Nota 35. Operaciones elementales, matrices equivalentes y matrices elementales.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En esta entrada estudiaremos la operaciones elementales por renglones, que son transformaciones que se pueden aplicar a las filas de una matriz con el objetivo de simplificarla, lo que ayuda por ejemplo a resolver sistemas de ecuaciones lineales. Estas operaciones incluyen intercambiar dos filas, multiplicar una fila por un número distinto de cero y sumar un múltiplo de una fila a otra fila.

Usando las operaciones elementales por renglones estableceremos una relación de equivalencia entre matrices del mismo tamaño. Las matrices equivalentes tienen propiedades algebraicas y geométricas similares. Veremos también cómo codificar la aplicación de las operaciones elementales mediante productos adecuados de matrices, para lo cual definiremos las matrices elementales. que se obtienen de una matriz identidad aplicando una sola operación elemental.

Operaciones elementales de renglones

Sean n y m naturales positivos, AMm×n(R), λR con λ0, r,s{1,,m}. Las operaciones elementales por renglones que podemos realizar en A son de tres tipos:

1. Intercambiar dos renglones r y s.

2. Multiplicar el renglón r por el escalar λR,λ0.

3. Sumar al renglón r, λ veces el renglón s, con λR.

Notación

Denotaremos por e a la operación elemental y por e(A) a la matriz que se obtiene de A al aplicar la operación e.

Observación

Cada operación elemental tiene una operación elemental inversa del mismo tipo.

Ejemplos

1. Considera la matriz:

A=(123456).

Sea e la operación elemental de sumar al primer renglón 3 veces el segundo.

e(A)=(131721456).

2. Considera la matriz:

B=(102435).

Sea e la operación elemental que intercambia los renglones 1 y 3.

e(B)=(352410).

3. Considera la matriz:

C=(361291324).

Sea e la operación elemental que multiplica al primer renglón por 13.

e(C)=(12431324).

Definición

Sean n y m naturales positivos, A,BMm×n(R). Decimos que B es equivalente por renglones a A si B se obtiene de A mediante una sucesión finita de operaciones elementales.

Notación

AB denota que B es equivalente a A.

Para ser más precisos, si B se obtiene de A intercambiando los renglones r y s, lo denotaremos por AnnnRrRsB, si B se obtiene de A multiplicando el renglón r por el escalar λ, lo denotaremos por AnnnλRrB, y si B se obtiene de A sumando al renglón r, λ veces el renglón s, lo denotaremos por AnnnRrRr+λRsB.

Definición

Sean n un natural positivo, EMn×n(R). Decimos que E es una matriz elemental si se obtiene de la matriz identidad In aplicando una sola operación elemental.

Ejemplos

1. Las siguientes matrices son equivalentes

(1001)nnnR1R2(0110).

La matriz (0110) es una matriz elemental, pues se obtiene de la identidad aplicando una sola operación elemental.

Considera la matriz A=(abcd).

Si intercambiamos sus renglones obtenemos la matriz equivalente (cdab).

Observa que ésta se obtiene multiplicando la matriz elemental (0110) por la matriz A:

(0110)(abcd)=(cdab).

2. Las siguientes matrices son equivalentes

(1001)nnn5R2(1005).

La matriz (1005) es una matriz elemental, pues se obtiene de la identidad aplicando una sola operación elemental.

Considera la matriz A=(abcd).

Si multiplicamos el segundo renglón por 5 obtenemos la matriz equivalente (ab5c5d).

Observa que ésta se obtiene multiplicando la matriz elemental (1005) por la matriz A:

(1005)(abcd)=(ab5c5d).

3. Las siguientes matrices son equivalentes

(1001)nnnR2R2+(2)R1(1021).

La matriz (1021) es una matriz elemental, pues se obtiene de la identidad aplicando una sola operación elemental.

Considera la matriz A=(abcd).

Si sumamos al segundo renglón 2 veces el primero obtenemos la matriz equivalente (ab2a+c2b+d).

Observa que ésta se obtiene multiplicando la matriz elemental (1021) por la matriz A:

(1021)(abcd)=(ab2a+c2b+d).

Observación 1

Sean n y m naturales positivos, AMm×n(R) y e una operación elemental, consideremos la matriz elemental e(Im) que se obtiene de Im aplicando e. Entonces:

e(Im)A=e(A).

La demostración se deja al lector.

Observación 2

Sean n y m naturales positivos, A,BMm×n(R) tales que AB. Entonces existen t un natural positivo y E1,,Et matrices elementales tales que:

B=EtE2E1A.

Ejemplo

Matrices
equivalentes
Operación
elemental
A=(1352175626)e1:R2R2+(2)R1
(13507175626)e2:R3R3+5R1
(135071702151)e3:R3R3+3R2
(1350717000.)e4:(17)R2
(13501177000.)e5:R1R1+(3)R2
(1016701177000.)=B

Por la observación 2 tenemos que:

(1016701177000.)= (130010001) (1000170001) (100010031) (100010501) (100210001) (1352175626).

De esta forma, si Et=et(I3) para cada t{1,2,3,4,5}:

B=E5E4E3E2E1A.

Tarea Moral

1. Para cada operación elemental describe cuál es su operación inversa, analiza si es una operación elemental y en su caso de qué tipo es.

2. Escribe un ejemplo de una matriz elemental de tamaño 2×2, una de tamaño 3×3 y una de tamaño 4×4.

3. Sea E una matriz elemental:

i) ¿Es E invertible?

ii) En caso que lo sea ¿Cuál será su inversa?

4. Sean n un natural positivo, AMm×n(R) y e una operación elemental de matrices. Demuestra que e(Im)A=e(A).

5. Sea n un natural positivo, AMn×n(R). Si AIn:

i) ¿Cómo queda expresada A en términos de In y de matrices elementales?

ii) ¿Cómo queda expresada In en términos de A y de matrices elementales?

Más adelante

En la siguiente nota daremos la definición de una matriz escalonada reducida por renglones y veremos que cualquier matriz A es equivalente a una de estas matrices escalonadas reducida por renglones.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 34. Multiplicación de matrices, identidad, inversas y transpuesta.

Enlace a la nota siguiente. Nota 36. Matriz escalonada reducida por renglones.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.