Cálculo Diferencial e Integral I: Definición intuitiva de límite de una función

Por Juan Manuel Naranjo Jurado

Introducción

La definición de límite de una función suele ser uno de los conceptos más retadores dentro del cálculo y es por ello que, antes de entrar a su análisis formal, queremos dar una introducción con la finalidad de desarrollar la intuición necesaria para lograr el dominio de esta definición.

Idea intuitiva de límite de una función

Consideremos la función $f(x) = 5x$.

Supongamos que en este caso $x_0 = 7$ y, por tanto, $L = f(x_0) = 35$. Sabemos que $f(x)$ se aproxima a $35$ mientras más cerca estemos de $7$.

¿Podemos encontrar un valor de $x$ lo suficientemente cercano a $7$, sin ser $7$, tal que $f(x)$ esté a una distancia menor de $11$ del $35$, es decir, $|f(x) – 35| < 11$?

Sí. Si consideramos $x = 5$, entonces $f(5) = 25$ y $|f(5) – 35| = |25 – 35| = 10 < 11$

¿Podemos encontrar un valor de $x$ lo suficientemente cercano a $7$, sin ser $7$, tal que $f(x)$ esté a una distancia menor de $7$ del $35$, es decir, $|f(x) – 35| < 7$?

Nuevamente la respuesta es sí, y podemos considerar $x=8$. De esta forma $|f(8) – 35| = |40 – 35| = 5 < 7$.

Hasta este momento se han encontrado valores puntuales que nos permiten aproximarnos a $35$ mediante $f$, pero para nuestro estudio requerimos más que solo un punto, buscamos más bien un intervalo de $x$, específicamente un intervalo de $x$ al rededor de $x_0$, que en este caso es $7$. A partir de ahora nos enfocaremos en encontrar dicho intervalo.

¿Qué pasa si ahora queremos encontrar un intervalo de $x$ al rededor de $7$ para tener una distancia menor a $\frac{1}{1000}$ en nuestra aproximación, es decir, $|f(x) – 35| < \frac{1}{1000}$?

Un poco menos inmediato, pero definitivamente podemos resolver el problema. Buscamos lo siguiente:

\begin{gather*}
|f(x) – 35| < \frac{1}{1000} \\
\Rightarrow |5x – 35|< \frac{1}{1000} \\
\Rightarrow |x – 7| < \frac{1}{5000} \text{, al dividir entre } 5
\end{gather*}

Lo que indica que para que $f(x)$ esté a una distancia menor $\frac{1}{1000}$ de $35$, entonces $x$ debe estar a una distancia menor de $\frac{1}{5000}$ respecto al $7$. Después de este último ejercicio, parece que podemos aproximarnos arbitrariamente a $35$ y a este valor arbitrario le llamaremos $\epsilon$, el cual puede ser cualquier número positivo. Haciendo las cuentas de forma análoga para una distancia $\epsilon > 0$, llegamos a la siguiente expresión:

$$|x – 7| < \frac{\epsilon}{5}.$$

Es decir, para aproximar arbitrariamente ($\epsilon$) $f(x)$ al valor $35$, $x$ debe estar a una distancia menor de $\frac{\epsilon}{5}$ del valor de $7$.

Generalizando un poco la idea construida a través de este ejemplo obtenemos la siguiente definición intuitiva.

Definición intuitiva. Decimos que la función $f$ se aproxima al límite $L$ cerca de $x_0$ si $f(x)$ se aproxima arbitrariamente a $L$ si $x$ está lo suficientemente de $x_0$ pero es distinto de $x_0$.

Después de esta definición intuitiva, veamos otro ejemplo y tratemos de usarla.

Consideremos ahora la función $f(x) = x^2$.

Veremos que $f(x)$ se aproxima al límite $16$ cerca de $4$. En esta ocasión queremos que $f$ esté más próximo que $\epsilon$ a $16$, es decir, queremos que

\begin{gather*}
|f(x) – 16| < \epsilon \\
|x^2 – 16| < \epsilon \\
|(x-4)(x+4)| < \epsilon \\
|x-4||x+4| < \epsilon
\end{gather*}

A diferencia del caso anterior, parece que no es tan directo llegar a nuestro objetivo, pero notemos que particularmente podemos pedir que $|x-4| < 1$, entonces

\begin{gather*}
-1< x-4 < 1 \\
\Rightarrow 3 < x < 5 \\
\Rightarrow 7 < x+4<9
\end{gather*}

En resumen, si $|x-4|<1$, entonces $|x+4| < 9$. Lo cual implica que
$$|x^2 – 16| = |x-4||x+4| < 9|x-4|$$
Si además restringimos la distancia de $x$ respecto a $4$ de tal manera que $|x-4| < \frac{\epsilon}{9}$ y retomando la expresión anterior llegamos a lo siguiente:

\begin{gather*}
|x^2 – 16| = |x-4||x+4| < 9|x-4| < 9 \cdot \frac{\epsilon}{9} = \epsilon \\
\therefore |x^2 – 16| < \epsilon
\end{gather*}

Esto siempre que $|x-4|$ sea menor que $1$ y $\frac{\epsilon}{9}$, es decir, siempre que $|x-4| < min\{1, \frac{\epsilon}{9} \}$.


De los dos ejemplos revisados en esta entrada, podemos notar que logramos que $f$ se aproxime arbitrariamente ($\epsilon$) a $L$ siempre que logremos que $x$ esté lo suficientemente cerca de $x_0$ y para lograr esto último acotamos $x-x_0$ en términos de un valor positivo que depende de $\epsilon$ (para el primer ejemplo fue $\frac{\epsilon}{5}$ y para el segundo $min\{1, \frac{\epsilon}{9} \}$), vale la pena entonces darle un nombre a este valor positivo: $\delta$.

Refraseando: Logramos que $f$ se aproxime arbitrariamente ($\epsilon$) a $L$ siempre que logremos que $x$ esté lo suficientemente cerca ($\delta$) de $x_0$.

Este último refraseo nos da un indicio muy importante, para probar que $f$ se aproxima arbitrariamente a $L$ en $x_0$, habrá que dar un valor arbitrario positivo $\epsilon > 0$ para el cual necesitaremos encontrar otro valor positivo $\delta > 0$ que acote a $x$ al rededor de $x_0$, es decir, $|x-x_0|<\delta$ y que si $x$ cumple tal condición, entonces también se tenga que $|f(x)-L| < \epsilon$. Adicionalmente pedíamos que $x \neq x_0$, tal condición puede ser compactada de la siguiente forma $0 < |x-x_0| < \delta$, pues que la distancia entre $x$ y $x_0$ sea mayor que cero implica directamente que son distintos.

Antes de finalizar con esta entrada es conveniente aclarar que no siempre tendremos funciones tan amigables en las cuales podamos evaluar directamente el valor de $x_0$ en $f$ para encontrar $L$ e incluso habrá ocasiones en las cuales no nos podamos aproximar de la manera en la que lo hicimos en estos ejemplos, pero por ahora no daremos muchos detalles extra al respecto, será tema para entradas posteriores.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

Para corroborar que la idea intuitiva de límite de una función se ha comprendido, se queda como ejercicio realizar un análisis similar al expuesto en esta entrada. Consideremos la función $f(x) = \frac{1}{x}$ definida para todo $x \neq 0$. En este caso, tomaremos $x_0=1$ y $L = f(x_0) = \frac{1}{1} =1$.

  • Grafica $f(x)$ para $x >0$.
  • Encuentra un valor de $x$ tal que $|f(x)-1| < \frac{1}{2}$.
  • Encuentra un valor de $x$ tal que $|f(x)-1| < \frac{1}{10}$.
  • Encuentra un intervalo de $x$ al rededor de $x_0 = 1$ tal que $|f(x)-1| < \frac{1}{100}$.
  • Encuentra un intervalo de $x$ al rededor de $x_0 = 1$ tal que $|f(x)-1| < \epsilon$, con $\epsilon > 0$.

Más adelante…

En la siguiente entrada daremos la definición formal de límite de una función y veremos varios ejemplos de funciones cuyo límite existe. Una vez dominemos la definición podremos incursionar en varias de sus propiedades y podremos tomar ventaja de estos conocimientos para tener una mayor comprensión sobre el comportamiento de diversas funciones de interés.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.