Nota 34. Multiplicación de matrices, identidad, inversas y transpuesta.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En esta entrada definiremos el producto de matrices que se realiza para dos matrices $A$ y $B$ tales que el número de columnas de $A$ es igual al número de filas de $B$. Veremos que la forma de multiplicar matrices es más elaborada que la suma de matrices, pero esto se debe a que el producto así definido resulta muy útil para trabajar con matrices, en particular para representar sistemas de ecuaciones de forma matricial. Veremos qué ocurre al analizar el concepto de neutro multiplicativo y de inversos multiplicativos que conocemos para el conjunto de número reales, pero ahora en el caso de las matrices, tratando de adaptar las nociones conocidas a este nuevo contexto. Finalmente definiremos la transpuesta de una matriz $A$, que se obtiene intercambiando sus filas por columnas.

En la presente nota usaremos las propiedades del producto punto de elementos en $\mathbb R^n$ para las pruebas, puedes consultarlas en el siguiente enlace: Propiedades del producto punto.

Definición

Sean $n,m$ y $r$ naturales positivos, $A\in \mathscr M_{m\times n}(\mathbb R),\,\, B\in \mathscr M_{n\times r}(\mathbb R)$.

El producto de $A$ con $B$ es la matriz $AB\in \mathscr M_{m\times r}(\mathbb R)$ tal que:

$(AB)_{ij}=a_{i1}b_{1j}+\cdots+a_{in}b_{nj}.$

Notación:

$ren_i A=(a_{i1},\dotsc,a_{in})$

$col_j B=(b_{1j},\dotsc,b_{nj}).$

Con esta notación $(AB)_{ij}=ren_i A\cdot col_j B,$ es decir, la entrada $ij$ de $AB$ es el producto punto del renglón $i$ de $A$ con la columna $j$ de $B$.

Ejemplos

$1.$ $A=\begin{equation*} \begin{pmatrix} 2 & -1 & 3 \\ 0 & 1 & 4 \\ \end{pmatrix} \end{equation*}$, $ B=\begin{equation*} \begin{pmatrix} 4 \\ 5 \\6 \\ \end{pmatrix} \end{equation*}$.

$AB=\begin{equation*} \begin{pmatrix} (2)(4)+(-1)(5)+3(6)\\(0)(4)+(1)(5)+(4)(6) \\ \end{pmatrix} \end{equation*}=$ $\begin{equation*} \begin{pmatrix} 21 \\ 29 \\ \end{pmatrix} \end{equation*} $

$3.$ $A=\begin{equation*} \begin{pmatrix} 1 & 4 \\ 1 & 3\\ \end{pmatrix} \end{equation*}$, $ B=\begin{equation*} \begin{pmatrix} 1 & 0 \\ 2 & 3 \\ \end{pmatrix} \end{equation*}$.

$AB=\begin{equation*}\begin{pmatrix} (1)(1)+(4)(2) & (1)(0)+(4)(3) \\ (1)(1)+(3)(2) & (1)(0)+(3)(3) \\ \end{pmatrix} =\begin{pmatrix} 9 & 12 \\ 7 & 9 \\ \end{pmatrix} \end{equation*}.$

Proposición

Sean $n,m,r$ y $s$ naturales positivos, $A, \overline{A} \in \mathscr M_{m\times n}(\mathbb R)$, $B, \overline{B} \in \mathscr M_{n\times r}(\mathbb R)$, $C \in \mathscr M_{r\times s}(\mathbb R)$ y $\lambda \in \mathbb R.$

$a)$ $A(BC)=(AB)C.$

$b)$ $(A+\overline{A})B=AB+\overline{A}B.$

$c)$ $A(B+\overline{B})=AB+A\overline{B}.$

$d)$ $\lambda (AB)=(\lambda A)B=A(\lambda B).$

Demostración

Se harán las demostraciones de $b)$ y $d)$, las dos restantes quedan de tarea moral.

Sean $n,m,r$ y $s$ naturales positivos, $A, \overline{A} \in \mathscr M_{m\times n}(\mathbb R)$, $B, \overline{B} \in \mathscr M_{n\times r}(\mathbb R)$, $C \in \mathscr M_{r\times s}(\mathbb R)$ y $\lambda \in \mathbb R.$

Demostración de $b)$

Por demostrar que $(A+\overline{A})B=AB+\overline{A}B.$

Observa que tanto $(A+\overline{A})B$ como $AB+\overline{A}B$ pertenecen a $\mathscr M_{m\times r}(\mathbb R).$

Sean $i\in \set{1,\dotsc,m}, j\in \set{1,\dotsc,r}.$

ExpresiónExplicación
$((A+\overline{A})B)_{ij}=$Partimos de un elemento arbitrario $ij$
de la matriz $(A+\overline{A})B.$
$=ren_i (A+\overline{A})\cdot col_j B$Por definición de producto de matrices.
$=(ren_i A+ren_i \overline{A})\cdot col_j B$Por definición de suma de matrices.
$=ren_i A\cdot col_j B+ren_i \overline{A}\cdot col_j B$Por las propiedades del producto punto.
$=(AB)_{ij}+(\overline{A} B)_{ij}$Por definición de producto de matrices.
$=(AB+\overline{A} B)_{ij}$Por definición de suma de matrices.

Así, $((A+\overline{A})B)_{ij}=(AB+\overline{A}B)_{ij}$.

Concluimos que $(A+\overline{A})B$ y $AB+\overline{A}B$ son del mismo tamaño y coinciden entrada a entrada, entonces $(A+\overline{A})B=AB+\overline{A}B.$

Demostración de $b)$

Por demostrar que $\lambda (AB)=A(\lambda B).$

Tanto $\lambda (AB)$ como $A(\lambda B)$ pertenecen a $\mathscr M_{m\times r}(\mathbb R)$.

Sean $i\in \set{1,\dotsc,m}, j\in \set{1,\dotsc,r}.$

ExpresiónExplicación
$(\lambda (AB))_{ij}=$Partimos de un elemento arbitrario $ij$
de la matriz $\lambda (AB)$
$=\lambda (AB)_{ij}$Por la definición de producto por escalar.
$=\lambda (ren_i A\cdot col_j B)$Por la definición de producto de matrices.
$=ren_i A\cdot (\lambda col_j B)$Por las propiedades del producto punto.
$=ren_i A\cdot col_j (\lambda B)$Por la definición de producto por escalar.
$=(A(\lambda B))_{ij}$Por la definición de producto de matrices.

Así, $(\lambda (AB))_{ij}=(A(\lambda B))_{ij}$.

Concluimos que $\lambda (AB)$ y $A(\lambda B)$ son del mismo tamaño y coinciden entrada a entrada, entonces $\lambda (AB)=A(\lambda B)$.

Definición

Sea $n$ un natural positivo. La matriz identidad de tamaño $n\times n$ es:

$I_n=\begin{equation*} \begin{pmatrix} 1 & 0 & \cdots & 0\\ 0 & 1 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\0 & 0 & \cdots & 1 \end{pmatrix} \end{equation*}$

es decir, la matriz $n\times n$ con unos en la diagonal y ceros fuera de la diagonal.

Proposición.

Sean $n$ y $m$ naturales positivos, $A\in \mathscr M_{m\times n}(\mathbb R).$

$1.$ $A\,I_n=A.$

$2.$ $I_mA=A.$

La demostración se deja como tarea moral.

Definición

Sean $n$ un natural positivo, $A\in \mathscr M_{n\times n}(\mathbb R)$. Decimos que $A$ es una matriz invertible si existe $B\in \mathscr M_{n\times n}(\mathbb R)$ tal que:

$AB=BA=I_n.$

En este caso decimos que $B$ es una inversa de $A.$

Observación

Si $A$ es invertible su inversa es única.

Demostración

Sean $n$ un natural positivo, $A\in \mathscr M_{n\times n}(\mathbb R)$ invertible, $B,\,C\in \mathscr M_{n\times n}(\mathbb R)$ inversas de $A$. Entonces $AB=BA=I_n=AC=CA$. Así, tenemos que $AB=AC$, y multiplicando por la izquierda por $B$ a ambos lados de la igualdad tenemos que $B(AB)=B(AC)$. En virtud de la asociatividad de la multiplicación de matrices obtenemos que $(BA)B=(BA)C$, y como $BA=I_n$ se tiene que $I_nB=I_nC$. Así, $B=C$ y por lo tanto la inversa es única.

Notación: Si $A$ es invertible denotaremos por $A^{-1}$ a la matriz inversa de $A$.

Definición

Sean $n$ y $m$ naturales positivos, $A\in \mathscr M_{m\times n}(\mathbb R)$. La transpuesta de $A$ es la matriz $A^t\in \mathscr M_{n\times m}(\mathbb R)$ tal que:

$(A^t)_{ij}=A_{ji}$

Ejemplos

$1.$ $A=\begin{equation*} \left(\begin{array}{rrrr} 1 & 3 & \pi &\frac{1}{4} \\ 0 & 2 & -1 & 8\\ \end{array}\right) \end{equation*}$, $ A^t =\begin{equation*} \left(\begin{array}{cr} 1 &0 \\ 3 &2 \\ \pi & -1 \\ \frac{1}{4} & 8 \\ \end{array}\right)\end{equation*}$.

$2.$ $A=\begin{equation*} \left(\begin{array}{r} 0.7 \\ -1\\ 10 \\ \end{array}\right) \end{equation*}$, $ A^t =\begin{equation*} \begin{pmatrix} 0.7 &-1 & 10 \\ \end{pmatrix} \end{equation*}$.

$3.$ $A=\begin{equation*} \left(\begin{array}{rr} 2 & -3 \\ 3 &1 \\ \end{array}\right) \end{equation*}$, $ A^t =\begin{equation*} \left(\begin{array}{rr} 2 &3 \\ -3 &1 \\ \end{array}\right) \end{equation*}.$

Proposición

Sean $n,m$ y $r$ naturales positivos, $A, B\in \mathscr M_{m\times n}(\mathbb R)$, $C\in \mathscr M_{n\times r}(\mathbb R)$ y $\lambda \in \mathbb R$.

$a)$ $(A^t)^t=A.$

$b)$ $ (A+B)^t=A^t+B^t.$

$c)$ $(\lambda A)^t=\lambda(A^t).$

$d)$ $(AC)^t=C^tA^t.$

Demostración

Se hará la demostración de $a)$, $b)$ y $d)$, el inciso $c)$ queda como tarea moral.

Sean $n,m$ y $r$ naturales positivos, $A, B\in \mathscr M_{m\times n}(\mathbb R)$, $C\in \mathscr M_{n\times r}(\mathbb R)$ y $\lambda \in \mathbb R$.

Demostración de $a)$

Observemos que $(A^t)^t,\,A\in \mathscr M_{m\times n}(\mathbb R)$.

Sean $i\in \set{1,\dotsc,m}, j\in \set{1,\dotsc,n}.$

ExpresiónExplicación
$((A^t)^t)_{ij}=$Partimos de un elemento arbitrario $ij$
de la matriz $(A^t)^t.$
$=(A^t)_{ji}$Por la definición de transpuesta.
$=A_{ij}$Por la definición de transpuesta.

Así, $((A^t)^t)_{ij}=A_{ij}$.

Concluimos que $(A^t)^t$ y $A$ son del mismo tamaño y coinciden entrada a entrada, entonces $(A^t)^t=A.$

Demostración de $b)$

Observemos que $(A+B)^t,\,A^t+B^t \in \mathscr M_{n\times m}(\mathbb R)$.

Sean $i\in \set{1,\dotsc,n}, j\in \set{1,\dotsc,m}.$

ExpresiónExplicación
$((A+B)^t))_{ij}=$Partimos de un elemento arbitrario $ij$
de la matriz $(A+B)^t.$
$=(A+B)_{ji}$Por la definición de transpuesta.
$=A_{ji}+B_{ji}$Por la definición de la suma de matrices.
$=(A^t)_{ij}+(B^t)_{ij}$Por la definición de transpuesta.
$=(A^t+B^t)_{ij}$Por la definición de la suma de matrices.

Así, $((A+B)^t)_{ij}=(A^t+B^t)_{ij}$.

Concluimos que $(A+B)^t$ y $A^t+B^t$ son del mismo tamaño y coinciden entrada a entrada, entonces $(A+B)^t=A^t+B^t.$

Demostración de $d).$

Notemos que $(AC)^t,\,C^tA^t \in \mathscr M_{r\times m}(\mathbb R).$

Sean $i\in \set{1,\dotsc,r}, j\in \set{1,\dotsc,m}.$

ExpresiónExplicación
$((AC)^t)_{ij}=$Partimos de un elemento arbitrario $ij$
de la matriz $(AC)^t).$
$=(AC)_{ji}$Por la definición de transpuesta.
$=ren_j A\cdot col_i C$Por la definición del producto de matrices.
$=col_j A^t\cdot ren_j C^t$Por la definición de transpuesta.
$=ren_i C^t\cdot col_jA^t$Por la conmutatividad del producto punto.
$=(C^tA^t)_{ij}$Por la definición del producto de matrices.

Así, $((AC)^t)_{ij}=(C^tA^t)_{ij}$.

Concluimos que $(AC)^t$ y $C^tA^t$ son del mismo tamaño y coinciden entrada a entrada, entonces $(AC)^t=C^tA^t.$

$\square$

Tarea Moral

$1.$ Considera las siguientes matrices:

$A=\begin{equation*} \left(\begin{array}{rr} 3 & 0 \\ -1 & 2\\ 1 & 1 \end{array}\right) \end{equation*}$, $B=\begin{equation*} \left(\begin{array}{rr} 4 & -1 \\ 0 & 2 \end{array}\right) \end{equation*}$, $C=\begin{equation*} \left(\begin{array}{rrr} 1 & 4 & 2 \\ 3 & 1 & 5 \end{array}\right) \end{equation*}$, $D=\begin{equation*} \left(\begin{array}{rrR} 1 & 5 & 2 \\ -1 & 0 & 1\\ 3 & 2 & 4 \end{array}\right) \end{equation*}$, $E=\begin{equation*} \left(\begin{array}{rrr} 6 & 1 & 3 \\ -1 & 1 & 2\\ 4 & 1 & 3 \end{array}\right) \end{equation*}.$

Calcula, si es posible: $DA-A$, $-7E$, $A(BC)$, $(4B)C+2B.$

$2.$ Una matriz cuadrada $A$ es diagonal si todos los elementos que están fuera de la diagonal principal son cero ($A_{ij}=0$ si $i\neq j$). ¿Qué ocurre al multiplicar dos matrices diagonales?

$3.$ Sean $n$ un natural positivo, $A \in \mathscr M_{n\times n}(\mathbb R)$. Dado $t$ un natural positivo definimos $A^t$ como el producto de $A$ consigo misma $t$ veces. Demuestra o da un contraejemplo para las siguientes afirmaciones:

$i)$ $(AB)^2=A^2B^2$

$ii)$ $(A+B)^2=A^2+2AB+B^2$

$4.$ La traza de una matriz cuadrada $A$ es la suma de los elementos de su diagonal y se denota por $tr(A)$. Calcula la traza de las matrices cuadradas del ejercicio $1.$

$5.$ Sean $n$ un natural positivo, $A,B \in \mathscr M_{n\times n}(\mathbb R)$ invertibles. ¿Puedes construir una matriz inversa para $AB$ usando $A^{-1}$ y $B^{-1}$?.

$6.$ Sea $A=\begin{equation*} \left(\begin{array}{rr} a & b \\ c & d \end{array}\right) \end{equation*}\in\mathscr M_{2\times 2}(\mathbb R)$. Demuestra que si $ad-bc\neq 0$, entonces $A=\frac{1}{ad-bc}\begin{equation*} \left(\begin{array}{rr} d & -b \\- c & a \end{array}\right) \end{equation*}$ es la matriz inversa de $A$.

Más adelante

En la siguiente nota veremos las operaciones elementales por renglones para matrices, definiremos una equivalencia por renglones en las matrices y notaremos que las operaciones elementales por matrices pueden expresarse como multiplicaciones por matrices adecuadas.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 33. Matrices.

Enlace a la nota siguiente. Nota 35. Operaciones elementales, matrices equivalentes y matrices elementales.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.