Nota 32. Dimensión de un $\mathbb R-$espacio vectorial

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En la presente entrada entenderemos lo que es la dimensión de un espacio vectorial. Ésta será la cardinalidad de cualquiera de sus bases y estará bien definida ya que como hemos visto todas las bases tienen la misma cantidad de elementos. Así como podemos completar un conjunto linealmente independiente de $V$ agregando vectores hasta obtener una base de $V$, también podemos, a partir de un conjunto generador $\gamma$ de $V$, obtener una base de $V$ quitando vectores.

Definición

Sea $V$ un subespacio de $\mathbb R^n$. La dimensión de $V$ es la cardinalidad de cualquiera de sus bases.

Notación: $dim_{\mathbb R}V$ o simplemente $dim\,\,V$.

Ejemplos

1. $dim\,\,\mathbb R^n=n$ ya que $\set{e_1,\dotsc,e_n}$ es una base de $\mathbb R^n$.

2. Considera el subespacio de $\mathbb R^2$ dado por $V =\set{(x,y)\in \mathbb R^2\mid x+3y=0}.$ Notemos que

$\begin{align*} V &=\set{(x,y)\in \mathbb R^2\mid x+3y=0}\\ \, &=\set{(x,y)\in \mathbb R^2\mid x=-3y}\\ \, &=\set{(-3y,y)\in \mathbb R^2\mid y\in \mathbb R}\\ \, &=\set{y(-3,1)\in \mathbb R^2\mid y\in \mathbb R}\\ \, &=\langle (-3,1) \rangle .\\ \end{align*}$

Así, $\set{(-3,1)}$ genera a $V$. Se deja al lector verificar que además $\set{(-3,1)}$ es $l.i$, entonces es una base de $V$. Por lo tanto $dim\,\,V=1.$

3. Considera el subespacio de $\mathbb R^4$ dado por $W =\set{(x,y,z,w)\in \mathbb R^4\mid 3x+2y-z+4w=0}.$ Observemos que

$\begin{align*} W &=\set{(x,y,z,w)\in \mathbb R^4\mid 3x+2y-z+4w=0}\\ \, &=\set{(x,y,z,w)\in \mathbb R^4\mid x= -\frac{2}{3}y+\frac{1}{3}z-\frac{4}{3}w }\\ \, &=\bigg\{ \left( -\frac{2}{3}y+\frac{1}{3}z-\frac{4}{3}w ,y,z,w\right) \in \mathbb R^4\mid y,z,w\in \mathbb R\bigg\} \\ &=\bigg\{ y \left(-\frac{2}{3},1,0,0\right)+z \left(\frac{1}{3},0,1,0\right)+w \left(-\frac{4}{3},0,0,1\right)\in \mathbb R^4\mid y,z,w\in \mathbb R\bigg\}\\ \, &=\bigg\langle \left(-\frac{2}{3},1,0,0\right), \left(\frac{1}{3},0,1,0\right), \left(-\frac{4}{3},0,0,1\right) \bigg\rangle .\\ \end{align*}$

Así, $\big\{ \left(-\frac{2}{3},1,0,0\right), \left(\frac{1}{3},0,1,0\right), \left(-\frac{4}{3},0,0,1\right) \big\}$ genera a $W$. Se deja al lector verificar que además $\big\{ \left(-\frac{2}{3},1,0,0\right), \left(\frac{1}{3},0,1,0\right), \left(-\frac{4}{3},0,0,1\right) \big\}$ es $l.i$, entonces es una base de $W$ y por lo tanto $dim\,\,W=3.$

Lema

Sea $V$ un subespacio de $\mathbb R^n$, $m$ un natural positivo y $v_1,\dotsc,v_m\in V$ vectores distintos tales que $\set{v_1,\dotsc,v_m}$ es $l.d.$ Entonces existe $v_j\in \set{v_1,\dotsc,v_m}$ tal que $\langle v_1,\dotsc,v_j,\dotsc, v_m \rangle=\langle v_1,\dotsc,v_{j-1},v_{j+1},\dotsc, v_m \rangle.$

Demostración

Sean $V\leq \mathbb R^n$, $m$ un natural positivo y $v_1,\dotsc,v_m\in V$ distintos tales que $\set{v_1,\dotsc,v_m}$ es $l.d.$ Existen entonces $\lambda_1,\dotsc,\lambda_m\in \mathbb R$ no todos nulos tales que:

$\lambda_1 v_1+\cdots+\lambda_m v_m=\bar{0}.$

Como $\lambda_1,\dotsc,\lambda_m$ no son todos nulos, podemos considerar $j\in\{1,2,\dots, m\}$ tal que $\lambda_j\neq 0$. Así:

$\begin{align} v_j &=-\frac{\lambda_1}{\lambda_j}v_1-\cdots- \frac{\lambda_{j-1}}{\lambda_j}v_{j-1}-\frac{\lambda_{j+1}}{\lambda_j}v_{j+1}-\cdots-\frac{\lambda_{m}}{\lambda_j}v_{m} \\ \label{ec1} \, &=\sum_{i\in\{1,\dots ,m\}, i\neq j} -\frac{\lambda_i}{\lambda_j}v_i . \\ \end{align}$

Sabemos que $ \langle v_1,\dotsc,v_{j-1},v_{j+1},\dotsc, v_m \rangle \subseteq \langle v_1,\dotsc,v_j,\dotsc, v_m \rangle.$

Ahora si $w\in \langle v_1,\dotsc,v_j,\dotsc, v_m \rangle$ existen $\mu_1,\dotsc,\mu_m \in \mathbb R$ tales que:

$\begin{align*} w &=\mu_1v_1 + \cdots + \mu_j v_j+\cdots+\mu_m v_m \\ \end{align*}$

y sustituyendo $v_j$ de acuerdo a su expresión en \ref{ec1}

$\begin{align*} w &= \mu_1v_1 + \cdots + \mu_j \left(\sum_{i\in\{1,\dots ,m\}, i\neq j} -\frac{\lambda_i}{\lambda_j}v_i\right) +\cdots+\mu_m v_m . \\ \end{align*}$

Entonces $w$ es una combinación lineal del conjunto $\set{v_1,\dotsc,v_{j-1},v_{j+1},\dotsc, v_m}$ y por lo tanto $w\in \langle v_1,\dotsc,v_{j-1},v_{j+1},\dotsc, v_m \rangle$, probando con ello que $ \langle v_1,\dotsc,v_j,\dotsc, v_m \rangle \subseteq \langle v_1,\dotsc,v_{j-1},v_{j+1},\dotsc, v_m \rangle .$ Así, tenemos la igualdad buscada:

$\langle v_1,\dotsc,v_j,\dotsc, v_m \rangle=\langle v_1,\dotsc,v_{j-1},v_{j+1},\dotsc, v_m \rangle.$

$\square$

Teorema

Sea $V$ un subespacio de $\mathbb R^n$. Todo conjunto generador finito de $V$ se puede reducir a una base de $V$, es decir, si $S$ es un conjunto generador finito de $V$, existe $\beta\subseteq S$ tal que $\beta$ es una base de $V$.

Demostración

Sea $V\leq \mathbb R^n$, $m$ un natural positivo y $v_1,\dotsc,v_m\in V$ distintos tales que $S=\set{v_1,\dotsc,v_m}$ genera a $V$.

Si $S$ es $l.i.$, entonces es una base de $V$.

Si $S$ es $l.d.$, por el lema existe $v_j\in S$ tal que $\langle v_1,\dotsc,v_j,\dotsc, v_m \rangle=\langle v_1,\dotsc,v_{j-1},v_{j+1},\dotsc, v_m \rangle=V.$

Si $\{ v_1,\dotsc,v_{j-1},v_{j+1},\dotsc, v_m \}$ es $l.i.$, entonces es una base de $V$.

Si $\{ v_1,\dotsc,v_{j-1},v_{j+1},\dotsc, v_m \}$ es $l.d.$ continuamos con este procedimiento (usando el lema) hasta obtener un subconjunto $\beta$ de $\set{v_1,\dotsc,v_m}$ $l.i.$ y tal que $\langle \beta \rangle=V$. $\beta$ será entonces una base de $V$ contenida en $S$.

$\square$

Corolario

Sean $m\in \mathbb N$ y $V$ un subespacio de $\mathbb R^n$ de dimensión $m$. Tenemos que:

$a)$ Cualquier conjunto generador de $V$ con $m$ elementos es una base de $V$.

$b)$ Cualquier conjunto linealmente independiente en $V$ con $m$ elementos es una base de $V$.

Demostración

La demostración se deja como tarea moral.

Teorema

Sean $V$ y $W$ subespacios de $\mathbb R^n$ con $W\subseteq V$.

$a)$ Toda base de $W$ se puede completar a una base de $V.$

$b)$ $dim\, W\leq dim\, V.$

$c)$ Si $dim\, W=dim\,V$, entonces $W=V.$

Demostración

Demostración de $a)$

Se deja al lector realizar la demostración adaptando el procedimiento mediante el que se probó que todo subespacio de $\mathbb R^n$ tiene una base en la nota anterior.

Demostración de $b)$

Sean $\gamma$ una base de $W$ y $\beta$ una base de $V$. Como $\gamma$ es $l.i.$ en $V$ y $\beta$ es un generador de $V$ por la una nota en la entrada anterior se tiene que $dim\,W=\#\gamma\leq \#\beta=dim\,V.$

Demostración de $c)$

Supongamos que $dim\, W=dim\,V=m.$

Sea $\gamma$ una base de $W$. Sabemos que $\gamma$ es $l.i.$ en $V$ con $dim\,W=m$. Por el corolario anterior $\gamma$ es una base de $V$ y entonces $W=\langle \gamma \rangle=V$.

$\square$

Tarea Moral

$1.$ Considera al espacio vectorial $\mathbb R^3$ sobre el campo de los reales y al subespacio:

$W=\langle (1,-7,-5), (2,10,2),(-3,-11,-1),(1,5,1) \rangle .$

Encuentra una base de $W$ reduciendo el conjunto generador dado.

$2.$ Considera al espacio vectorial $\mathbb R^3$ sobre el campo de los reales y los subespacios de $\mathbb R^3$ dados por:

i) $W=\set{(x,y,z)\in \mathbb R^3\mid y=-2x,z=-3x}$

ii) $V=\set{(x,y,z)\in \mathbb R^3\mid x+2y=z}.$

En cada inciso encuentra una base para cada subespacio y determina la dimensión del subespacio..

$3.$ Demuestra el corolario de la presente nota.

Más adelante

Con esta nota terminamos la unidad 3, en la siguiente y última unidad haremos un estudio de las matrices y sus determinantes.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 31. Bases de $\mathbb R^n$.

Enlace a la nota siguiente. Nota 33. Matrices.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.