Archivo de la etiqueta: límite de una función

Cálculo Diferencial e Integral I: Definición formal de límite de una función

Por Juan Manuel Naranjo Jurado

Introducción

Anteriormente revisamos una definición intuitiva del límite con la finalidad de facilitar la comprensión de la definición formal. En esta entrada se dará la definición formal, así como algunos ejemplos para que el concepto sea comprendido en su totalidad.

Definición formal de límite

Retomemos la idea intuitiva a la que llegamos al final de la entrada anterior: logramos que $f$ se aproxime arbitrariamente, $\varepsilon$, a $L$ siempre que logremos que $x$ esté lo suficientemente cerca, $\delta$, de $x_0$ sin ser $x_0.$

Observación. Notemos que la última parte la podemos expresar como $0<|x-x_0|< \delta$, pues al pedir que la distancia entre $x$ y $x_0$ sea mayor que $0$ se captura la idea de que $x \neq x_0$.

Es importante resaltar que estamos dando por hecho que se puede evaluar la función $f$ en valores de $x$ cercanos a $x_0$. Es por ello que se presenta la siguiente definición.

Definición. Sea $ A \subset \mathbb{R}$. Un punto $x_0 \in \mathbb{R}$ es un punto de acumulación de $A$ si para todo $\delta > 0$ existe al menos un punto $x \in A$, $x \neq x_0$, tal que $|x-x_0| < \delta$.

Dada la definición anterior, si consideramos una función $f: A \to \mathbb{R}$, para calcular el límite, y asegurar que podemos evaluar $f$ en valores $x$ cercanos a $x_0$, deberemos pedir que $x_0$ sea punto de acumulación del dominio de la función, $A$. Con esto, tenemos todos los elementos para dar la definición de límite.

Definición. Sean $A \subset \mathbb{R}$ y $x_0$ un punto de acumulación de $A$. Para una función $f: A \to \mathbb{R}$, decimos que $L$ es el límite de $f$ en $x_0$ si para todo $\varepsilon > 0$ existe algún $\delta > 0$ tal que, para todo $x \in A$, si $0<|x-x_0|< \delta$, entonces $|f(x)-L|< \varepsilon.$

A continuación tenemos una imagen que nos permitirá visualizar la definición:

En la imagen podemos ver que si definimos un valor arbitrario $\varepsilon >0$, entonces lo que buscamos es un valor positivo $\delta$, tal que si $x$ está a una distancia menor que $\delta$ con respecto a $x_0$, entonces eso implique que $f(x)$ esté a una distancia menor que $\varepsilon$ con respecto a $L.$


A continuación revisaremos un ejemplo sencillo aplicando la definición.

Ejemplo 1. Demuestra que $$\lim_{x \to -1} \frac{x^2-5x-6}{x+1} = -7.$$

Demostración.
Sea $\varepsilon >0$. Notemos que si $x \neq -1$, entonces

\begin{align*}
\left\lvert \frac{x^2-5x-6}{x+1} – (-7) \right\rvert & = \left\lvert \frac{x^2-5x-6}{x+1} +7 \right\rvert \\ \\
& = \left\lvert \frac{x^2-5x-6+7x+7}{x+1} \right\rvert \\ \\
& = \left\lvert \frac{x^2+2x+1}{x+1} \right\rvert \\ \\
& = \left\lvert \frac{(x+1)^2}{x+1} \right\rvert \\ \\
& = \left\lvert x+1 \right\rvert.
\end{align*}
Tomemos entonces $\delta = \varepsilon$. Si $0<|x- (-1) | = |x+1 |< \delta$, entonces
$$\left\lvert \frac{x^2-5x-6}{x+1} – (-7) \right\rvert = \left\lvert x+1 \right\rvert < \delta = \varepsilon.$$
$$\therefore \left\lvert \frac{x^2-5x-6}{x+1} – (-7) \right\rvert < \varepsilon.$$
$$\therefore \lim_{x \to -1} \frac{x^2-5x-6}{x+1} = -7.$$

$\square$

Hagamos algunos comentarios respecto a la demostración. Como primer paso, establecimos un valor arbitrario positivo para $\varepsilon$. Después hicimos algunas manipulaciones algebraicas que nos permitieron simplificar la expresión original en una más simple con la cual logramos encontrar el valor de $\delta$ que sería útil, en este caso, ese valor fue justamente el mismo que $\varepsilon$.

Revisemos un segundo ejemplo.

Ejemplo 2. Sea $f(x) = \frac{3x+1}{2x}$, entonces $$\lim_{x \to 2} f(x) = \frac{7}{4}.$$

Demostración.

Sea $\varepsilon > 0$. Veamos que

\begin{align*}
\left\lvert f(x) – \frac{7}{4}\right\rvert & = \left\lvert \frac{3x+1}{2x} – \frac{7}{4} \right\rvert \\ \\
& = \left\lvert \frac{6x+2-7x}{4x} \right\rvert \\ \\
& = \left\lvert \frac{2-x}{4x} \right\rvert \\ \\
& = \frac{|2-x|}{|4x|} \\ \\
& = \frac{|x-2|}{|4x|} \\ \\
& = \frac{1}{|4x|} \cdot |x-2|.
\end{align*}

De lo anterior, se sigue que
\begin{align*}
\left\lvert f(x) – \frac{7}{4}\right\rvert = \frac{1}{|4x|} \cdot |x-2|. \tag{1}
\end{align*}

Buscamos entonces acotar la expresión $(1)$, para ello podemos ver lo siguiente, si $|x-2| < 1$, entonces

\begin{gather*}
& |2|-|x| \leq |x-2| < 1.
\end{gather*}

De lo anterior, se sigue que

\begin{gather*}
& |2|-|x| < 1. \\
\Leftrightarrow & 2-1 < |x|. \\
\Leftrightarrow & 1 < |x|. \\
\Leftrightarrow & 1 >\frac{1}{|x|}. \\
\Leftrightarrow & \frac{1}{4} >\frac{1}{4|x|} = \frac{1}{|4x|}. \\
\end{gather*}

Por tanto, se tiene que

\begin{align*}
\frac{1}{|4x|} < \frac{1}{4}. \tag{2}
\end{align*}

Entonces si $|x-2| < 1$, por (1) y (2), tenemos lo siguiente
\begin{align*}
\left\lvert f(x) – \frac{7}{4}\right\rvert & = \frac{1}{|4x|} \cdot |x-2| \\ \\
& < \frac{1}{4} \cdot |x-2|.\\
\end{align*}

Previamente acotamos $|x-2|$ por el valor $1$, pero de la última expresión se sigue que deberemos acotarlo también por $4 \varepsilon$ para llegar a nuestro objetivo, tomemos así $\delta = min\{1, 4 \varepsilon\}.$


Si $0<|x- 2| \leq \delta$. Es decir, si $|x- 2| \leq 1$ y $|x- 2| \leq 4\varepsilon$, entonces
$$\left\lvert f(x) – \frac{7}{4}\right\rvert < \frac{1}{4} |x-2| \leq \frac{1}{4} \cdot 4\varepsilon.$$
$$ \therefore \left\lvert f(x) – \frac{7}{4}\right\rvert < \varepsilon.$$

$\square$

Nuevamente haremos énfasis en los pasos generales de la demostración. Iniciamos dando un valor de $\varepsilon$ arbitrario, y la tarea es encontrar el valor $\delta >0$ que acote la distancia entre $x$ y $x_0 = 2$ de tal manera que los valores de la función $f$ se aproximen a $L$ lo suficiente para que su distancia sea menor que $\varepsilon.$

Trabajemos ahora sobre el siguiente ejemplo.

Ejemplo 3. Para todo $x_0 \in \mathbb{R}$ se tiene que $$\lim_{x \to x_0} x^2 = x_0^2.$$

Demostración.

Sea $\varepsilon > 0$ y $x_0 \in \mathbb{R}$. Notemos que

$|x^2 – x_0^2| = |x-x_0||x+x_0|.$

Haciendo uso de una manipulación análoga al del ejemplo anterior, podemos ver que si $|x-x_0| < 1$, entonces

$|x|-|x_0| \leq |x-x_0| < 1 \quad \Rightarrow \quad |x| < 1 + |x_0|.$

Cabe resaltar que en el ejemplo anterior usamos la propiedad $|x_0|-|x| \leq |x-x_0|$, ya que la intención es acotar al recíproco de $x$. En este caso, se emplea $|x|-|x_0| \leq |x-x_0|$, puesto que buscamos acotar directamente a $x$.

Además,
\begin{align*}
|x + x_0| & \leq |x|+ |x_0| \\
& < 1 + |x_0|+|x_0| \text{, pues} \quad |x| < 1 + |x_0| \\
& = 1 + 2|x_0|.
\end{align*}

Así, tenemos que $$ |x + x_0| < 1 + 2|x_0|.$$

En esta ocasión queremos que $|x-x_0| < 1$ y, por la última expresión, también queremos que $|x-x_0| <\frac{\varepsilon}{1+2|x_0|}$, definimos así $\delta = min \{ 1, \frac{\varepsilon}{1+2|x_0|} \}$. Si $0 < |x-x_0| < \delta$, entonces

\begin{align*}
|x^2-x_0^2| & = |x-x_0||x+x_0| \\ \\
& < |x-x_0|(1+2|x_0|) \\ \\
& < \delta (1+2|x_0|) \\ \\
& \leq \frac{\varepsilon}{1+2|x_0|} \cdot (1+2|x_0|)\\ \\
& = \varepsilon.
\end{align*}

Esto implica que
$$|x^2-x_0^2| < \varepsilon.$$
$$\therefore \lim_{x \to x_0} x^2 = x_0^2.$$

$\square$

Unicidad del límite de una función

Después de haber revisado estos ejemplos, la definición de límite de una función (también llamada definición épsilon-delta), estamos listos para revisar la primera propiedad del límite.

Proposición. El límite de una función en $x_0$ es único, es decir, si $f$ tiende a $L$ en $x_0$ y $f$ tiende a $L’$ en $x_0$, entonces $L = L’.$


Demostración.
Sea $\varepsilon > 0$. Como $f$ tiende a $L$ y $L’$ en $x_0$, entonces para $\frac{\varepsilon}{2} > 0$ existen $\delta_1  > 0$ y $\delta_2 > 0$ tales que

\begin{gather*}
\text{Si } 0<|x-x_0|<\delta_1 \quad \Rightarrow \quad |f(x)-L| < \frac{\varepsilon}{2}. \\
\text{Si } 0<|x-x_0|<\delta_2 \quad \Rightarrow \quad |f(x)-L’| < \frac{\varepsilon}{2}. \\
\end{gather*}

Consideremos ahora $\delta = min\{\delta_1, \delta_2 \}$. Entonces si $0<|x-x_0|<\delta$ y, por la desigualdad del triángulo, esto implica que

\begin{align*}
|L-L’| \leq & |L-f(x)|+|L’-f(x)| \\
< & \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \\
= & \varepsilon.
\end{align*}

Se sigue que

$|L-L’| < \varepsilon.$


Como $\varepsilon$ es un valor arbitrario positivo, podemos concluir que $L-L’ = 0$, es decir, $L=L’.$

$\square$

Más adelante…

En la siguiente entrada revisaremos con detalle varias propiedades que tienen los límites para lo cual haremos uso de una bella relación existente entre el límite de una sucesión y el de una función. Una vez revisadas estas propiedades, el cálculo de los límites se hará considerablemente más simple.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

Usando la definición épsilon-delta, demuestra lo siguiente:

  • $$\lim_{x \to x_0} c = c.$$
  • $$\lim_{x \to x_0} x = x_0.$$
  • $$\lim_{x \to 5} x+11 = 16.$$
  • $$\lim_{x \to -2c} (2c-3x) = 8c.$$
  • $$\lim_{x \to 0} \frac{x^2}{|x|} = 0.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Idea intuitiva de límite de una función

Por Juan Manuel Naranjo Jurado

Introducción

La definición de límite de una función suele ser uno de los conceptos más retadores dentro del cálculo y es por ello que, antes de entrar a su análisis formal, queremos dar una introducción con la finalidad de desarrollar la intuición necesaria para lograr el entendimiento de esta definición.

Idea intuitiva de límite de una función

Consideremos la función $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = 10x$.

En la gráfica de la función $f(x) = 10x$, podemos observar que si $x$ toma valores cercanos a $2$, entonces $f(x)$ se aproxima a $20$. ¿Pero qué tanto es posible aproximar los valores de la función $f(x)$ a $20$?

Por ejemplo, ¿podemos encontrar un valor de $x$ distinto de $2$ tal que $f(x)$ esté a una distancia de $20$ menor que $12$ , es decir, $|f(x) – 20| < 12$?

Consideremos $x = 1$. De esta forma, $f(1) = 10$ y $|f(1) – 20| = |10 – 20| = 10 < 12$.

¿Podemos encontrar un valor de $x$ distinto de $2$ tal que $f(x)$ esté a una distancia de $20$ menor que $1$, es decir, $|f(x) – 20| < 1$?

Si tomamos $x=1.99$, se tiene que $|f(1.99) – 20| = |19.9 – 20| = 0.1 < 1$.

Hasta este momento, se han encontrado valores puntuales de $x$ que permiten que $f(x)$ se aproxime a $20$. Sin embargo, existen más valores de $x$ que lo pueden cumplir. Retomando la última aproximación deseada, podemos ver que $x=2.02$ también cumple el propósito, pues $|f(2.02) – 20| = |20.2- 20| = 0.2 < 1$. En realidad, es posible hallar todo un intervalo que lo cumpla.

Para poder obtener dicho intervalo, procedemos estableciendo la desigualdad deseada

\begin{gather*}
& |f(x) – 20| < 1. \\ \\
\Leftrightarrow & |10x – 20|< 1. \\ \\
\Leftrightarrow & \frac{|10x – 20|}{10}< \frac{1}{10}. \\ \\
\Leftrightarrow & |x – 2| < \frac{1}{10}.
\end{gather*}

Lo anterior indica que para que $f(x)$ esté a una distancia de $20$ menor que $1$, entonces $x$ debe estar a una distancia de $2$ menor que $\frac{1}{10}$.

¿Podemos encontrar un valor de $x$ distinto de $2$ tal que $f(x)$ esté a una distancia de $20$ menor que $\varepsilon > 0$, es decir, $|f(x) – 20| < \varepsilon$?

Análogamente, se obtiene que para que $|f(x)-20| < \varepsilon$, entonces $|x-2| < \frac{\varepsilon}{10}$. Generalizando más, podemos notar que para cualquier $x_0 \in \mathbb{R}$ se tiene que $|f(x)-10x_0| < \varepsilon$ con $x \neq x_0$, siempre que $|x-x_0| < \frac{\varepsilon}{10}.$

En la siguiente entrada se proporcionará la definición formal del límite. Sin embargo, de forma provisional para esta entrada, diremos que $L \in \mathbb{R}$ es el límite de la función $f$ en $x_0$ si la distancia entre $f(x)$ y $L$ es menor que un número $\varepsilon > 0$ elegido de antemano cuando $x$ se aproxima a $x_0$, pero es distinto de $x_0$.

Considerando lo anterior para nuestro ejemplo, se tiene que el límite de $f$ en $x_0 = 2$ es $L = 20$.

Usemos como segundo ejemplo la función $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^2$.

Veremos que el límite de $f$ en $x_0 = 4$ es $L=16$. Para ello, notemos que

\begin{gather*}
& |f(x) – 16| < \varepsilon. \\
\Leftrightarrow & |x^2 – 16| < \varepsilon. \\
\Leftrightarrow & |(x-4)(x+4)| < \varepsilon. \\
\Leftrightarrow &|x-4||x+4| < \varepsilon.
\end{gather*}

A diferencia del caso anterior, parece que no es tan directo llegar a nuestro objetivo, pero notemos que particularmente podemos pedir que $|x-4| < 1$, entonces

\begin{gather*}
& -1< x-4 < 1. \\
\Leftrightarrow & 3 < x < 5. \\
\Leftrightarrow & 7 < x+4<9.
\end{gather*}

En resumen, si $|x-4|<1$, entonces $|x+4| < 9$. Lo cual implica que
$$|x^2 – 16| = |x-4||x+4| < 9|x-4|.$$
Si además restringimos la distancia de $x$ respecto a $4$ de tal manera que $|x-4| < \frac{\varepsilon}{9}$ y retomando la expresión anterior llegamos a lo siguiente:

\begin{gather*}
|x^2 – 16| = |x-4||x+4| < 9|x-4| < 9 \cdot \frac{\varepsilon}{9} = \varepsilon. \\
\therefore |x^2 – 16| < \varepsilon.
\end{gather*}

Esto siempre que $|x-4|$ sea menor que $1$ y $\frac{\varepsilon}{9}$, es decir, siempre que $|x-4| < min\{1, \frac{\varepsilon}{9} \}$.


De los dos ejemplos revisados en esta entrada, podemos notar que logramos que $f(x)$ se aproxime a $L$ con una distancia menor de épsilon cuando $x$ está lo suficientemente cerca de $x_0$. Para lograr esto último, acotamos $x-x_0$ en términos de un valor positivo que depende de $\varepsilon$ (para el primer ejemplo fue $\frac{\varepsilon}{5}$ y para el segundo $min\{1, \frac{\varepsilon}{9} \}$). Vale la pena entonces darle un nombre a este valor positivo: $\delta$.

Parafraseando: Logramos que $f$ se aproxime arbitrariamente, dado $\varepsilon > 0$, a $L$ cuando $x$ está lo suficientemente cerca, $\delta > 0$, de $x_0$.

Obtenemos así un indicio muy importante, para probar que $L$ es el límite de $f$ en $x_0$, habrá que dar un valor arbitrario fijo y positivo $\varepsilon > 0$ para el cual necesitaremos encontrar otro valor positivo, $\delta > 0$, tal que si $|x-x_0|<\delta$, entonces se cumpla que $|f(x)-L| < \varepsilon$. Adicionalmente, se pide que $x \neq x_0$, tal condición puede ser compactada de la siguiente forma $0 < |x-x_0| < \delta$, pues que la distancia entre $x$ y $x_0$ sea mayor que cero implica directamente que son distintos.

Antes de finalizar con esta entrada, es conveniente aclarar que no siempre tendremos funciones tan amigables en las cuales podamos evaluar directamente el valor de $x_0$ en $f$ para encontrar $L$. Incluso habrá ocasiones en las cuales no nos podamos aproximar de la manera en la que lo hicimos en estos ejemplos, pero por ahora no daremos muchos detalles extra al respecto, será tema para entradas posteriores.

Más adelante…

En la siguiente entrada daremos la definición formal de límite de una función y veremos varios ejemplos de funciones cuyo límite existe. Una vez dominemos la definición podremos incursionar en varias de sus propiedades y podremos tomar ventaja de estos conocimientos para tener una mayor comprensión sobre el comportamiento de diversas funciones de interés.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

Para corroborar que la idea intuitiva de límite de una función se ha comprendido, se queda como ejercicio realizar un análisis similar al expuesto en esta entrada. Consideremos la función $f(x) = 4x^2$ definida para todo $x \in \mathbb{R}$. En este caso, tomaremos $x_0=3$ y $f(x_0) = 4(3)^2 =36.$

  • Grafica $f(x)$.
  • Encuentra un valor de $x$ tal que $|f(x)-36| < 30$.
  • Encuentra un valor de $x$ tal que $|f(x)-36| < 1$.
  • Encuentra un intervalo de $x$ alrededor de $x_0 = 3$ tal que $|f(x)-36| < \frac{1}{100}$.
  • Encuentra un intervalo de $x$ alrededor de $x_0 = 3$ tal que $|f(x)-36| < \varepsilon$, con $\varepsilon > 0$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»