(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)
Introducción
Las operaciones elementales son transformaciones que se pueden aplicar a las filas de una matriz con el objetivo de simplificarla o resolver sistemas de ecuaciones lineales. Estas operaciones incluyen intercambiar dos filas, multiplicar una fila por un número distinto de cero y sumar un múltiplo de una fila a otra fila.
Dos matrices se consideran equivalentes si se pueden obtener una a partir de la otra mediante la aplicación de un conjunto finito de operaciones elementales. Las matrices equivalentes tienen propiedades algebraicas y geométricas similares.
Las matrices elementales son matrices cuadradas que se pueden obtener mediante la aplicación de una sola operación elemental a una matriz identidad. Existen tres tipos de matrices elementales: de intercambio de filas, de multiplicación por un escalar y de suma de un múltiplo de una fila a otra fila. Las matrices elementales se utilizan en la eliminación gaussiana y en la resolución de sistemas de ecuaciones lineales.
Operaciones elementales de renglones
Sean $A\in \mathscr M_{m\times n}(\mathbb R),$ $\lambda \in\mathbb{R}$ con $\lambda\neq 0$, $r,s\in\{1,\dots , m\}$. Las operaciones elementales por renglones que podemos realizar en $A$ son:
$1.$ Intercambiar dos renglones $r$ y $s$.
$2.$ Multiplicar el renglón $r$ por el escalar $\lambda \in \mathbb R,\,\,\lambda\neq 0.$
$3.$ Sumar al renglón $r$, $\lambda$ veces el renglón $s$, con $\lambda \in \mathbb R.$
Observación
Cada operación elemental tiene una operación elemental inversa del mismo tipo.
Ejemplos
$1.$ Considera la matriz:
$A=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 4 & 5 & 6 \end{array} \right) \end{equation*}$.
Sea $e$ la operación elemental de sumar al primer renglón $3$ veces el segundo.
$e(A)= \begin{equation*} \left(\begin{array}{rrr} 13 & 17 & 21\\ 4 & 5 & 6 \end{array} \right) \end{equation*}.$
$2.$ Considera la matriz:
$B=\begin{equation*} \left(\begin{array}{rr} -1 & 0\\ 2 & 4 \\ 3 & 5 \end{array} \right) \end{equation*}$.
Sea $e$ la operación elemental que intercambia los renglones $1$ y $3.$
$e(B)=\begin{equation*} \left(\begin{array}{rr} 3 & 5\\ 2 & 4 \\ -1 & 0 \end{array} \right) \end{equation*}$.
$3.$ Considera la matriz:
$C=\begin{equation*} \left(\begin{array}{rrrr} 3 & -6 & 12 & 9\\ 1 & 3 & -2 & 4 \end{array} \right) \end{equation*}$.
Sea $e$ la operación elemental que multiplica al primer renglón por $\frac{1}{3}.$
$e(C)=\begin{equation*} \left(\begin{array}{rrrr} 1 & -2 & 4 & 3\\ 1 & 3 & -2 & 4 \end{array} \right) \end{equation*}$.
Definición
Sean $A,B\in \mathscr M_{m\times n}(\mathbb R).$ Decimos que $B$ es equivalente por renglones a $A$ si $B$ se obtiene de $A$ mediante una sucesión finita de operaciones elementales.
Notación
$A\sim B$ denota que $B$ es equivalente a $A.$
Para ser más precisos, si $B$ se obtiene de $A$ intercambiando los renglones $r$ y $s$, lo denotaremos por ${\Large{A}} \begin{array}{c} \phantom{nnn}\\ \sim\\ \small{R_r\leftrightarrow R_s} \end{array} \Large{B},$ si $B$ se obtiene de $A$ multiplicando el renglón $r$ por el escalar $\lambda$, lo denotaremos por ${\Large{A}} \begin{array}{c} \phantom{nnn}\\ \sim\\ \small{\lambda R_r} \end{array} \Large{B},$ y si $B$ se obtiene de $A$ sumando al renglón $r$, $\lambda$ veces el renglón $s$, lo denotaremos por ${\Large{A}} \begin{array}{c} \phantom{nnn}\\ \sim\\ \small{R_r\rightarrow R_r+\lambda R_s} \end{array} \Large{B}$.
Definición
Sea $E\in \mathscr M_{n\times n}(\mathbb R)$. Decimos que $E$ es una matriz elemental si se obtiene de la matriz identidad $I_n$ aplicando una sola operación elemental.
Ejemplos
$1.$ Las siguientes matrices son equivalentes
$\begin{equation*} \left(\begin{array}{rr} 1 & 0\\ 0 & 1 \end{array} \right) \begin{array}{c} \phantom{nnn}\\ \sim\\ \small{R_1\leftrightarrow R_2} \end{array} \left(\begin{array}{rr} 0 & 1\\ 1 & 0 \end{array} \right) \end{equation*}$.
La matriz $\begin{equation*} \left(\begin{array}{rr} 0 & 1\\ 1 & 0 \end{array} \right) \end{equation*}$ es una matriz elemental, pues se obtiene de la identidad aplicando una sola operación elemental.
Considera la matriz $\begin{equation*} A=\left(\begin{array}{rr} a & b\\ c & d \end{array} \right) \end{equation*}$.
Si intercambiamos sus renglones obtenemos la matriz equivalente $\begin{equation*} \left(\begin{array}{rr} c & d\\ a & b \end{array} \right) \end{equation*}$.
Observa que ésta se obtiene multiplicando la matriz elemental $\begin{equation*} \left(\begin{array}{rr} 0 & 1\\ 1 & 0 \end{array} \right) \end{equation*}$ por la matriz $A$:
$\begin{equation*} \left(\begin{array}{rr} 0 & 1\\ 1 & 0 \end{array} \right) \left(\begin{array}{rr} a & b\\ c & d \end{array} \right) =\left(\begin{array}{rr} c & d\\ a & b \end{array} \right) \end{equation*}$.
$2.$ Las siguientes matrices son equivalentes
$\begin{equation*} \left(\begin{array}{rr} 1 & 0\\ 0 & 1 \end{array} \right) \begin{array}{c} \phantom{nnn}\\ \sim\\ \small{5 R_2} \end{array} \left(\begin{array}{rr} 1 & 0\\ 0 & 5 \end{array} \right) \end{equation*}$.
La matriz $\begin{equation*} \left(\begin{array}{rr} 1 & 0\\ 0 & 5 \end{array} \right) \end{equation*}$ es una matriz elemental, pues se obtiene de la identidad aplicando una sola operación elemental.
Considera la matriz $\begin{equation*} A= \left(\begin{array}{rr} a & b\\ c & d \end{array} \right) \end{equation*}$.
Si multiplicamos el segundo renglón por $5$ obtenemos la matriz equivalente $\begin{equation*} \left(\begin{array}{rr} a & b\\ 5c & 5d \end{array} \right) \end{equation*}$.
Observa que ésta se obtiene multiplicando la matriz elemental $\begin{equation*} \left(\begin{array}{rr} 1 & 0\\ 0 & 5 \end{array} \right) \end{equation*}$ por la matriz $A$:
$\begin{equation*} \left(\begin{array}{rr} 1 & 0\\ 0 & 5 \end{array} \right) \left(\begin{array}{rr} a & b\\ c & d \end{array} \right) = \left(\begin{array}{rr} a & b\\ 5c & 5d \end{array} \right) \end{equation*}$.
$3.$ Las siguientes matrices son equivalentes
$\begin{equation*} \left(\begin{array}{rr} 1 & 0\\ 0 & 1 \end{array} \right) \begin{array}{c} \phantom{nnn}\\ \sim\\ \small{R_2 \rightarrow R_2+(-2)R_1} \end{array} \left(\begin{array}{rr} 1 & 0\\ -2 & 1 \end{array} \right) \end{equation*}$.
La matriz $\begin{equation*} \left(\begin{array}{rr} 1 & 0\\ -2 & 1 \end{array} \right) \end{equation*}$ es una matriz elemental, pues se obtiene de la identidad aplicando una sola operación elemental.
Considera la matriz $\begin{equation*} A= \left(\begin{array}{rr} a & b\\ c & d \end{array} \right) .\end{equation*}$
Si sumamos al segundo renglón $-2$ veces el primero obtenemos la matriz equivalente $\begin{equation*} \left(\begin{array}{rr} a & b\\ -2a+c & -2b+d \end{array} \right) \end{equation*}$.
Observa que ésta se obtiene multiplicando la matriz elemental $\begin{equation*} \left(\begin{array}{rr} 1 & 0\\ -2 & 1 \end{array} \right) \end{equation*}$ por la matriz $A$:
$\begin{equation*} \left(\begin{array}{rr} 1 & 0\\ -2 & 1 \end{array} \right) \left(\begin{array}{rr} a & b\\ c & d \end{array} \right) =\left(\begin{array}{rr} a & b\\ -2a+c & -2b+d \end{array} \right) \end{equation*}$.
Observación 1
Sea $A \in \mathscr M_{m\times n}(\mathbb R)$ y $e$ una operación elemental, consideremos la matriz elemental $e(I_m)$ que se obtiene de $I_m$ aplicando $e$. Entonces:
$e(I_m)A=e(A)$.
Observación 2
Sean $A,B\in \mathscr M_{m\times n}(\mathbb R)$ tales que $A\sim B.$ Entonces existen $E_1,\dotsc,E_t$ matrices elementales, $t\in \mathbb N^+$, tales que:
$B=E_t\cdots E_2 E_1 A$.
Ejemplo
Matrices equivalentes | Operación elemental |
$A=\begin{equation*} \left(\begin{array}{rrr} 1 & 3 & 5\\ 2 & -1 & -7\\ -5 & 6 & 26 \end{array} \right) \end{equation*}\sim$ | $e_1: R_2\rightarrow R_2+(-2)R_1$ |
$\begin{equation*} \left(\begin{array}{rrr} 1 & 3 & 5\\ 0 & -7 & -17\\ -5 & 6 & 26 \end{array} \right) \end{equation*}\sim$ | $e_2: R_3\rightarrow R_3+5R_1$ |
$\begin{equation*} \left(\begin{array}{rrr} 1 & 3 & 5\\ 0 & -7 & -17\\ 0 & 21 & 51 \end{array} \right) \end{equation*}\sim$ | $e_3: R_3\rightarrow R_3+3R_2$ |
$\begin{equation*} \left(\begin{array}{rrr} 1 & 3 & 5\\ 0 & -7 & -17\\ 0 & 0 & 0 \phantom{.}\end{array} \right) \end{equation*}\sim$ | $e_4: (-\frac{1}{7})R_2$ |
$\begin{equation*} \left(\begin{array}{rrr} 1 & 3 & 5\\ 0 & 1 & \frac{17}{7}\\ 0 & 0 & 0 \phantom{.}\end{array} \right) \end{equation*}\sim$ | $e_5: R_1\rightarrow R_1+(-3)R_2$ |
$\begin{equation*} \left(\begin{array}{rrr} 1 & 0 & -\frac{16}{7}\\ 0 & 1 & \frac{17}{7}\\ 0 & 0 & 0 \phantom{.}\end{array} \right) \end{equation*}=B$ |
Por la observación 2 tenemos que:
$\begin{equation*} \left(\begin{array}{rrr} 1 & 0 & -\frac{16}{7}\\ 0 & 1 & \frac{17}{7}\\ 0 & 0 & 0\phantom{.} \end{array} \right) \end{equation*}=$ $\begin{equation*} \left(\begin{array}{rrr} 1 & -3 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array} \right) \end{equation*}$ $\begin{equation*} \left(\begin{array}{rrr} 1 & 0 & 0\\ 0 & -\frac{1}{7} & 0\\ 0 & 0 & 1 \end{array} \right) \end{equation*}$ $\begin{equation*} \left(\begin{array}{rrr} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 3 & 1 \end{array} \right) \end{equation*}$ $\begin{equation*} \left(\begin{array}{rrr} 1 & 0 & 0\\ 0 & 1 & 0\\ 5 & 0 & 1 \end{array} \right) \end{equation*}$ $\begin{equation*} \left(\begin{array}{rrr} 1 & 0 & 0\\ -2 & 1 & 0\\ 0 & 0 & 1 \end{array} \right) \end{equation*}$ $\begin{equation*} \left(\begin{array}{rrr} 1 & 3 & 5\\ 2 & -1 & -7\\ -5 & 6 & 26 \end{array} \right) \end{equation*}.$
De esta forma, si $E_t=e_t(I_3)$ para cada $t\in\{1,2,3,4,5\}$:
$B=E_5 E_4 E_3 E_2 E_1 A$.
Tarea Moral
$1.$ Para cada operación elemental describe cuál es su operación inversa, analiza si es una operación elemental y en su caso de qué tipo es.
$2.$ Escribe un ejemplo de una matriz elemental de tamaño $2\times 2$, una de tamaño $3\times 3$ y una de tamaño $4\times 4.$
$3.$ Sea $E$ una matriz elemental:
$i)$ ¿Es $E$ invertible?
$ii)$ En caso que lo sea ¿Cuál será su inversa?
$4.$ Sea $A\in \mathscr M_{m\times n}(\mathbb R)$ y $e$ una operación elemental de matrices. Demuestra que $e(I_m)A=e(A).$
$5.$ Sea $A\in \mathscr M_{n\times n}(\mathbb R)$ si $A\sim I_n$:
$i)$ ¿Cómo queda expresada $A$ en términos de $I_n$ y de matrices elementales?
$ii)$ ¿Cómo queda expresada $I_n$ en términos de $A$ y de matrices elementales?
Más adelante
En la siguiente nota daremos la definición de lo que es una matriz escalonada reducida por renglones, y veremos cualquier matriz $A$ es equivalente a una de estas matrices escalonadas reducida por renglones.
Enlaces relacionados
Enlace a la nota anterior. Nota 34. Multiplicación de matrices, identidad, inversas y transpuesta.
Enlace a la nota siguiente. Nota 36. Matriz escalonada reducida por renglones.