Nota 29. Subespacio generado

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En la nota anterior vimos que si consideramos las combinaciones lineales de un conjunto $S\subseteq \mathbb R^n$, este conjunto al que denotamos $\mathscr C(S)$ tiene estructura de espacio vectorial. En la presente nota continuaremos con el estudio de subespacios vectoriales, y haremos énfasis en una definición, la de subespacio generado por un conjunto $S$.

Demos entonces la definición de subespacio generado.

Definición

Sea $S$ un subconjunto de $\mathbb R^n$. El subespacio de $\mathbb R^n$ generado por $S$ es el conjunto de combinaciones lineales de $S$ si $S\neq \emptyset$, o bien $\set{\bar{0}}$ si $S=\emptyset$.

Se denota por $\langle S \rangle$ (en algunos textos lo denotan por $Span(S)$.

Decimos que $S$ genera a $\langle S\rangle $ o que $S$ es un conjunto generador de $\langle S \rangle $.

Notación

Sean $v_1,\dotsc,v_m\in \mathbb R^n.$

$\langle \set{v_1,\dotsc,v_m}\rangle$ se denota por $\langle v_1,\dotsc,v_m\rangle .$

Ejemplos

$1.$ Consideremos $\mathbb R^3$

$S=\set{(1,0,0),(0,1,0),(0,0,1)}=\set{e_1,e_2,e_3}.$

Claramente $\langle S\rangle \subseteq \mathbb R^3$. Además, si $(a,b,c)\in \mathbb R^3$

$(a,b,c)=a(1,0,0)+b(0,1,0)+c(0,01)\in \langle S\rangle .$

Concluimos que $\langle S\rangle =\mathbb R^3$ y decimos entonces que $S$ genera a $\mathbb R^3$.

$2.$ ¿El vector $(7,5,9)$ se encuentra en el generado por el conjunto $S=\set{(2,1,3),(1,1,1)}$?, es decir

¿$(7,5,9)\in \langle (2,1,3),(1,1,1)\rangle $?

Veamos si existen $\lambda, \mu\in \mathbb R$ tales que:

$(7,5,9)=\lambda (2,1,3)+\mu (1,1,1).$

En otras palabras buscamos $\lambda, \mu\in \mathbb R$ tales que:

$(7,5,9)= (2 \lambda+\mu,\lambda+\mu,3\lambda+\mu).$

Comparando coordenada a coordenada obtenemos que:

$2 \lambda+\mu=7$

$ \lambda+\mu=5$

$3\lambda+\mu=9.$

Esto lo resolvemos restando a la ecuación $1$ la $2$, y obtenemos que:

$\lambda=2,$

y como $ \lambda+\mu=5$, entonces $\mu=5-\lambda=5-2=3$.

Además con estos valores de $\lambda$ y de $\mu$ se satisface la ecuación $3$, pues $3\lambda+\mu=3\cdot 2+3=9.$

Tenemos entonces que:

$(7,5,9)=2 (2,1,3)+3 (1,1,1)$ y por lo tanto $(7,5,9)\in \langle (2,1,3),(1,1,1)\rangle $.

$3.$ ¿$(1,1,2,3)\in \langle (1,1,1,4),(1,-1,1,5)\rangle $?

Buscamos $\lambda, \mu\in \mathbb R$ tales que:

$(1,1,2,3)=\lambda (1,1,1,4)+\mu (1,-1,1,5)$

Desarrollando obtenemos:

$(1,1,2,3)=(\lambda+\mu,\lambda-\mu,\lambda+\mu,4\lambda+5 \mu).$

Comparando coordenada a coordenada obtenemos que:

$\lambda+\mu=1$

$\lambda-\mu=1$

$\lambda+\mu=2$

$4 \lambda+5 \mu=3.$

Observamos que si esto ocurriera tendríamos que $\lambda+\mu=1$ y al mismo tiempo $\lambda+\mu=2$, y por lo tanto $1=2$ lo cual es una contradicción. De modo que no existen $\lambda, \mu\in \mathbb R$ que satisfagan esas condiciones y así $(1,1,2,3)\notin \langle (1,1,1,4),(1,-1,1,5)\rangle .$

$4.$ Consideremos $\mathbb R^3$ y $S=\set{(1,1,1),(1,-1,0),(1,0,0)}.$

¿Será acaso que $\langle S\rangle =\mathbb R^3$?

Sabemos que $\langle S\rangle \subseteq \mathbb R^3$. Ahora si $(a,b,c)\in \mathbb R^3$, ¿$(a,b,c)\in \langle S\rangle $?, ¿existirán $\lambda, \mu,\nu \in \mathbb R$ tales que:

$(a,b,c)=\lambda (1,1,1)+\mu (1,-1,0)+\nu (1,0,0) $?

Si esto ocurriera tendríamos entonces:

$(a,b,c)=\lambda (1,1,1)+\mu (1,-1,0)+\nu (1,0,0)$

y desarrollando, esto implicaría que:

$(a,b,c)= (\lambda+\mu+\nu ,\lambda-\mu,\lambda)+\nu (1,0,0)$

Comparando coordenada a coordenada obtendríamos que:

$\lambda+\mu+\nu =a$

$\lambda-\mu=b$

$\lambda=c$

Así $\lambda=c$. Como además $\lambda-b=\mu$, entonces $\mu=c-b$. Finalmente sustituyendo los valores de $\lambda=c$ y $\mu=c-b$ en la primera ecuación obtenemos que:

$\nu=a-\mu-\lambda=a-(c-b)-c=a-c+b-c=a+b-2c.$

Así:

$(a,b,c)=c (1,1,1)+(c-b) (1,-1,0)+(a+b-2c)(1,0,0)$.

Concluimos que $\mathbb R^3\subseteq \langle S\rangle $ y por lo tanto $\langle S\rangle =\mathbb R^3$. Decimos entonces que $S$ es un generador de $ \mathbb R^3$.

Importante

Si $W\subseteq \langle S\rangle $ pero $W\neq \langle S\rangle $, entonces el generado de $S$ no es $W$.

Por ejemplo:

Si $W=\set{(a,a)\mid a\in \mathbb R}$ y $S=\set{(1,0),(0,1)}$, el generado de $S$, es $\mathbb R^2=\langle S\rangle $, observa que $W\subseteq \langle S\rangle $, pero $S$ no genera a $W$, si no a algo más amplio que es $\mathbb R^2$.

Tarea Moral

$1.$ Considera al espacio vectorial $\mathbb R^3$ sobre el campo de los reales. Determina si el vector $v$ pertenece al subespacio $W$ dado.

$i)$ $v=(2,-3,7)$ y $W=\langle (1,0,0),(1,-1,0),(1,-1,-1)\rangle .$

$ii)$ $v=(1,-4,3,-1)$ y $W=\langle (1,1,1,0),(1,0,1,1)\rangle .$

$2.$ Considera al espacio vectorial $\mathbb R^3$ sobre el campo de los reales. Describe al subespacio $W=\langle (3,1,2),(-4,-5,1)\rangle .$

Más adelante

En la siguiente nota veremos los conceptos de dependencia e independencia lineal.

Enlaces relacionados

Página principal del curso.

Nota anterior. Nota 28 Combinaciones lineales.

Nota siguiente. Nota 30. Dependencia e independencia lineal.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.