

Introducción

Anteriormente estuvimos revisando el concepto de sucesiones convergentes así como varios ejemplos y sus propiedades. Hasta este punto, deberíamos sentirnos bastante cómodos con las sucesiones convergentes puesto que en esta entrada revisaremos con mayor detalle las sucesiones divergentes.

Sucesiones divergentes

Antes de iniciar a ver las propiedades de este tipo de sucesiones, vale la pena recordar la definición que se dio previamente.

Definición. Sea $\{a_n\}$ una sucesión en $\mathbb{R}$. Decimos que $\{a_n\}$ diverge a infinito si $\forall M \in \mathbb{R}$ existe $n_0 \in \mathbb{N}$ tal que si $n \geq n_0$ entonces $M < a_n$.

Como lo habíamos mencionado antes, la definición nos indica que una sucesión diverge a infinito si para cualquier número real ($M$), existe un punto ($n_0$) en el que todos los valores subsecuentes en la sucesión son mayores que $M$. Cuando una sucesión $\{a_n\}$ diverge a infinito lo denotaremos como $$\lim_{n \to \infty} a_n = \infty.$$

Propiedades de las sucesiones divergentes

Ahora sí, estamos listos para indagar las propiedades de las sucesiones que divergen a infinito. La primera propiedad que probaremos será el hecho de que si multiplicamos una sucesión divergente a infinito por una constante positiva, la sucesión resultante también diverge a infinito.

Proposición. Sea $\{a_n\}$ en $\mathbb{R}$ tal que $$\lim_{n \to \infty} a_n = \infty $$ y sea $c > 0$ fijo, entonces $$\lim_{n \to \infty} c \cdot a_n = \infty$$

Demostración.
Sea $M \in \mathbb{R}$. Consideremos $\frac{M}{c} \in \mathbb{R}$
Como $\{a_n\}$ diverge a infinito, entonces existe $n_0$ tal que para todo $n \geq n_0$ se tiene

\begin{gather*}
\frac{M}{c} < a_n \\
\Rightarrow M < c \cdot a_n
\end{gather*}

$$\therefore \lim_{n \to \infty} c \cdot a_n = \infty$$

$\square$

Lo que se hizo en la demostración es dar un valor arbitrario de $M$ y se debía mostrar que existe un natural $n_0$ tal que para todos los valores subsecuentes de la sucesión $\{c \cdot a_n\}$, quedará por arriba de $M$ y nos aprovechamos del hecho de que $\{a_n\}$ es divergente y, particularmente, para el número real $\frac{M}{c}$ en efecto existe ese natural.

La siguiente proposición nos indica cómo se comporta la suma y la multiplicación de sucesiones divergentes que, como es de esperarse, el resultado de tales operaciones resulta en una sucesión divergente.

Proposición. Sean $\{ a_n \}$ y $\{ b_n \}$ dos sucesiones en $\mathbb{R}$ tales que $$\lim_{n \to \infty} a_n = \infty \quad \text{ y } \quad \lim_{n \to \infty} b_n = \infty $$

Entonces

$i$) $$\lim_{n \to \infty} (a_n + b_n) = \infty$$
$ii$) $$\lim_{n \to \infty} (a_n b_n) = \infty$$

Demostración.

$i$) Sea $M \in \mathbb{R}$. Como $\{a_n\}$ y $\{b_n\}$ divergen a infinito

\begin{gather*}
\exists n_1 \in \mathbb{N} \text{ tal que si } n \geq n_1 \Rightarrow \frac{M}{2} < a_n \\
\exists n_2 \in \mathbb{N} \text{ tal que si } n \geq n_2 \Rightarrow \frac{M}{2} < b_n \\
\end{gather*}

Consideremos $n_0 = max\{n_1, n_2 \}$. Si $n \geq n_0$, entonces se cumplen las dos expresiones de arriba y al sumarlas obtenemos que $M < a_n+b_n$
$$\therefore \lim_{n \to \infty} (a_n + b_n) = \infty$$

$ii$) Sea $M \in \mathbb{R}$.
Para $\{a_n\}$ consideremos el número real $\hat{M} = max\{M, 0\}$. Debido a que $\{a_n\}$ diverge, existe $n_1 \in \mathbb{N}$ tal que si $n \geq n_1$, entonces $\hat{M} < a_n$, lo que implica que $M < a_n$ y $0 < a_n$.

Para $\{b_n\}$ consideremos el número real $1$. Debido a que $\{b_n\}$ diverge, existe $n_2 \in \mathbb{N}$ tal que si $n \geq n_2$, entonces $1 < b_n$.

Sea $n_0 = max\{n_1, n_2 \}$. Si $n \geq n_0$, entonces se cumplen las condiciones anteriores. Como $a_n$ es positivo para todo $n \geq n_0$, podemos multiplicar la expresión $1 < b_n$ por $a_n$ y la desigualdad se preservará, es decir, $a_n < a_n b_n$ y además $M < a_n$, por transitividad concluimos que $M < a_n b_n$

$\square$

Después de haber revisado las propiedades anteriores y sabiendo que la sucesión generada por los números naturales, $\{n\}$, diverge, es posible ampliar nuestro repertorio de sucesiones divergentes, por ejemplo las siguientes sucesiones divergen por implicación directa de las proposiciones vistas: $\{5n\}$, $\{n+n^2+n^3\}$, $\{7n^2+4n\}$, etc.

La siguiente propiedad hace referencia a que si tenemos una sucesión $\{a_n\}$ divergente a infinito y otra sucesión $\{b_n\}$ para la cual existe un punto a partir del cual siempre es mayor que $\{a_n\}$, entonces $\{b_n\}$ también diverge a infinito

Proposición. Sean $\{a_n\}$ y $\{b_n\}$ sucesiones en $\mathbb{R}$ tales que
$i$) Existe $n_1 \in \mathbb{N}$ tal que para todo $n \geq n_1$ se cumple $a_n \geq b_n$
$ii$) $$\lim_{n\to \infty} a_n = \infty$$
Entonces $$\lim_{n\to \infty} b_n = \infty$$

La demostración de esta propiedad quedará como tarea moral.

Proposición. Sea $c > 1$, entonces $$\lim_{n \to \infty} c^n = \infty$$

Demostración.

Para realizar esta demostración haremos uso de la proposición anterior. Sea $n \in \mathbb{N}$. Como $c > 1$, entonces $c-1>0$ y por la desigualdad de Bernoulli, tenemos

\begin{gather*}
c^n = (1+c-1)^n \geq 1+n(c-1) > n(c-1) \\
\therefore c^n > n(c-1) \tag{1}
\end{gather*}

Además sabemos que la sucesión $\{n\}$ diverge a infinito y si multiplicamos esta sucesión por una constante positiva, en este caso $c-1$, la sucesión $\{(c-1)n\}$ también diverge a infinito y por $(1)$ podemos utilizar la proposición anterior y concluir que $$\lim_{n \to \infty} c^n = \infty.$$

$\square$

Como última propiedad, probaremos que una sucesión monótona no acotada es divergente. Probaremos el caso para las sucesiones crecientes no acotadas y veremos que divergen a $\infty$ y se dejará como tarea moral probar que las sucesiones decrecientes no acotadas divergen a $-\infty$.

Proposición. Si $\{ a_n \}$ es una sucesión creciente y no acotada, entonces $$\lim_{n \to \infty} a_n = \infty$$

Demostración.
Sea $\{a_n \}$ una sucesión creciente y no acotada y sea $M \in \mathbb{R}$. Como la sucesión no está acotada, existe $n_0 \in \mathbb{N}$ tal que $M < a_{n_0}$ y como la sucesión es creciente $a_n \geq a_{n_0}$ para todo $n \geq n_0$.

\begin{gather*}
\therefore M < a_n \text{, para todo } n \geq n_0 \\ \\
\therefore \lim_{n \to \infty} a_n = \infty
\end{gather*}

$\square$

En la demostración anterior hay una sutileza que vale la pena enfatizar: usamos el hecho de que la sucesión no está acotada para probar que existe al menos un elemento específico ($n_0$) que es mayor que un real arbitrario $M$, pero para probar que diverge a infinito, hay que probar que también todos los elementos subsecuentes de $n_0$ son mayores a $M$ y, en ese momento, es cuando usamos la hipótesis de monotonía.

Tarea moral

  • Sean $\{a_n\}$ y $\{b_n\}$ sucesiones en $\mathbb{R}$ tales que
    $i$) Existe $n_1 \in \mathbb{N}$ tal que para todo $n \geq n_1$ se cumple $a_n \geq b_n$
    $ii$) $\{a_n \}$ diverge a infinito
    Entonces $$\lim_{n\to \infty} b_n = \infty$$
  • Si $\{ a_n \}$ es una sucesión decreciente y no acotada , entonces $$\lim_{n \to \infty} a_n = – \infty$$
  • Sea $\{ a_n \}$ una sucesión divergente a infinito tal que para todo $n\in \mathbb{N}$ se cumple que $a_n \neq 0$. Entonces $$\lim_{n \to \infty} \frac{1}{a_n} = 0.$$
  • Prueba lo siguiente:
    $i$) $$\lim_{n \to \infty} \frac{n^2+1}{n+1} = \infty$$
    $ii$) $$\lim_{n \to \infty} (n – \sqrt{n} )= \infty$$
  • Demuestra que si $$\lim_{n \to \infty} \frac{a_n}{n} = L,$$ donde $L > 0,$ entonces $$\lim_{n\to \infty} a_n = \infty.$$

Más adelante…

En las entradas subsecuentes revisaremos conceptos derivados de las sucesiones: el concepto de subsucesión, las sucesiones de Cauchy y culminaremos con el estudio de una de las constantes más famosas dentro de matemáticas, el número de Euler.

Entradas relacionadas