Probabilidad I: Independencia de Eventos

Por Octavio Daniel Ríos García

Introducción

En la entrada anterior introdujimos un nuevo concepto: la probabilidad condicional. Vimos que dada una medida de probabilidad $\mathbb{P}$, para un evento $A$ tal que $\Prob{A} > 0$, podemos calcular la probabilidad de que ocurra otro evento $B$ condicionado a que ya ocurrió $A$. Este concepto es importante, pues también habrá veces en las que la probabilidad condicional $\Prob{B \mid A}$ es la única que se conoce.

Por otro lado, hay algo que también nos debe de interesar. Para dos eventos $A$, $B$ tales que $\Prob{A} > 0$, ¿será siempre cierto que condicionar a que $A$ ya ocurrió cambia la probabilidad de $B$? Es decir, ¿siempre es cierto que $\Prob{B} \neq \Prob{B \mid A}$? La respuesta es que no. Al definir eventos, encontraremos casos en los que la probabilidad de uno no afecta la del otro. Esta propiedad es conocida como independencia de eventos. En esta entrada veremos la definición de independencia de $2$ eventos. Después, veremos cómo se extiende para $3$ o más eventos, pues no es inmediato deducirla a partir de la independencia de $2$ eventos.

Independencia de dos eventos

Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Dados dos eventos $A$ y $B$, es posible que al condicionar a que $A$ ya ocurrió, la probabilidad de $B$ no cambie. Esto es, que $\Prob{B} = \Prob{B \mid A}$. De manera intuitiva, esto quiere decir que la ocurrencia o no-ocurrencia de $A$ no cambia la probabilidad de $B$ (y viceversa). Esta propiedad es conocida como independencia, y se define a continuación:


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Diremos que dos eventos $A$ y $B$ son independientes si se cumple que

\[ \Prob{A \cap B} = \Prob{A} \Prob{B}. \]


Una consecuencia inmediata de la definición anterior es que si $A$ y $B$ son eventos independientes, entonces $\Prob{B \mid A} = \Prob{B}$ y $\Prob{A \mid B} = \Prob{A}$ siempre que $\Prob{A} > 0$ y $\Prob{B} > 0$.

Comentamos que cuando $A$ y $B$ son independientes, la ocurrencia o no-ocurrencia de $A$ no cambia la probabilidad de $B$. Por ejemplo, supón que $A$ y $B$ son eventos independientes tales que $\Prob{A} = 0.2$ y $\Prob{B} = 0.4$. Si realizaras el experimento aleatorio correspondiente muchas veces, se espera que en $20\%$ de esas realizaciones ocurra $A$, y en un $40\%$ ocurra $B$. Al ser independientes, de aquellas realizaciones en las que ocurrió $A$, $B$ ocurriría en un $40\%$ de ellas, pues su probabilidad no se ve afectada por la ocurrencia de $A$ (recuerda, son independientes). Así, $\Prob{A}\Prob{B} = (0.2)(0.4) = 0.08$, y en consecuencia, $\Prob{B \mid A} = \frac{0.08}{0.2} = 0.4$, que es precisamente $\Prob{B}$.

Ejemplo. Supón que realizas $3$ lanzamientos de moneda de manera equiprobable. Es decir, si $\mathrm{A}$ representa a «águila» y $\mathrm{S}$ representa a «sol», tenemos el siguiente espacio muestral equiprobable $\Omega$:

\[ \Omega = \begin{Bmatrix} \mathrm{(A, A, A)}, & \mathrm{(A, A, S)}, & \mathrm{(A, S, A)}, & \mathrm{(S, A, A)}, \\ \mathrm{(A, S, S)}, & \mathrm{(S, A, S)}, & \mathrm{(S, S, A)}, & \mathrm{(S, S, S)} \end{Bmatrix}, \]

donde cada resultado tiene probabilidad de ocurrencia de $\frac{1}{|\Omega|} = \frac{1}{8}$. Podemos acordar la siguiente convención para los distintos resultados de $\Omega$:

\[ \Omega = \{ \mathrm{AAA, AAS, ASA, SAA, ASS, SAS, SSA, SSS} \}, \]

simplificando un poco la escritura de los eventos que veremos a continuación. Sean $A$, $B$ y $C$ los siguientes eventos:

  • $A$: El primer lanzamiento es águila. En consecuencia, $A = \{ \mathrm{AAA, AAS, ASA, ASS} \}$. Además, $\Prob{A} = \frac{4}{8} = \frac{1}{2}$.
  • $B$: El segundo lanzamiento es águila. Así, $B = \{ \mathrm{AAA, AAS, SAA, SAS} \}$. También se tiene que $\Prob{B} = \frac{1}{2}$.
  • $C$: Hay al menos dos águilas. Esto es, $C = \{ \mathrm{AAA, AAS, ASA, SAA} \}$. A su vez, se tiene que $\Prob{C} = \frac{1}{2}$.

Las probabilidades de cada evento se obtuvieron considerando que el espacio muestral es equiprobable.

  1. Se tiene que $A \cap B = \{ \mathrm{AAA, AAS} \}$, por lo que \[ \Prob{A \cap B} = \frac{2}{8} = \frac{1}{4} = {\left(\frac{1}{2}\right)} {\left(\frac{1}{2}\right)} = \Prob{A}\Prob{B}. \]En consecuencia, se puede concluir que $A$ y $B$ son independientes.
  2. Por otro lado, $A \cap C = \{ \mathrm{AAA, AAS, ASA } \}$. Así, tenemos que \[ \Prob{A \cap C} = \frac{3}{8} \neq {\left(\frac{1}{2}\right)} {\left(\frac{1}{2}\right)} = \Prob{A}\Prob{C}.\]Como se tiene que $\Prob{A \cap C} \neq \Prob{A}\Prob{C}$, $A$ y $C$ no son independientes.
  3. De manera similar, $B \cap C = \{ \mathrm{AAA, AAS, SAA } \}$, por lo que \[ \Prob{B \cap C} = \frac{3}{8} \neq {\left(\frac{1}{2}\right)} {\left(\frac{1}{2}\right)} = \Prob{B}\Prob{C},\]y se concluye que $B$ y $C$ no son independientes.

Observa que los resultados en 2 y 3 tienen sentido con nuestra noción intuitiva de independencia y probabilidad condicional. Por ejemplo, si queremos la probabilidad condicional de $A$ dado $C$, $\Prob{A \mid C}$, obtenemos que esta es

\[ \Prob{A \mid C} = \frac{\Prob{A \cap C}}{\Prob{C}} = \frac{\frac{3}{8}}{\frac{1}{2}} = \frac{3}{4}, \]

que tiene sentido, pues $3$ de los $4$ resultados en $C$ cumplen lo que establece el evento $A$, «que el primer lanzamiento sea águila». Esto exhibe que condicionar a que $C$ ya ocurrió cambia la probabilidad de ocurrencia de $A$, poniendo en evidencia que no son independientes.

El evento $B^{\mathsf{c}} = \{ \mathrm{SSS, SSA, ASS, ASA} \}$ es tal que $\Prob{B^{\mathsf{c}}} = \frac{1}{2}$. Además, se tiene que $A \cap B^{\mathsf{c}} = \{ \mathrm{ASS, ASA} \}$, por lo que

\[ \Prob{A \cap B^{\mathsf{c}}} = \frac{1}{4} = {\left(\frac{1}{2}\right)} {\left(\frac{1}{2}\right)} = \Prob{A}\Prob{B^{\mathsf{c}}}. \]

Esto nos lleva a concluir que no sólo los eventos $A$ y $B$ son independientes: $A$ y $B^{\mathsf{c}}$ también lo son.


La última parte de este ejemplo revela una propiedad de la independencia de eventos que enunciamos a continuación.


Teorema. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad y sean $A$ y $B \in \mathscr{F}$ eventos. Si $A$ y $B$ son independientes, entonces:

  1. $A$ y $B^{\mathsf{c}}$ son independientes,
  2. $A^{\mathsf{c}}$ y $B$ son independientes,
  3. $A^{\mathsf{c}}$ y $B^{\mathsf{c}}$ son independientes.

Este último teorema corresponde a la idea de que cuando dos eventos son indepenedientes, la no-ocurrencia de un evento no afecta la probabilidad de que ocurra (o no ocurra) el otro.

Independencia de tres eventos

La definición de independencia puede extenderse a más de dos eventos. Sin embargo, esta extensión se debe de hacer de manera delicada. Si tenemos $3$ eventos $A$, $B$ y $C$, ¿cómo podríamos decir que estos $3$ eventos son independientes? Claramente, queremos preservar esa noción de que la ocurrencia o no ocurrencia de uno o más de estos eventos no afecta la probabilidad de ocurrencia de los restantes.

Más concretamente, esto quiere decir que si $A$, $B$ y $C$ son independientes, entonces la ocurrencia o no ocurrencia de $A$ no debería de afectar la probabilidad de ocurrencia de $B$, ni la de $C$. Similarmente, la ocurrencia de $B$ no debería de afectar la probabilidad de $A$, ni la de $C$; y tampoco la ocurrencia de $C$ debería de afectar la probabilidad de $A$, ni la de $B$.

Además, también deberíamos de pedir que la ocurrencia de $A$ y de $B$ (al mismo tiempo) no debe de afectar la probabilidad de que ocurra $C$. Del mismo modo, la ocurrencia de $A$ y $C$ no debe de afectar la probabilidad de $B$; ni la ocurrencia de $B$ y $C$ debe de afectar la probabilidad de $A$.


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad. Sean $A$, $B$ y $C$ eventos. Diermos que $A$, $B$ y $C$ son independientes si

  1. $\Prob{A \cap B} = \Prob{A} \Prob{B}$.
  2. $\Prob{A \cap C} = \Prob{A} \Prob{C}$.
  3. $\Prob{B \cap C} = \Prob{B} \Prob{C}$.
  4. $\Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C}$.

Las propiedades 1 a 3 corresponden a la independencia dos a dos que queremos entre los eventos. Además, en conjunto con la propiedad 4 de esta definición, capturan la idea de que la ocurrencia de dos de los eventos no debería de afectar la probabilidad del evento restante. Si $A$, $B$ y $C$ son eventos independientes, entonces

\[ \Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C} = \Prob{B} \Prob{A} \Prob{C}, \]

y como $\Prob{A \cap C} = \Prob{A} \Prob{C}$, entonces se tiene que

\[ \Prob{A \cap B \cap C} = \Prob{B} \Prob{A \cap C}, \]

que justamente corresponde a que la ocurrencia de $A$ y $C$ no afecta la probabilidad de $B$. Lo mismo puede hacerse análogamente para el resto de combinaciones de eventos posibles.

En apariencia, la definición de independencia para $3$ eventos parece un poco excesiva. ¿No será posible deducir las propiedades 1, 2 y 3 a partir de la 4? ¿O quizás deducir la propiedad 4 a partir de las primeras 3? Veamos un par de ejemplos para ver que no es el caso.

Ejemplo. Considera nuevamente el experimento de lanzar una moneda $3$ veces de manera equiprobable. El espacio muestral $\Omega$ de este experimento es

\[ \Omega = \{ \mathrm{AAA, AAS, ASA, SAA, ASS, SAS, SSA, SSS} \}, \]

donde $\mathrm{A}$ es «águila» y $\mathrm{S}$ es «sol». Considera los siguientes $2$ eventos:

  1. $A$ el evento de que el primer lanzamiento es «águila»: $A = \{ \mathrm{AAA, AAS, ASA, ASS} \}$.
  2. $B$ el evento de que los primeros dos lanzamientos son «águilas», o los últimos dos lanzamientos son «soles». Esto es, $B = \{ \mathrm{AAA, AAS, ASS, SSS} \}$.

Puede observarse intuitivamente que los dos eventos no son independientes, pues ambos dependen del resultado del primer lanzamiento. Formalmente, basta con demostrar que no cumplen la definición de independencia. Para ello, nota que $A \cap B = \{ \mathrm{AAA, AAS, ASS} \}$, por lo que

\[ \Prob{A \cap B} = \frac{|A \cap B|}{|\Omega|} = \frac{3}{8}. \]

Por otro lado, se tiene que $\Prob{A} = \frac{1}{2}$ y $\Prob{B} = \frac{1}{2}$, así que

\[ \Prob{A} \Prob{B} = {\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)} = \frac{1}{4}. \]

En conclusión, tenemos que $\Prob{A \cap B} \neq \Prob{A} \Prob{B}$, y en consecuencia, $A$ y $B$ no son independientes.

Ahora, consideremos un tercer evento:

  1. $C$ el evento de que los últimos dos lanzamientos son distintos. En este caso, se tiene que el evento es $C = \{ \mathrm{AAS, ASA, SAS, SSA} \}$.

Para $C$, tenemos que $\Prob{C} = \frac{1}{2}$. Además, tenemos que $A \cap B \cap C = \{ \mathrm{AAS} \}$, por lo que

\[ \Prob{A \cap B \cap C} = \frac{1}{8} = {\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)} = \Prob{A} \Prob{B} \Prob{C}, \]

así que $A$, $B$ y $C$ cumplen la propiedad 4 de la definición de independencia de $3$ eventos, a pesar de que no cumplen la propiedad 1. Esto quiere decir que cuando tú te encuentres con tres eventos $A$, $B$ y $C$ tales que $\Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C}$, no se puede deducir que son independientes dos a dos, ¡también tienes que comprobarlo para determinar si son independientes!


Ejemplo. Bueno, ¿y qué hay de la interacción opuesta? Si $A$, $B$ y $C$ son eventos tales que

  1. $\Prob{A \cap B} = \Prob{A} \Prob{B}$,
  2. $\Prob{A \cap C} = \Prob{A} \Prob{C}$,
  3. $\Prob{B \cap C} = \Prob{B} \Prob{C}$,

¿es eso suficiente para concluir que son independientes? Es decir, ¿de ahí podemos deducir que $\Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C}$? La respuesta es que no. Considera el experimento de lanzar una moneda $4$ veces de manera equiprobable. En este caso, podemos escribir al espacio muestral $\Omega$ como sigue.

\[ \Omega = \begin{Bmatrix} \mathrm{AAAA}, & \mathrm{AAAS}, & \mathrm{AASA}, & \mathrm{ASAA}, \\ \mathrm{SAAA}, & \mathrm{AASS}, & \mathrm{ASAS}, & \mathrm{SAAS}, \\ \mathrm{ASSA}, & \mathrm{SASA}, & \mathrm{SSAA}, & \mathrm{SSSA}, \\ \mathrm{SSAS}, & \mathrm{SASS}, & \mathrm{ASSS}, & \mathrm{SSSS} \end{Bmatrix}. \]

Considera los siguientes $3$ eventos:

  1. $A$ el evento de que el primer lanzamiento es «águila». Esto es, \[ A = \{ \mathrm{AAAA, AAAS, AASA, ASAA, AASS, ASAS, ASSA, ASSS}\}. \]
  2. $B$ el evento de que el último lanzamiento es «águila». Es decir,\[ B = \{ \mathrm{AAAA, AASA, ASAA, SAAA, ASSA, SASA, SSAA, SSSA} \}. \]
  3. $C$ el evento de que los cuatro lanzamientos resulten en $2$ «águilas» y $2$ «soles». Así,\[ C = \{ \mathrm{AASS, ASAS, SAAS, SASA, ASSA, SSAA} \}. \]

En consecuencia, encontramos que $\Prob{A} = \frac{8}{16} = \frac{1}{2}$, $\Prob{B} = \frac{8}{16} = \frac{1}{2}$, y $\Prob{C} = \frac{6}{16} = \frac{3}{8}$.

Al tomar las intersecciones de estos $3$ eventos, obtenemos lo siguiente:

  • $A \cap B = \{ \mathrm{AAAA, AASA, ASAA, ASSA} \}$, por lo que \[ \Prob{A \cap B} = \frac{4}{16} = \frac{1}{4} = {\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)} = \Prob{A} \Prob{B}, \]y en consecuencia, $A$ y $B$ son independientes.
  • $A \cap C = \{ \mathrm{AASS, ASAS, ASSA} \}$, y por lo tanto, \[ \Prob{A \cap C} = \frac{3}{16} = {\left( \frac{1}{2} \right)}{\left( \frac{3}{8} \right)} = \Prob{A} \Prob{C}, \]así que $A$ y $C$ son independientes.
  • $B \cap C = \{ \mathrm{SASA, ASSA, SSAA} \}$, y así, \[ \Prob{B \cap C} = \frac{3}{16} = {\left( \frac{1}{2} \right)}{\left( \frac{3}{8} \right)} = \Prob{B} \Prob{C}, \]de donde se concluye que $B$ y $C$ son independientes.

No obstante, nota que $A \cap B \cap C = \{ \mathrm{ASSA} \}$. Por ello, se tiene que

\[ \Prob{A \cap B \cap C} = \frac{1}{16} \neq \frac{3}{32} = {\left( \frac{1}{2} \right)}{\left( \frac{1}{2} \right)}{\left( \frac{3}{8} \right)} = \Prob{A} \Prob{B} \Prob{C}. \]

Por lo tanto, $\Prob{A \cap B \cap C} \neq \Prob{A} \Prob{B} \Prob{C}$, así que $A$, $B$ y $C$ no son independientes. Este ejemplo exhibe que aún cuando tengas tres eventos $A$, $B$ y $C$ independientes dos a dos, esto no asegura que se cumple que $\Prob{A \cap B \cap C} = \Prob{A} \Prob{B} \Prob{C}$, ¡debes de comprobarlo para concluir que los $3$ eventos son independientes!


Independencia de más de 3 eventos

La definición de independencia puede generalizarse para $n \in \mathbb{N}^{+}$ eventos. La idea de la definición será la misma que usamos para definir la independencia de $3$ eventos, pero extendida a todas las combinaciones de tamaño $k$ posibles, con $2 \leq k \leq n$. Presentamos esta definición a continuación.


Definición. Sea $(\Omega, \mathscr{F}, \mathbb{P})$ un espacio de probabilidad, y sea $n \in \mathbb{N}^{+}$ tal que $n \geq 2$. Sean $A_{1}$, $A_{2}$, …, $A_{n}$ eventos. Diremos que son independientes si y sólamente si para toda colección finita $\{i_{1}, \ldots, i_{k}\}$ de índices distintos en $\{1,\ldots,n\}$ se cumple que

\[ \Prob{A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}} = \Prob{A_{i_{1}}} \Prob{A_{i_{2}}} \cdots \Prob{A_{i_{k}}}. \]


La definición anterior puede apantallar un poco, pero observa que lo que significa es que se tiene una lista de propiedades que debe de cumplir la familia $A_{1}$, $A_{2}$, …, $A_{n}$ para poder decir que son independientes. De manera más explícita, estas serían:

  • $\Prob{A_{i_{1}} \cap A_{i_{2}}} = \Prob{A_{i_{1}}}\Prob{A_{i_{2}}}$ para cada $i_{1}$, $i_{2} \in \{1,\ldots,n\}$ tales que $i_{1} \neq i_{2}$.
  • $\Prob{A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}} = \Prob{A_{i_{1}}} \Prob{A_{i_{2}}} \Prob{A_{i_{3}}}$ para cada $i_{1}$, $i_{2}$, $i_{3} \in \{1,\ldots, n\}$ tales que $i_{1} \neq i_{2} \neq i_{3}$.

$\vdots$

  • $\Prob{A_{1} \cap A_{2} \cap \cdots \cap A_{n}} = \Prob{A_{1}}\Prob{A_{2}} \cdots \Prob{A_{n}}$.

Es decir, para verificar que $n$ eventos son independientes, hay que checar que la probabilidad «abre» la intersección como un producto primero con todas las combinaciones de eventos dos a dos, luego tres a tres, y así sucesivamente hasta llegar a la propiedad con todos los eventos.

Tarea moral

Los siguientes ejercicios son opcionales. Es decir, no formarán parte de tu calificación. Sin embargo, te recomiendo resolverlos para que desarrolles tu dominio de los conceptos abordados en esta entrada.

  1. Sean $A$ y $B$ eventos tales que $\Prob{A} > 0$ y $\Prob{B} > 0$. Demuestra que si $A$ y $B$ son independientes, entonces se cumple que $\Prob{B \mid A} = \Prob{B}$ y $\Prob{A \mid B} = \Prob{A}$.
  2. Demuestra que para cualesquiera $A$, $B$ eventos, si $A$ y $B$ son independientes, entonces $A^{\mathsf{c}}$ y $B$ son independientes.
  3. A partir de la definición de independencia de $n$ eventos, escribe las propiedades que deben de cumplir $4$ eventos $A$, $B$, $C$ y $D$ para ser llamados independientes. Sugerencia: Primero revisa cómo se llega a la definición para $3$ eventos a partir de la de $n$ eventos.

Más adelante…

La independencia de eventos es un concepto importantísimo en la probabilidad, pues en muchos ejercicios y aplicaciones, se hacen supuestos de independencia. A pesar de que demostrar que $n$ conjuntos son independientes puede resultar complicado, cuando asumes la independencia, tienes una gran cantidad de propiedades a tu disposición. Por ello, en muchos teoremas básicos, la independencia se toma como hipótesis.

Más adelante, cuando veamos el concepto de variable aleatoria, veremos lo que significa que dos variables aleatorias sean independientes, y será necesario utilizar las definiciones que hemos visto aquí.

El siguiente tema que abordaremos son dos fórmulas para el cálculo de probabilidades muy útiles y que se basan en la probabilidad condicional: el teorema de probabilidad total y el teorema de Bayes.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.